

UR3274 Controller User manual Version 1.0

Summary

1	Safe	ety instructions
	1.1	General instructions
	1.2	Intended Usage6
	1.3	Qualified personnel
	1.4	Remaining hazards6
	1.5	CE Conformity7
2	Мос	del Identification7
3	Tech	nnical Data7
	3.1	General Features7
	3.2	Hardware Features8
	3.3	Software Features9
4	Dim	ensions and Installation9
5	Elec	ctrical wirings10
	5.1	Wiring diagram10
б	Disp	olay and Keys Functions14
	6.1	Numeric Indicators (Display)14
	6.2	Meaning of Status Lights (Led)14
	6.3	Keys
7	Con	troller Functions15
	7.1	Modifying Main Setpoint and Alarm Setpoint Values. 15
	7.2	Auto-Tune16
	7.3	Manual Tuning16
	7.4	Automatic Tuning16
	7.5	Soft Start17
	7.6	Automatic/Manual Regulation for % Output Control 17
	7.7	Pre-Programmed Cycle18
	7.8	Programming module18
	7.9	Loading default values19

	7.10	LATCH ON Functions	20
	7.11	Digital Input Functions	22
	7.12	2 Dual Action Heating-Cooling	23
8	Tim	er operation	25
	8.1	Single Timer	26
	8.2	Dual Timer	26
	8.3	Dual Sequential Timer	27
	8.4	Dual Timer Loop	27
	8.5	Relating Timers to Alarms	28
9		Serial Communication	29
	9.1	Slave	29
	9.2	Master	35
		9.2.1 Master Mode in retransmission	35
		9.2.2 Master Mode Remote process	
10	Con	figuration	
		Modify Configuration Parameter	
11	Tab	le of Configuration Parameters	
12	Alar	m Intervention Modes	53
13	Tab	le of Anomaly Signals	57
14		nmary of Configuration parameters	

Introduction

Dear valued Customer!

Thank you for purchasing and using a product from our company. The compact universal controller UR3274U integrates in a single device multiple options for sensor reading and actuators command in addition to the extended supply range 24 to 230 Vac/Vdc. With 17 selectable sensors and outputs configurable as relay or SSR command the user can reduce stock needs.

The series includes also a model with serial communication RS485 Modbus RTU. The possibility to repeat parametrization is simplified by the programming module with internal battery that do not require power supply for the controller For getting the highest effort out of this unit, we kindly ask you to follow the below mentioned instructions:

Every person who is involved with the installation or usage of this unit, must read carefully and understand the installation manual and safety instructions!

1 Safety instructions 1.1 General instructions

To ensure the safe operation of this unit the instructions that appear in this manual must be strictly observed. In addition, when used all applicable legal and safety regulations for the respective application must be observed. The same applies correspondingly to the use of accessories.

1.2 Intended Usage

Units from the controller series UR3274U are used for displaying and monitoring of process values. Any other use is regarded not in accordance with the intended usage.

Units from the controller series UR3274U are not meant to be used as sole safety means to prevent dangerous situations on machinery and installations. Machinery and intallations must be so designed that fault conditions can not lead to harmful situations to operating personnel (e.g. by independent limit value switches, mechanical locking etc.).

1.3 Qualified personnel

Units from the controller series UR3274U must only be operated in accordance with the technical specifications by qualified personnel. Personnel regarded qualified is familiar with the installation, assembly, putting into operation and operation of the units and possesses adequate professional qualification for the task.

1.4 Remaining hazards

Units from the controller series UR3274U are state of the art and safe to operate. A risk of danger can occur when deployed and operated improperly by untrained personnel. In this manual remaining hazards are marked by the following warning symbol:

This symbol indicates that non-observance of the safety guidelines may cause hazards to persons even serious injury or death and/or the possibility of property damage.

1.5 CE Conformity

The CE certificate is available at our company. We are pleased to send you a copy of it. Please feel free and contact us to get a copy.

2 Model Identification

Refer to the table below to easily select preferred model.

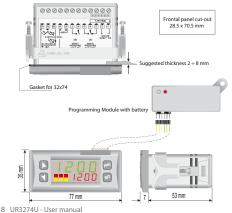
All versions available with power 24...230 Vac/Vdc +/-15% 50/60Hz – 4,6VA

UR3274U5	2 relays (8A+5A) + 1 SSR
UR3274U6	1 relays 8A + 1 Ssr + RS485

3 Technical Data 31 General Features

Display	4 0.40 inch displays + 4 0.30 displays
Operating temperature	1 relays 8A + 1 Ssr + RS485
temperature	IDGE from the second (with realist)
Sealing	IP65 front panel (with gasket) IP30 box, IP20 terminals
Material	Polycarbonate UL94V2 self-extinguishing
Weight	100 g

6 UR3274U - User manual

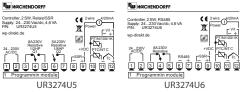

3.2 Hardware Features

Analogue input	AN1. Configurable via software. Thermocouple type: K, S, R, J. Automatic compensation of cold junction from 0°C to 50°C. Thermoresistance: PT100, PT500, PT1000, Ni100, PTC1K, NTC10K (β 3435K). Linear: 0-10V, 0-20 or 4-20mA, 0-40mV Potentiometers: 6KQ, 150KQ,	Tolerance (25°C) +/-0.2 % \pm 1 digit for thermocouple input, thermo- resistance and V/mA. Cold junction accuracy 0.1°C/°C Impedance: 0-10V: Ri>110K Ω 0-20mA: Ri<5 Ω 4-20mA: Ri<5 Ω 0-40mV: Ri>1M Ω
Relay output	2 relays (UR3274U5) 1 relay (UR3274U6) Configurable as command and/or alarm output	Contacts: Q1: 8A-250V~ for resistive loads Q2: 5A-250V~ for resistive loads
SSR output	1 SSR Configurable as command output and/ or alarm output.	12Vdc/30mA
Supply	Power supply 24230 Vac/Vdc +/-15% 50/60Hz	Power consumption 4.6VA

3.3 Software Features

Regulation algorithms	ON-OFF with hysteresis. P, PI, PID, PD with proportional time
Proportional band	09999°C or °F
Integral time	0,0999,9 sec (0 excluded)
Derivative time	0,0999,9 sec (0 excluded)
Controller functions	Manual or automatic Tuning, configurable alarms, protection of command and alarm setpoints, activation of functions via digital input, preset cycle with Start/Stop.

4 Dimensions and Installation


Electrical wirings

5

Although this controller was designed to resist electromagnetic interferences in industrial environments, pease observe following safety guidelines:

- · Separate the feeder line from the power lines.
- Avoid placing near units with remote control switches, electromagnetic contactors, high powered motors and in all instances use specific filters.
- Avoid placing near power units, particularly if phase controlled.

5.1 Wiring diagram

AN1 Analogue Input

For thermocouples K, S, R, J.

