

NdFeB MAGNET N33SH block

MAGNET DATA

			Limits			
Parameter	Symbol	Note	Min.	Тур.	Max.	Unit
Material	NdFeB	N33SH				
Magnetic Flux Density	Br		11000		12200	G
Temp. Coefficient of Flux Density	α(Br)			-0.12		%/°C
Operating Temperature	TA				150	°C
Number of Pole Pairs	Р	1				
Direction of Magnetization		see dwg.				
Mechanical Dimensions length	3		3.95	4.0	4.05	mm
width	a b		7.9	8.0	8.1	mm
height	h		2.9	3.0	3.1	mm

Treatment of edges: without ridge Treatment of the surface: none Plating: Ni-coating Marking: none

CAUTION: NdFeB-magnets are sensitive against corrosion and hence are protected by means of a Ni-layer that covers the whole magnet surface. Precautions have to be taken that the protection layer will not be damaged during handling and/or due to physical or chemical impact.

INDUCTION AS A FUNKTION OF AIRGAP (typ. values)

Airgap, d [mm]	0,5	1,0	1,5	2,0	3,0	4,0
Induction, B [Gauß]	-	1742	1376	1028	704	454

Airgap d is defined as the distance between sensor surface and magnet surface. Induction B measured with a calibrated Hallsensor (UGN3605K - CAL).

The minimum 3sigma induction is approximately 10% lower than the typical value.

ORDER NUMBER: 009.0018