- Comply with polarity
- For possible extensions, use compensated cable and terminals suitable for the thermocouples used(compensated)
- When shielded cable is used, it should be grounded at one side only

For thermoresistances PT100, NI100

For the three-wire connection use wires with the same section
 For the two-wire connection short-

WHITE 11

- circuit terminals 10 and 12
- When shielded cable is used, it should be grounded at one side only RED IMIN

For thermoresistances NTC, PTC, PT500, PT1000 e potentiometers

 When shielded cable is used, it should be grounded at one side only to avoid ground loop currents

For linear signals V/mA

- · Comply with polarity
- When shielded cable is used, it should be grounded at one side only

Examples of Connection for linear input

For signals 0....10V

Comply with polarity

For signals 0/4....20mA with three-wire sensor

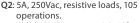
- Comply with polarity
- C = Sensor output
- B = Sensor ground
- A = Sensor power

For signals 0/4..20mA with external power of sensor

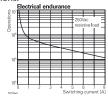
- Comply with polarity
- C = Sensor output
- B = Sensor ground

- For signals 0/4...20mA with two-wire sensor
- Comply with polarity
- C = Sensor output
- A = Sensor power supply

Serial input



- RS485 Modbus RTU communication
 - Do not use LT (line termination) resistors
- For networks with more than five instruments supply in low voltage


Relay Q1 Output

Capacity:

Q1: 8A, 250Vac, resistive loads, 10⁵ operations. 30/3A, 250Vac, cosφ=0.3, 10⁵ operations.

20/2A, 250Vac, cosφ=0.3, 10⁵ operations

SSR output

SSR command output 12V/30mA

Digital Input

3

Digital input according to parameter dLL. . The use of digital input in this version is possible only with TC sensors or 0...10V, 0/4...20mA and 0...40mV signals

6 Display and Keys Functions

6.1 Numeric Indicators (Display)

Normally displays the process. During the

- 1 ICH configuration phase, it displays the parameter being inserted.
 - Normally displays the setpoint. During the
- 2 234 configuration phase, it displays the parameter value being inserted.

6.2 Meaning of Status Lights (Led)

3

ON when the output command is on. For motorised valve command, led is ON when valve is

		opening and blinks when closing.
4	2	ON when alarm 1 is on.
5	3	ON when alarm 2 is on.
6	M	ON when the "Manual" function is on.
7	Т	ON when the controller is running an "Autotuning" cycle.
8	R	ON when the controller communicates via serial port.
		•

6.3	Keys	
9	: •	Allows to decrease main setpoint. During configuration phase, allows to slide through parameters. Together with set key it modifies them. Pressed after set key it allows to decrease alarm setpoint.
10	:	Allows to increase main setpoint. During configuration phase, allows to slide through parameters. Together with set key it modifies them. Pressed after set key it allows to increase alarm setpoint.
11	SET	Allows to display alarm setpoint and runs the autotuning function. Allows to modify configuration parameters.
12	FNC	Allows to run the autotuning function and to select Manual/automatic operation.

Allows to enter/exit for configurator procedure.

7 Controller Functions 7.1 Modifying Main Setpoint and Alarm Setpoint Values

Setpoint value can be changed by keyboard as follows:

	Press	Effect	Do
9	\mathbf{V}_{or}	Value on display 2 changes	Increase or decrease main setpoint
10	SET	Visualize alarm setpoint on display 1	l.
11	▼ _{or} ►	Value on display 2 changes	Increase or decrease the alarm set point value

7.2 Auto-Tune

Tuning procedure calculates the controller parameters and can be manual or automatic according to selection on parameter 46 μ m E.

7.3 Manual Tuning

Manual procedure allows the user greater flexibility to decide when to update PID algorithm work parameters. The procedure can be activated in two ways.

- Running Tuning by keyboard: Press (me) key until display 1 shows the writing Lun E with display 2 showing oFF, press (), display 2 shows on. The T led switches on and the procedure begins.
- Running Tuning by digital input:

Select LunE on parameter 50 dGL. .

At first activation of digital input (commutation on front panel) T led switches ON and at second activation switches off.

7.4 Automatic Tuning

Automatic tuning activates whenever the controller is switched on or when the setpoint is modified to a value over 35%.

To avoid an overshoot, the treshold where the controller calculates new PID parameters is determined by the setpoint value minus the "Set Deviation Tune" (see Parameter 475.d.Eu).

To exit Tuning and keep PID values unchanged, just press the f^{web} key until display 1 shows the writing $t_{un}t_{v}$ with the display showing u_n , press (), display 2 shows uFF.

The **T** led switches off and the procedure finishes.

7.5 Soft Start

To reach the setpoint the controller can follow a gradient expressed in units (e.g. degree/hour).

Enter this gradient on parameter 51 GrAd. with the chosen units/hour; only **on subsequent activation** the controller uses soft start function.

Automatic/manual tuning cannot be enabled if the Soft start is active.

7.6 Automatic/Manual Regulation for % Output Control

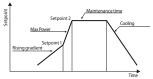
This function allows to select automatic functioning or manual command of the output percentage.

Parameter 49 R_{u} . $\Pi R_{.}$, can select two methods.

 First selection En. pressing the energy key display 1 shows P.---, while display 2 shows Auta.

Press the key to select ΠAn . mode; it is now possible, to change the output percentage using the keys and . To return to automatic mode, using the same procedure, select $\Pi u \perp u$ on display 2: M led switches off and functioning returns to automatic mode.

- Second selection En.5E. same functioning, but with two important variants:
 - If there is a temporary power failure or after switch-off, manual functioning as well as the previous output percentage value will be maintained at restarting.
 - If the sensor breaks during automatic functioning, controller moves to manual mode while maintaining the


output percentage command unchanged as generated by the PID immediately before breakage.

7.7 Pre-Programmed Cycle

Pre-programmed cycle function activates by setting ዖ-.cሧ.on parameter 48 ወዖЛם.

Controller reaches setpoint1 basing on the gradient set on parameter 51 GrAd, then it reaches max. power up to setpoint2. When the process reaches max. power, this setpoint is maintained for the time set on parameter 52 $\Pi A.E. r$.

At expiry, process will reach ambient temperature according to gradient entered on parameter 64 $FRLir_{r}$, then command output will be disabled and display will visualize 5toR.

Cycle starts at each activation of the controller, or via digital input if it is enabled for this type of functioning (see parameter 50 dLe. 1).

7.8 Programming module

Parameters and setpoint values can be duplicated from one controller to another using the Programming module. There are two methods:

With the controller connected to the power supply

Insert the programming module when the controller is off. On activation display 1 shows $\Pi E \Pi D$ and display 2 show ---- (Only if the correct values are saved in the programming module). By pressing the key display 2 shows $L_D \Pi d$, then confirm using the key. The controller loads the new data and starts again.

• With the controller not connected to power supply.

The programming module is equipped with an internal battery with an autonomy of about 1000 uses.

Insert the programming module and press the programming button.

When writing the parameters, the led turns red and on completing the procedure it changes to green. It is possible to repeat the procedure without any particular attention.

🖄 Updating programming module

To update the programming module values, follow the procedure described in the first method, setting display 2 to ---- so as not to load the parameters on controller¹.

Enter configuration level and change at least one parameter. Exit configuration. Changes are saved automatically.

7.9 Loading default values

This procedure allows to restore factory settings of the instrument.

¹ If on activation the controller does not display ΠΕΠα it means no data have been saved on the programming module, but it is possible to update values.

	Press	Effect	Do
1	FNC for 3 sec.	Display 1 shows 0000 with the 1st digit flashing, while display 2 shows PA55	
2	V _{or}	Change the flashing digit and move to the next one using the set key.	Enter password 9999
3	ऽहर to confirm	Instrument loads default settings	Turn off and restart the instrument

7.10 LATCH ON Functions

For use with input PoL.! (potentiometer $6K\Omega$) and PoL.2 (potentiometer $150K\Omega$) and with linear input (0...10V, 0...40mV, 0/4...20mA), it is possible to associate start value of the scale (parameter $6 \ Lo.L.$ i) to the minimum position of the sensor and value of the scale end (parameter $7 \ uPL.$ i) to the maximum position of the sensor (parameter $8 \ LRLc.$ configured as 5Ld).

It is also possible to fix the point in which the controller will display 0 (however keeping the scale range between Lo.L. .. and $u^{P,L}$...) using the "virtual zero" option by setting u.D5L. or u.D.n. in parameter 8 LRLc. If you set u.D.n. the virtual zero will reset after each activation of the tool; if you set u.D5L. the virtual zero remains fixed once tuned.

To use the LATCH ON function, configure according to required operation the parameter $L\ensuremath{\textit{H}}\xspace c^2$

² The tuning procedure starts by exiting the configuration after changing UR3274U - User manual 19

For the calibration procedure refer to the following table:

	Press	Effect	Do
1	FNC	Exit parameters configuration. Display 2 shows the writing LREc.	Place the sensor on the minimum functioning value (associated with Lo.L. 1)
2		Set the value to minimum. The display shows Lo니	Place the sensor on the maximum functioning position (associated with $\mu P.L$)
3		Set the value to maximum. The display shows H にと	To exit standard procedure press [FNC]. For "virtual zero" settings place the sensor on zero point.
4	SET	Set the virtual zero value. The display shows u : r E. NB: for selection of $u \square u n$. the procedure on point 4 should be followed at each re-activation.	To exit the procedure press (nc).

7.11 Digital Input Functions

Digital input is programmable for several functions which are useful to simplify controller operability. Select the chosen function on parameter 50 dGE. r.

- Hold function (enabled by setting L.c.n.o. or L.c.n.c.) allows to lock the reading of sensors when the digital input is active (useful for wide ranging oscillation on less significant values). During the hold phase, display 2 flashes and shows Lock.
- Enables/disables the autotuning function by digital input if the parameter LunE is set on IIAn.
- Enable regulation with ro.o.o. or ro.o.c.
- Switch from automatic to manual functioning if Au.ΠA. is set on En. or En.5Ł.
- Start of pre-programmed cycle (see par. 7.7) with 5Ł.5Ł.
- Change setpoint function. This function is useful where there are 2 to 4 working thres holds required during system functioning without having to press the arrow keys.

To enable the function use the parameter $\Box P \Pi_{\Box}$, by selecting the number of setpoints desired (no. thresholds switch). They can be switched during functioning by pressing the (s r) key.

NB: digital input functions **are not** available with sensors PT100, NI100, NTC, PTC, PT500, PT1000 and potentiometers.

7.12 Dual Action Heating-Cooling

UR3274U is suitable also for systems requiring a combined heating-cooling action.

 $(R \in E.E. = HERE$ and with a *P*.b. greater than 0), and one of the alarms $(R \in I \circ R \in \mathbb{Z})$ must be configured as *cool*. Command output must be connected to the actuator responsible for heat, while the alarm will control cooling action.

Parameters to configure for the Heating PID are:

RcE.E. = HERE Command output type (Heating)

P.b.: Heating proportional band

Ł. . : Integral time of heating and cooling

Ł.d.: Derivative time of heating and cooling

Ł.c.: Heating time cycle

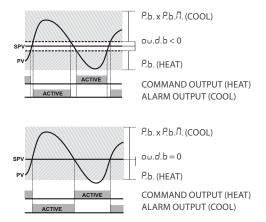
The parameters to configure for the Cooling PID are the following (example: action associated to alarm1):

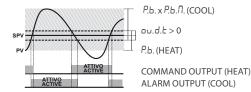
RL. l = cool Alarm1 selection (cooling)

P.b.fl.: Proportional band multiplier

ou.d.b.: Overlapping/Dead band

co.Ł.c.: Cooling time cycle


Parameter P.b.f. (that ranges from 1.00 to 5.00) determines the proportional band of cooling basing on the formula:


Cooling proportional band = $P.b. * P.b.\Pi$.

This gives a proportional band for cooling which will be the same as heating band if P.b.n. = 1.00, or 5 times greater if P.b.n. = 5.00. The **integral time and derivative time** are the same for both actions.

Parameter au.d.b. determines the percentage overlapping between the two actions. For systems in which the heating and cooling output must never be simultaneously active a dead band $(au.d.b. \le 0)$ can be configured, and viceversa an overlapping (au.d.b. > 0).

The following figure shows an example of dual action PID (heating-cooling) with $\xi_{-1} = 0$ and $\xi_{-d} = 0$.

Parameter co. L.c. has the same meaning of the cycle time L.c. for heating.

Parameter cooF. (cooling fluid) pre-selects the proportional band multiplier P.b. Π . and the cooling PID cycle time co.t.c. basing on the type of cooling fluid:

	ir 1.00	10
- 1		10
)il 1.25	4
H2o Wa	ater 2.50	2

8 Timer operation

Timer operation is enabled by parameter $63 L\Pi r.F.$ To modify duration of counting time, follow the steps below:

	Press	Effect	Do
1	SET	Press until E ∩. I or E ∩. 2 visualized on display 1.	
2	▼ or ►	Digits on display 2 changes.	Increase or decrease time value for the selected timer.

Below a description of available options for Timer operation. 24 UR3274U - User manual

8.1 Single Timer

This option enables one single Timer and the time is selectable by the operator.

To achieve this operation set parameter 63 $E\Pi r.F.$ as follows:

- 5.E^{17.5}. (Single Timer Seconds) time-basis in seconds (mm.ss)
- 5.±∏.∏. (Single Timer Minutes) time-basis in minutes (hh.mm) To start/stop the Timer, press (™) for 1 ".

During the counting, Led **R** is On and display2 shows decrementing time. At elapsing of Timer, led **R** switches off and display 2 flashes, visualising the programmed time until any key is pressed.

Start/Stop of Timer is possibile also by digital input, selecting E. I.5.5. on parameter 50 dGE. ..

8.2 Dual Timer

This option enables two Timers and the time is selectable by the operator: timers **cannot be started at same time**.

To achieve this operation set parameter 63 as follows:

- d. ΕΠ.5. (Double Timer Seconds) time-basis in seconds (mm.ss)
- $d. \pm \Pi. \Pi$. (Double Timer Minutes) time-basis in minutes (hh.mm) Check the table below for the Start procedure:

	Press	Effect	Do
1	FNC	Press until $\not\in \Pi$. I or $\not\in \Pi$. 2 visualized on display 1.	
2		Start the Timer. Display 2 shows decrementing time and Led R switches on (fixed for timer 1, flashing for timer 2).	Back to point 1, after selection of running Timer press to stop counting. Led R switches off.

At elapsing of Timer the led R

2 flashes, showing the programmed time until any key is pressed. Start/Stop of Timer by digital input **is NOT available** for Dual Timer mode.

8.3 Dual Sequential Timer

This option enables two Timers and the time is selectable by the operator. At elapsing of Timer 1, counting of Timer 2 will automatically start . At elapsing of Timer 2, counting will stop. To achieve operation of dual sequential Timer set the parameter 63 $\pm \Pi r$, F. as follows:

- d.5.t.5. (Double Sequential Timer Seconds) time-basis in seconds (mm.ss)
- ・ d.5.と.¹. (Double Sequential Timer Minutes) time-basis in minutes (hh.mm)

To start/stop the Timer, press key (\mathbb{W}^{C}) for 1". During the counting, Led \mathbb{R} is On (fixed for Timer 1, flashing for Timer 2) and display2 shows decrementing time. Start is always made on Timer 1. At elapsing of Timer, led \mathbb{R} is switched off and display 2 shows setpoint value. Start/Stop of Timer is possibile also by digital input, selecting L.1.5.5. on parameter 50 d L L.

8.4 Dual Timer Loop

This option enables 2 Timers and the time value is selectable by the operator. At elapsing of one Timer, the other one will automatically start and this sequence is repeated cycling.

To achieve operation of dual timer loop set the parameter 63 $E\Pi r.F.$ as follows:

 d. Ł.L.5. (Double Timer Loop Seconds) time-basis in seconds (mm.ss) d. E.L.R. (Double Timer Loop Minutes) time-basis in minutes (hh.mm)

To start/stop the Timer, press 🔊 for 1 ".

During the counting, Led R is On (fixed for Timer1, flashing for Timer 2) and display2 shows decrementing time. Start is always made on Timer 1.

Start/Stop of Timer is possibile also by digital input, selecting ይ. ቢ. 5.5. on parameter 50 ፊርድ. ..

8.5 Relating Timers to Alarms

It is possible to associate the alarms (relay or SSR outputs) to the timers by parameters 23 RL. I and 31 RL. Z. The table below is showing the combined operation of alarms and Timers.

Selection par. 23 or 31	Description
E.1.5.A.	Alarm active as long as Timer 1 is in
Timer 1 Start Alarm	Start mode (Timer active)
<i>E. I.E.R.</i> Timer 1 End Alarm	Alarm active at elapsing of Timer1 until any key is pressed. Option not available for Dual sequential Timer and Dual Timer Loop.
E.I.U.A.	
Timer 1 Warning	Alarm active for the last 5" of Timer1
Expiring	
E.2.5.A.	Alarm active as long as Timer 2 is in
Timer 2 Start Alarm	Start mode (Timer active)
E.2.E.A. Timer 2 End Alarm	Alarm active at elapsing of Timer2 until any key is pressed. Option not available for Dual sequential Timer and Dual Timer Loop.

E.2.U.E. Timer 2 Warning Expiring	Alarm active for the last 5" of Timer2
E.1.2.5.	Alarm active as long as Timers 1 and 2
Timer 1-2 Start Alarm	are in Start mode (Timers active)
	Alarm active at elapsing of Timers 1 and 2 until any key is pressed. Option not available for Dual sequential Timer and Dual Timer Loop.
E. I.Z.U. Timer 1-2 Warning expiring	Alarm active for the last 5" of Timers 1 and 2.

9 Serial Communication 9.1 Slave

UR3274U6 is equipped with RS485, it can receive and broadcast data via serial communication using MODBUS RTU protocol. The device operates as slave if parameter 59 ΠRSE . is set as d iS. This function enables the control of multiple devices connected to a supervisory system (SCADA).

Each controller will answer to a master query only if the query contains same address as on parameter 5L.Rd. The permitted addresses range from 1 to 254 and there should not be controllers with the same address on the same line.

Address 255 can be used by the master to communicate with all the connected equipment (broadcast mode), while with 0 all the devices receive the command, but no answer is expected.

UR3274U can introduce an answer delay (in milliseconds) to master request. This delay has to be set on parameter 58 5E.dE.

At each parameter configuration, instrument storeschange values in the EEPROM memory (100000 writing cycles), while setpoints are stored with a delay of 10 seconds after last modification. **NB**: modifications made to words different from those described in the following table can lead to instrument malfunction.

Modbus RTU	Modbus RTU protocol features				
	Modbus RTU protocol features				
Baud-rate	Selectable on parameter 56 낙윤 + 4800bit/sec 명윤 + 9600bit/sec 명윤 + 19200bit/sec 김용나 38400bit/sec 키윤 57600bit/sec				
Format	8, N, 1 (8bit, no parity, 1 stop)				
Supported functions	WORD READING (max 20 word) (0x03, 0x04) SINGLE WORD WRITING (0x06) MULTIPLE WORDS WRITING (max 20 word) (0x10)				

The list below includes all available addresses:

RO = Read Only	R/W = Read/Write	WO = Write Only
----------------	------------------	-----------------

Modbus address

Modbus address	Description	Read Write	Reset value
0	Device type	RO	EEPROM
1	Software version	RO	EEPROM
5	Slave Address	R/W	EEPROM

6	Boot version	RO	EEPROM
50	Automatic addressing	WO	-
51	System code comparison	WO	-
500	Loading default values: 9999 restore all values 9998 restore all values except for baud-rate and slave address 9997 restore all values except for slave address 9996 restore all values except for baud-rate	WO	0
1000	Process (with tenths of degree for temperature sensors; digits for linear sensors)	RO	-
1001	Setpoint1	R/W	EEPROM
1002	Setpoint2	R/W	EEPROM
1003	Setpoint3	R/W	EEPROM
1004	Setpoint4	R/W	EEPROM
1005	Alarm1	R/W	EEPROM
1006	Alarm2	R/W	EEPROM
1007	Setpoint gradient	RO	EEPROM
1008	Outputs status (0=off, 1=on) Bit 0 = Q1 relay Bit 1 = Q2 relay Bit 2 = SSR	RO	0
1009	Heating output percentage (0-10000)	RO	0
1010	Cooling output percentage (0-10000)	RO	0
1011	Alarms status (0=none, 1=active) Bit0 = Alarm 1 Bit1 = Alarm 2	RO	0

1012	Manual reset: write 0 to reset all the alarms. In reading (0=not resettable, 1=resettable): Bit0 = Alarm 1 Bit1 = Alarm 2	WO	0
1013	Error flags Bit0 = Eeprom writing error Bit1 = Eeprom reading error Bit2 = Cold junction error Bit3 = Process error (sensor) Bit4 = Generic error Bit5 = Hardware error Bit6 = Master off-line Bit7 = Missing calibration data	RO	0
1014	Cold junction temperature (tenths of degree)	RO	-
1015	Start/Stop 0=controller in STOP 1=controller in START	R/W	0
1016	Lock conversion ON/OFF 0=Lock conversion off 1=Lock conversion on	R/W	0
1017	Tuning ON/OFF 0=Tuning off 1=Tuning on	R/W	0
1018	Automatic/manual selection 0=automatic 1=manual	R/W	0
1019	OFF LINE [*] time (milliseconds)	R/W	0
1100	Process visualized (decimal as display)	RO	-

1101	Visualized Setpoint 1 (decimal as display)	R/W	EEPROM
1102	Visualized Setpoint 2 (decimal as display)	R/W	EEPROM
1103	Visualized Setpoint 3 (decimal as display)	R/W	EEPROM
1104	Visualized Setpoint 4 (decimal as display)	R/W	EEPROM
1105	Visualized Alarm 1 (decimal as display)	R/W	EEPROM
1106	Visualized Alarm 2 (decimal as display)	R/W	EEPROM
1107	Setpoint gradient (decimal as display)	RO	EEPROM
1108	Heating output percentage (0-1000)	RO	0
1109	Heating output percentage (0-100)	RO	0
1110	Cooling output percentage (0-1000)	RO	0
1111	Cooling output percentage (0-100)	RO	0
2001	Parameter 1	R/W	EEPROM
2064	Parameter 64	R/W	EEPROM
3000	Disabling serial control of machine**	WO	0

If value is 0, the control is disabled. If different from 0, it is the max. time which can elapse between two pollings before the controller goes offline. If it goes off-line, the controller returns to Stop mode, the control output is disabled but the alarms are active.

- ** By writing 1 on this word, the effects of the writing are cancelled on all the Modbus addresses from 3001 to 3022. Control therefore returns to the controller.
- 32 UR3274U User manual

		R/W	0
3008	Eighth word display1 (ASCII)	R/W	0
3009	First word display2 (ASCII)	R/W	0
		R/W	0
3016	Eighth word display2 (ASCII)	R/W	0
3017	Word LED Bit 0 = LED 1 Bit 1 = LED 2 Bit 2 = LED 3 Bit 3 = LED MAN Bit 4 = LED TUN Bit 5 = LED REM	R/W	0
3018	Word keys (write 1 to command keys) Bit 0 = \bigcirc Bit 1 = \land Bit 2 = ${}_{\odot}$ st Bit 3 = ${}_{\odot}$ er	R/W	0
3019	Word serial outputs Bit 0 = Q1 relay Bit 1 = Q2 relay Bit 2 = SSR	R/W	0
3020	Word serial outputs state if off-line Bit 0 = Q1 relay Bit 1 = Q2 relay Bit 2 = SSR	R/W	0
3021	Word serial process	R/W	0

9.2 Master

The device works as master if value selected on parameter 59 Π PSE. is other than d δ .

9.2.1 Master Mode in retransmission

Selecting this mode, the device will write the value to be retransmitted to the address selected on parameter 60 Rdd, on the slave devices having same ID as value selected on parameter 57 SL.Rd.

Regarding retransmission of setpoint values, after writing the value on slaves, UR3274U starts reading the corresponding word, so that any modification of value on the slave will be automatically updated also on the Master. Two successive pollings will be delayed for the time selected on parameter 57 SE.dE.

The following table includes the options allowing the Master mode in retransmission and the relevant retransmitted value.

NASE.	Description
U.Pro. Write Process	Write process value
۲.Ս.св. Read/Write Command Setpoint	Write and read command setpoint value
U.ou.P. Write Output Percentage	Write output percentage rated by P.I.D. function (Range 0-10000)
r.⊔.用.1 Read/Write Alarm 1	Write and read alarm 1 setpoint value

The read/written value might be rescaled according to the proportion described in the following table:

NASE.	Value limits input		Limits of rescaled value	
mae.	Min	Max	Min	Max
U.Pro. Write Process	Lo.L. ı. Lower Limit Input	ں P.L. ו. Upper Limit Input		uP.L.r. Upper Limit Retransmis- sion
г.U.co. Read/Write	Lo.L.S. Lower	uP.L.S. Upper		uP.L.r. Upper Limit
Command Setpoint	Limit	Limit		Retransmis-
U.ou.P. Write Output Percentage	0	10000	Lo.L.r. Lower Limit Retransmis- sion	uP.L.r. Upper Limit Retransmis- sion
r.U.A.1 Read/Write Alarm 1	Lo.L.5. Lower Limit Setpoint	uP.L.5. Upper Limit Setpoint	Lower Limit	uP.L.r. Upper Limit Retransmis- sion

The input value (included between minimum and max limit) is linearly converted into the retransmitted value which is included between min and max output value. Rescaling is not executed if parameters l.o.l..r. and u.P.l..r. have the same value.

9.2.2 Master Mode Remote process

To enable this function it is necessary to select r.Pro. on parameter 59 $\Pi R5L$. In this mode the process value on UR3274U is a value read via serial communication. The ID of the slave must be same as value selected on parameter 57 5L.Rd. and the word to read is selected on parameter 60 Rdd. Two successive pollings will be delayed for the time selected on parameter 57 5L.dE. The read value might be rescaled according to the proportion described in the following table:

NASE.	Limits of read value		Limits of rescaled value	
TITL.	Min	Max	Min	Max
	Lo.L.r.	uP.L.r.		
r.Pro.	Lower	Upper	Lo.L. ı.	uP.L. ı.
Read	Limit Re-	Limit Re-	Lower Limit	Upper Limit
Process	transmis-	transmis-	Input	Input
	sion	sion		

10 Configuration 10.1 Modify Configuration Parameter

For configuration parameters see paragraph 11.

	Press	Effect	Do
1	FNC for 3 sec.	Display 1 shows 0000 with the 1st digit flashing, while display 2 shows PASS.	
2	Change the flashing digit and move to the next one using the (set)key.		Enter password 1234

3	SET to confirm	Display 1 shows the first parameter and display 2 shows the value.	
4	\mathbf{V}_{or}	Slide up/down through parameters	
5	set+	Increase or decrease the value displayed by pressing firstly set and then an arrow key.	Enter the new data which will be saved on releasing the keys. To change another parameter return to point 4.
6	FNC	End of configuration parameter change. The controller exits from programming.	·

11 Table of Configuration Parameters

The following table includes all parameters. Some of them will not be visible on the models which are not provided with relevant hardware features.

```
1 c.out Command Output
select command output type.
c.od
c.ol > Default (Factory setting)
c.SSr
c.uRL.
```

	UR3274U5		
	Command	Alarm 1	Alarm 2
c.o2	Q2	Q1	SSR
c.o l	Q1	Q2	SSR
c.55r	55-	Q1	Q2
c.uAL.	Q1(opens) Q2(closes)	SSR	-

	UR3274U6	
	Command	Alarm 1
c.o l	Q1	SSR
c.55r	SSR	Q1
c.uAL.	Q1(opens) SSR(closes)	-

2 SEn. Sensor

analogue input configuration.

5	1 5
Ec. H	Tc-K -2601360°C > Default
Łс. 5	Tc-S -401760°C
Ес. г	Tc-R -401760°C
tc. J	Tc-J -2001200°C
PĿ	PT100-200600°C
PE I	PT100 -200140°C
ΠI	NI100 -60180°C
ntc	NTC10K -40125°C
Ptc	PTC1K -50150°C
PES	PT500 -100600°C
PE IF	PT1000 -100600°C
0.10	010Volt
0.20	020mA
4.20	420mA
0.40	040mVolt
Pot.1	Potenz.Max 6KΩ F.S.
Pot.2	Potenz.Max 150KΩ F.S.

38 UR3274U - User manual

3 d.P. Decimal Point

select number of displayed decimal points.

0 > **Default** 0.0 0.00 0.00

4 Lo.L.S. Lower Limit Setpoint

lower limit setpoint. -999...+9999 [digit³] (degrees.tenths for temperature sensors) **Default**: 0.

5 JPL.5. Upper Limit Setpoint

upper limit setpoint. -999...+9999 [digit³] (degrees.tenths for temperature sensors) **Default**: 1750.

- 6 Lo.L. Lower Linear Input lower range limit AN1 only for linear input. -999...+9999 [digit³] Default: 0.
- 7 uP.L.i. Upper Linear Input upper range limit AN1 only for linear input. -999...+9999 [digit³] Default: 1000.
- 8 LALC. Latch On Function

automatic setting of limits for Linear input.

- d .5. Disabled > Default
- 5Ed. Standard
- u.0.5E. Virtual Zero Stored

9 o.cAL. Offset Calibration

number added to process value visualized on display (usually correcting the ambient temperature value). -999...+1000 [digit³] for linear sensors and potentiometers. -99.9...+100.0 (degrees.tenths for temperature sensors). > Default: 0.0.

10 G.c.AL. Gain Calibration

this % is multiplied with displayed value to calibrate the process value. -99.9%...+100.0% > Default: 0.0

11 Act.t. Action type

regulation type

hEAL Heating (N.A.) > Default

cool. Cooling (N.C.)

H.o.o.5. If process is above setpoint, output is disabled (Heating).

12 c. rE. Command Reset

type of reset for state of command contact (always automatic in PID functioning).

- R.rE. Automatic Reset > Default
- П.-E. Manual Reset
- n.-E.5. Manual Reset Stored

13 c. 5.E. Command State Error

state of contact for command output in case of error.

c.o. > Default

C.C.

14 c. Ld. Command Led

state of OUT1 led corresponding to the relevant contact. c.o.

c.c. > Default

40 UR3274U - User manual

15 c. HJ. Command Hysteresis

hysteresis in ON/OFF or dead band in P.I.D. -999...+999 [digit³], (degrees.tenths for temperature sensors) > Default: 0.0

16 c. dE. Command Delay

(only in ON/OFF functioning).(In case of servo valve it also functions in PID and represents the delay between the opening and closure of the two contacts).

-180...+180 seconds, tenths of second in case of servo valve. Negative: delay in switching off phase.

Positive: delay in activation phase.

Default: 0.

17 c. 5.P. Command Setpoint Protection

allow/deny modifications of command setpoint by frontal keyboard.

FrEE > Default

- Loch. Locked
- 18 P.b. Proportional Band

process inertia in units (°C if temperature). **0** on/off if L. *i*. equal to **0**. > **Default 1-9999** [digit³], (degrees for temperature sensors).

19 E. . Integral Time

process inertia in seconds 0.0-999.9 sec. (0 excludes integral) > Default: 0.

20 E.d. Derivative Time

normally ¼ of integral time. 0.0-999.9 sec. (0 excludes derivative) > Default: 0.

³ The display of decimal point depends on the setting of parameter 5En. and the parameter d.P.

21 E.c. Cycle Time

Cycle time for time-proportioning output (10/15sec for PID contactors, 1 sec for PID on SSR or value declared by manufacturer for motorised valves) **0.1-300.0** sec. > **Default**: 10.0. For motorised valve min. time is 1.0 sec

22 o.Po.L. Output Power Limit

limit of output power %. **10-100** % > **Default**: 100

23 RL. | Alarm

operating mode for Alarm 1. Intervention of the alarm is associated to AL1.

- d .5. Disabled > Default
- R. RL. Absolute Alarm (see par. 12)
- b. AL. Band Alarm (see par. 12)
- H.d. RL. High Deviation Alarm (see par. 12)
- L.d.AL. Low Deviation Alarm (see par. 12)
- R.c.RL. Absolute Command setpoint Alarm
- 5E.RL. Start Alarm, Active in Run
- cool. Cooling
- E.I.S.A. Timer 1 Start Alarm
- L.I.E.R. Timer 1 End Alarm
- E.I.U.E. Timer 1 Warning Expiring
- E.2.5.A. Timer 2 Start Alarm
- Ł.2.E.A. Timer 2 End Alarm
- E.Z.U.E. Timer 2 Warning Expiring
- Ł.I.2.5. Timer 1-2 Start Alarm
- E.I.Z.E. Timer 1-2 End Alarm
- E.I.Z.U. Timer 1-2 Warning Expiring

24 R.I.S.o. Alarm 1 State Output

alarm 1 output contact and intervention type

- n.o. 5. (n.o. start) Normally open, active at start > Default
- n.c. 5. (n.c. start) Normally closed, active at start.

n.o. Ł. (n.o. threshold) Normally open,active on reaching alarm⁴.

n.c. E. (n.c. threshold) Normally closed on reaching alarm4.

25 R.L.E. Alarm 1 Reset

type of Reset for contact of alarm 1.

- H. F. Automatic Reset > **Default**
- N.-E. Manual Reset
- n.-E.5. Manual Reset Stored

26 R.I.S.E. Alarm 1 State Error

state of contact for alarm 1 output in case of error.

- c.o. > Default
- C.C.

27 R.ILd. Alarm 1 Led

state of OUT2 led corresponding to the relative contact.

- C.O.
- c.c. > Default

28 R.I.H. Alarm 1 Hysteresis

-999...+999 [digit⁵], (degrees.tenths for temperature sensors).

29 R.I.dE. Alarm 1 Delay

-180...+180 Sec. > Default: 0. Negative: delay at exit from alarm Positive: delay at starting of alarm

- ⁴ On activation the output is inhibited if the controller is in alarm mode. Activates only if alarm condition reappers after that it was restored.
- ⁵ The display of decimal point depends on the setting of parameter 5En. and the parameter d.P.

30 R.I.S.P. Alarm 1 Setpoint Protection

does not allow the user to modify setpoint.

- FrEE > Default
- Loc+. Locked
- HidE Locked and hidden

31 RL. 2 Alarm 2

Alarm 2 selection. Alarm intervention is associated to AL2.

- d .5. Disabled > Default
- R. RL. Absolute Alarm
- Ь. AL. Band Alarm
- H.d. AL. High Deviation Alarm
- L.d.AL. Low Deviation Alarm
- R.c.RL. Absolute Command setpoint Alarm
- 5E.AL. Start Alarm, Attivo in Run
- LooL Cooling
- E.I.S.A. Timer 1 Start Alarm
- E.I.E.A. Timer 1 End Alarm
- E.I.U.E. Timer 1 Warning Expiring
- E.2.5.A. Timer 2 Start Alarm
- Ł.2.E.A. Timer 2 End Alarm
- Ł.Z.U.E. Timer 2 Warning Expiring
- E.I.2.5. Timer 1-2 Start Alarm
- E.I.Z.E. Timer 1-2 End Alarm
- E.I.Z.U. Timer 1-2 Warning Expiring

32 R.2.5.o. Alarm 2 State Output

alarm 2 output contact and intervention type.

- n.o.5. (n.o. start) Normally open, active at start. > Default
- n.c.5. (n.c. start) Normally closed, active at start.
- n.o.t. (n.o. threshold) Normally open, active on reaching alarm⁶
- n.c.L. (n.c. threshold) Normally closed, active on reaching alarm6

⁶ On activation the output is inhibited if the controller is in alarm mode. Activates only if alarm condition reappers, after that it was restored. 44. IIB327411-IJser manal

33 R.2.-E. Alarm 2 Reset

type of Reset for contact of alarm 2.

Automatic Reset > Default

n.-E. Manual Reset

Π.¬E.5. Manual Reset Stored

34 R.2.5.E. Alarm 2 State Error

state of contact for alarm 2 output in case of error. n.o. > Default

п.с.

35 R.2.Ld. Alarm 2 Led

state of OUT2 led corresponding to relative contact.

n.o.

n.c. > Default

36 R.2.HS. Alarm 2 Hysteresis

-999...+999 [digit7], (degrees.tenths for temperature sensors). > Default: 0.

37 R.2.dE. Alarm 2 Delay

-180...+180 Sec. > Default: 0. Negative: delay in alarm output phase. Positive: delay in alarm entry phase.

38 R.2.5.P. Alarm 2 Setpoint Protection

Alarm 2 set protection.

Does not allow operator to change setpoint value.

FrEE > Default

Locked

HidE Locked and hidden

39 coo.F. Cooling Fluid

select type of cooling fluid for Heating/Cooling PID

AirDefaultoilOilH2oWater

40 P.b.fl. Proportional Band Multiplier 1.00-5.00 > Default: 1.00.

- 41 ou.d.b. Overlap/Dead Band overlapping/Dead band -20.0-50.0% > Default: 0.
- 42 co.b.c. Cooling Cycle Time

cycle time for cooling output. 1-300 sec. > Default: 10.

43 c.FLE. Conversion Filter

ADC filter, number of means on analogue-digital conversions.

- 5. Disabled 5.
- 2. 5. I. 2 Samples Mean
- 3. 5. 7. 3 Samples Mean
- 4. 5.17. 4 Samples Mean
- 5. 5. 7. 5 Samples Mean
- 5. 5. 7. 6 Samples Mean
- 7. 5. I. 7 Samples Mean
- 8. 5. 7. 8 Samples Mean
- 9. 5.7. 9 Samples Mean
 - ID.5.7. 10 Samples Mean > Default
 - II.5.II. 11 Samples Mean
 - ₽.5.П. 12 Samples Mean
 - B.5. I. 13 Samples Mean
 - H.5. I. 14 Samples Mean
 - 15.5.17. 15 Samples Mean

44 c.Frn. Conversion Frequency

Frequency of sampling for analogue-digital converter.

- 242H. 242 Hz Max ADC conversion frequency
 - 123H. 123 Hz
- 62 H. 62 Hz
- 50 H. 50 Hz
- 39 H. 39 Hz
- 33.2 Hz
- 19.6H. 19.6 Hz
- 16.7 Hz > Default
- 12.5H. 12.5 Hz
- 旧 H. 10 Hz
- 8.33H. 8.33 Hz
- 5.25H. 6.25 Hz
- Ч. ПН. 4.17 Hz Min. ADC conversion frequency

45 u.FLE. Visualization Filter

slow down the refresh of display in order to simplify the reading (keeping unchanged the ADC conversion frequency)

- d .5. Disabled
- PECH Pitchfork filter > Default
- Filor. First Order
- F.or.P. First Order with Pitchfork
- 2. 5. I. 2 Samples Mean
- Э. 5.П. 3 Samples Mean
- 4. 5.17. 4 Samples Mean
- 5. 5. . . 5 Samples Mean
- 5. 5. 7. 6 Samples Mean
- 7. 5. . 7 Samples Mean
- 8. 5. 7. 8 Samples Mean
- 9. 5. 7. 9 Samples Mean
- ID.5.II. 10 Samples Mean

46 Euro E Tune

tuning type selection

d 5. Disabled > Default

Rubo Automatic, PID parameters are calculated at each activation and/or change of setpoint.

08. Manual. Launch by keyboard or by digital input.

47 5.d.Łu. Setpoint Deviation Tune

select the deviation from the command setpoint as threshold used by Autotuning to calculate PID parameters. 0-5000 [digit7], (degrees.tenths for temperature sensors) > Default: 10

48 oP.No. Operatine Mode

select operating mode

- controller > Default
- Pr.cJ. Programmed Cycle 2E.5. 2 Thresholds Switch
- 26.5. .. 2 Thresholds Switch Impulsive
- 3E.5. . 3 Thresholds Switch Impulsive
- 4E.5. . 4 Thresholds Switch Impulsive

49 Bu DB Automatic/Manual

enable automatic/manual selection

- d 5 Disabled > Default
- Fn Enabled
- Fo 5F Enabled Stored

50 dut. . Digital Input

Digital input functioning.

Par. 48 selection must be cont. or Pr.cy.

d 5 Disabled > Default

5E.5E. Start/Stop

rada Runno

48 UB3274U - User manual

rn.n.c. Run n.c.

L.c.n.p. Lock Conversion n.o. (Lock visualisation on display with N.O. contact)

L.c.n.c. Lock Conversion n.c. (Lock visualisation on display with N.C. contact)

- ະມຸດE Tune > Manual
- R.П.R. .. Automatic Manual impulse
- R.П.R.c. Automatic Manual Contact
- E.I.5.5. Timer 1 Start Stop

51 Gradient

Rising gradient for soft start or pre-programmed cycle **0** Disabled > **Default**: 0.

1-9999 Digit/time⁷ (degrees/hours with display of tenths if temperature)

52 IR.E. Maintenance Time

maintenance time for pre-programmed cycle 00.00-24.00 hh.mm > Default: 00.00

53 u.fl.c.P. User Menu Cycle Programmed

Allows the rising/falling gradient and the maintenance time to be changed from the user menu in pre-programmed cycle functioning.

- d 5. Disabled > Default
- ா.பா. Rising Gradient (modify gradient)
- *ПR*.*E*. *i*. Maintenance Time (modify time)
- r ら. の. と. Rising Gradient and Maintenance Time (modify both)
- FR.Gr. Falling Gradient (modify cooling gradient)

r.F.Lr. Rising and Falling Gradient (modify rising and cooling gradient)

F.L.T.E. Falling Gradient and Maintenance Time

⁷ The display of decimal point depends on the setting of parameter 5En. and the parameter d.P.

RLL. All (modify all parameters for pre-programmed cyle)

54 under Visualization Type

select visualization for display 1 and 2

- I.P.2.5. 1 Process, 2 Setpoint > Default
- I.P.2.H. 1 Process, 2 Hide after 3 sec.
- 15.2.P. 1 Setpoint, 2 Process.
- 15.2H. 1 Setpoint, 2 Hide after 3 sec.

55 dEGr. Degree

select degree type

Celsius > Default

PF Fahrenheit

56 bd.rt. Baud Rate

select baud rate for serial communication 식용 ト 의용 ト 용관ト > **Default** 관명사 51.6ト

57 SL.Rd. Slave Address

select slave address for serial communication 0 – 255 > Default: 254.

58 SE.dE. Serial Delay

select serial delay 0 – 100 milliseconds > Default: 20.

59 NASE. Master

select master mode.

- d .5. Disable > Default
- U.Pro Write Process
- r.U.co. Read Write Command Setpoint
- U.ou.P. Write Output Percentage
- r.U.A.I Read Write Alarm 1 Setpoint
- r.Pro. Read Process

60 Rdd.c. Address Retransmission

select address for retransmission. **0x0000 – 0xFFFF** hexadecimal > **Default**: 0x03F9

61 Lo.L.r. Lower Limit Retransmission

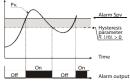
lower limit retransmission range. -999 - 9999 [digit^s], (degrees for temperature sensors) > Default: 0.

62 uP.L.r. Upper Limit Retransmission

upper limit retransmission range. -999 – 9999 [digit⁹], (degrees for temperature sensors) > Default: 0.

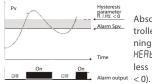
63 Effec.F. Timer Function

enable 1 or 2 Timers which may be set from user menu and which can be related to alarms.


d .5. Disable > Default

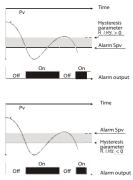
- 5.En.5. Single Timer Seconds
- d.En.5. Double Timer Seconds
- d.5.Ł.5. Double Sequential Timer Seconds
- ⁸ The display of decimal point depends on the setting of parameter 5En. and the parameter d.P.
- ⁹ If parameter 61 Lo.L.r. and 62 u.P.L.r. have the same value, retransmitted value is not rescaled.

- d.Ł.L.5. Double Timer Loop Seconds
- 5.En.n. Single Timer Minutes
- d.En.n. Double Timer Minutes
- d.5.Ł.^[]. Double Sequential Timer Minutes
- d.E.L.N. Double Timer Loop Minutes
- 64 FR.Gr. Falling Gradient


cooling gradient for pre-programmed cycle 0 desabled (uncontrolled cooling) > **Default**: 0. 1-9999 degrees/hour, with display of tenths

12 Alarm Intervention Modes Absolute Alarm or Threshold Alarm (*R. RL*. selection)

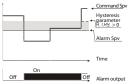
Absolute alarm with controller in heating functioning (Par.11 RcL.E. selected HERL) and hysteresis value greater than "0" (Par.28 R.IHJ. > 0).


NB: The example refers to alarm 1; the function can also be enabled for alarm 2 on model that include it.

Absolute alarm with controller in heating functioning (Par.11 *Act. E.* selected *HERE*) and hysteresis value less than "0" (Par.28 *A. IHY.* < 0).

NB: The example refers to alarm 1; the function can also be enabled for alarm 2 on model that include it.

52 UR3274U - User manual

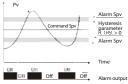

Absolute alarm with controller in cooling functioning

(Par.11 吊亡上. selected cool) and hysteresis value greater than "0" (Par.28 吊.1H当. > 0).

Absolute alarm with controller in cooling functioning (Par.11 $R_{\rm CL}$ & selected cool) and hysteresis value less than "0" (Par.28 $R_{\rm c}$ LHY. > 0).

NB: The example refers to alarm 1; the function can also be enabled for alarm 2 on model that include it.

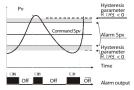
Absolute Alarm or Threshold Alarm Referring to Setpoint Command (A.c. AL. selection)



Absolute alarm refers to the command set, with the controller in heating functioning (Par.11 RcL.L. selected HERL) and hysteresis value greater than "0" (Par.28 R.IHJ. > 0).

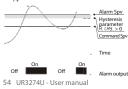
The command set can be changed by pressing the arrow keys on front panel or using serial port RS485 commands.

NB: The example refers to alarm 1; the function can also be enabled for alarm 2 on model that include it.


Band Alarm (b. RL. selection)

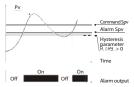
Band alarm hysteresis value greater than "0" (Par.28 Π . IHJ. > 0).

NB: The example refers to alarm 1; the function can also be enabled for alarm 2


on model that include it.

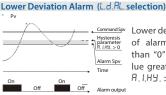
Band alarm hysteresis value less than "0" (Par.28 A. I.HY. < 0).

NB: The example refers to alarm 1; the function can also be enabled for alarm 2 on model that include it.

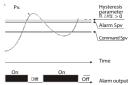

Upper Deviation Alarm (H.d. AL. selection)

Upper deviation alarm value of alarm setpoint greater than "0" and hysteresis value greater than "0" (Par.28 Π . 1.HY. > 0).

NB: a) The example refers to alarm 1; the function can also be enabled for alarm 2 on model that include it.


b) With hysteresis less than "0" (\mathcal{A} . IH3. < 0) the segmented line moves above the alarm setpoint.

Upper deviation alarm value of alarm setpoint less than "0" and hysteresis value greater than "0" (Par.28 R. I.HJ. > 0).


NB: a) The example refers to alarm 1; the function can also be enabled for alarm 2 on model that include it. b) With hysteresis less than "0" (月. 1. ビュー < 0) the segmen-

ted line moves above the alarm setpoint.

Lower deviation alarm value of alarm setpoint greater than "0" and hysteresis value greater than "0" (Par.28 Π . 1.HJ. > 0).

NB: a) The example refers to alarm 1; the function can also be enabled for alarm 2 on model that include it . b) With hysteresis less than "0" (月. 1. H님. < 0) the segmented line moves under the alarm setpoint.

Lower deviation alarm value of alarm setpoint less than "0" and hysteresis value greater than "0" (Par. 28 R. I.H \Im . > 0).

NB: a) The example refers to alarm 1; function can also be enabled for alarm 2 on model that include it.

b) With hysteresis value less than "0" (\Re . I.H \Im . < 0) the dotted line moves under alarm setpoint.

13 Table of Anomaly Signals

If installation malfunctions, controller will switch off regulation output and will report the anomaly. For example, controller will report failure of a connected thermocouple visualizing E - DS flashing on display for other signals, see table below.

	Cause	What to do
E-01 595.E.	Error in E ² PROM cell programming	Call Assistance
E-02 535.E.	Cold junction sensor fault or room tempera- ture outside of allowed limits.	Call Assistance
Е-D4 535.Е.	Incorrect configuration data. Possible loss of calibration values.	Check if the configu- ration parameters are correct.
Е-05 РгБ.	Thermocouple open or temperature outside of limits.	Check the connection with the sensors and their integrity.

	Off-line in master mode remote process	Check the serial connection, baud-rate and device ID.
E-08 595.E.	Missing calibration data	Call Assistance

Summary of Configuration parameters Date: Model UR3274U: Installer: System: Notes: System:

- c.out Command output type selection
- 5En.
 Analog input configuration

 d.P.
 Number of decimal points

 Lo.L.S.
 Lower limit setpoint

 uPL.S.
 Upper limit setpoint

 Lo.L.
 Lower limit range An1 only for linear

 uPL.s.
 Upper limit range An1 only for linear
- LALE. Automatic setting of linear input limits.
- o.cAL Offset calibration
- 6.cAL Gain calibration
- RcE.E. Regulation type
- c. rE. Command output reset type
- c. 5.E. Contact state for command output in case
- c. Ld. Define the OUT1 led state
- c. HJ. Hysteresis in ON/OFF or dead band in P.I.D.
- c. dE. Command delay
- c. 5.P. Command setpoint protection
- P.b. Proportional band
- ۲. Integral time
- Ł.d. Derivative time

£.c.	Cycle time
	Limit of output power %
RL. I	, addition beloced on
815 0	Alarm 1 output contact and intervention
	type
R.LE.	
R.I.S.E.	
R.I.L.d.	
	Alarm 1 hysteresis
	Alarm1 delay
R. I.S. P.	Alarm 1 set protection
RL. 2	Alarm 2 selection
R.2.5.o.	Alarm 2 output contact and intervention
	type
A.2.rE.	
	State of contact for alarm 2 output
R.2.Ld.	
	Alarm 2 hysteresis
	Alarm 2 delay
	Alarm 2 set protection
	Cooling fluid type
Р.Ь.П.	
	Overlapping/Dead band
	Cycle time for cooling output
c.FLE.	
c.Frn.	
	Display filter
EunE	
S.d.tu.	Command setpoint deviation for tuning
	threshold
oP.No.	Operating mode
	Automatic/manual selection
düt. ı.	Digital input functioning

GrHd.	Gradient for soft start
Π <i>Α.</i> Ε. ι.	Cycle maintenance time
u.Пс.Р.	Gradient change and maintenance time
	by user
u i.Ľ	Display data selection
dEGr.	Degree type selection
	Select baud rate for serial communication
SL.Ad.	Select slave address
SE.dE.	Select the serial delay
NASE.	Select value to retransmit by ModBus
Add.r.	Seelct address for retransmission
Lo.L.r.	Lower limit of retransmission range
uP.L.r.	Upper limit of retransmission range
ЕЛг.F.	Timer Function
FR.Gr.	Falling Gradiente

Notes

Wachendorff Prozesstechnik GmbH & Co. KG Industriestrasse 7 • D-65366 Geisenheim

Tel: +49 (0) 67 22 / 99 65 - 20 Fax: +49 (0) 67 22 / 99 65 - 78 E-Mail: efdi@wachendorff.de www.wachendorff-prozesstechnik.de

© Copyright by Wachendorff Prozesstechnik GmbH & Co. KG