Panasonic ideas for life

CAD Data
mm inch

FEATURES

1. Greatly increased load current in a compact DIP package
Continuous load current: 3.5A (AQV251G)
2. Greatly improved specifications allow you to use this in place of mercury and mechanical relays.
3. Low on-resistance (typ. 35m Ω, AQV251G)

HE 1 Form A High Capacity (AQV25OG)

DIP6-pin type with newgeneration MOS capable of 2A to 3A high-frequency switching

TYPICAL APPLICATIONS

- Measuring instrument market (Testers etc.)
- Industrial machinery and equipment
- Power supply controls
- Security/Disaster prevention market I/O sections of warning devices, security systems

TYPES

	Output rating*		Package	Part No.				Packing quantity		
			Through hole terminal	Surface-mount terminal						
	Load voltage	Load current		Tube packing style		Tape and reel packing style		Tube	Tape and reel	
						Picked from the 1/2/3-pin side	Picked from the 4/5/6-pin side			
AC/DC dual use	30 V	3.5 A		DIP6-pin	AQV251G	AQV251GA	AQV251GAX	AQV251GAZ	1 tube contains:	
	60 V	2.5 A	DIP6-pin	AQV252G	AQV252GA	AQV252GAX	AQV252GAZ	1 batch contains: 500 pcs.		

*Indicate the peak AC and DC values.
Note: The surface mount terminal indicator " A " and the packing style indicator " X " or " Z " are not marked on the device.

RATING

1. Absolute maximum ratings (Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$)

Item		Symbol	Type of connection	AQV251G(A)	AQV252G(A)	Remarks
Input	LED forward current	IF		$\begin{gathered} 50 \mathrm{~mA} \\ 5 \mathrm{~V} \\ 1 \mathrm{~A} \\ 75 \mathrm{~mW} \end{gathered}$		
	LED reverse voltage	V_{R}				
	Peak forward current	Ifp				$\mathrm{f}=100 \mathrm{~Hz}$, Duty factor $=0.1 \%$
	Power dissipation	Pin				
Output	Load voltage (peak AC)	VL		30 V	60 V	
	Continuous load current	IL	A	3.5 A	2.5 A	A connection: Peak AC, DC B, C connection: DC
			B	4.0 A	3.5 A	
			C	6.0 A	5.0 A	
	Peak load current	Ipeak		6.0 A		100 ms (1 shot), $\mathrm{V}_{\mathrm{L}}=\mathrm{DC}$
	Power dissipation	Pout		500 mW		
Total power dissipation		$\mathrm{P}_{\text {T }}$		550 mW		
I/O isolation voltage		$V_{\text {iso }}$		$1,500 \mathrm{~V} \mathrm{AC}$		
Temperature limits	Operating	Topr		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$		Non-condensing at low temperatures
	Storage	Tstg		$-40^{\circ} \mathrm{C} \text { to }+100^{\circ} \mathrm{C}-40^{\circ} \mathrm{F} \text { to }+212^{\circ} \mathrm{F}$		

HE 1 Form A High Capacity (AQV25OG)

2. Electrical characteristics (Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$)

Item			Symbol	Type of connection	AQV251G(A)	AQV252G(A)	Condition
Input	LED operate current	Typical	Ifon	-	0.55 mA	0.5 mA	$\mathrm{L}=100 \mathrm{~mA}$
		Maximum			3 mA	3 mA	
	LED turn off current	Minimum	IFoff	-	0.2 mA	0.2 mA	$\mathrm{I}=100 \mathrm{~mA}$
		Typical			0.45 mA	0.45 mA	
	LED dropout voltage	Typical	V_{F}	-	$1.14 \mathrm{~V}(1.32 \mathrm{~V}$ at $\mathrm{IF}=50 \mathrm{~mA})$		$\mathrm{IF}=5 \mathrm{~mA}$
		Maximum					
Output	On resistance	Typical	Ron	A	0.035Ω	0.08Ω	$\begin{aligned} & \text { IF }=5 \mathrm{~mA} \\ & \mathrm{I}=\mathrm{Max} . \\ & \text { Within } 1 \text { s on time } \end{aligned}$
		Maximum			0.08Ω	0.12Ω	
		Typical	Ron	B	0.018Ω	0.04Ω	
		Maximum			0.04Ω	0.06Ω	
		Typical	Ron	C	0.01Ω	0.02Ω	
		Maximum			0.02Ω	0.03Ω	
	Off state leakage current	Maximum	LLeak	-	$\begin{gathered} 1 \mu \mathrm{~A} \\ 1.1 \mathrm{~ms} \\ 5.0 \mathrm{~ms} \end{gathered}$		$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}=$ Max.
Transfer characteristics	Turn on time*	Typical	Ton	-			$\mathrm{IF}=5 \mathrm{~mA}, \mathrm{lL}=100 \mathrm{~mA}$
		Maximum					$V_{L}=10 \mathrm{~V}$
	Turn off time*	Typical	Toff	-	0.1 ms	0.25 ms	$\mathrm{IF}=5 \mathrm{~mA}, \mathrm{lL}=100 \mathrm{~mA}$
		Maximum			$\begin{gathered} 0.5 \mathrm{~ms} \\ 0.8 \mathrm{pF} \\ 1.5 \mathrm{pF} \\ 1,000 \mathrm{M} \Omega \end{gathered}$		$\mathrm{V}_{\mathrm{L}}=10 \mathrm{~V}$
	I/O capacitance	Typical	Ciso	-			$\mathrm{f}=1 \mathrm{MHz}$
		Maximum					$\mathrm{V}_{\mathrm{B}}=0 \mathrm{~V}$
	Initial I/O isolation resistance	Minimum	Riso	-			500 V DC

*Turn on/Turn off time

RECOMMENDED OPERATING CONDITIONS

Please obey the following conditions to ensure proper relay operation and resetting.

Item	Symbol	Recommended value	Unit
Input LED current	IF	5 to 10	mA

\square Dimensions

- Schematic and Wiring Diagrams
 \square Cautions for Use

\square These products are not designed for automotive use.
If you are considering to use these products for automotive applications, please contact your local Panasonic technical representative.
Please refer to our information on PhotoMOS Relays for Automotive Applications.

REFERENCE DATA

1-(1)Load current vs. ambient temperature characteristics
Tested sample: AQV251G:
Allowable ambient temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$

1-(2) Load current vs. ambient temperature characteristics
Tested sample: AQV252G:
Allowable ambient temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

2. On resistance vs. ambient temperature characteristics
Measured portion: between terminals 4 and 6; LED current: 5 mA ; Load voltage: Max. (DC) Continuous load current: Max.(DC)

3. Turn on time vs. ambient temperature characteristics
Tested sample: All; LED current: 5 mA ; Load voltage 10 V (DC); Continuous load current: 100 mA (DC)

6. LED turn off current vs. ambient temperature characteristics
Tested sample: All; Load voltage: 10 V (DC); Continuous load current: 100mA (DC)

9. Off state leakage current vs. load voltage characteristics
Measured portion: between terminals 4 and 6; Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

12. Output capacitance vs. applied voltage characteristics
Measured portion: between terminals 4 and 6;
Frequency: 1 MHz ; Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

4. Turn off time vs. ambient temperature characteristics
LED current: 5 mA ; Load voltage: 10 V (DC); Continuous load current: 100 mA (DC)

7. LED dropout voltage vs. ambient temperature characteristics
Tested sample: All;
LED current: 5 to 50 mA

10.Turn on time vs. LED forward current characteristics
Measured portion: between terminals 4 and 6;
Tested sample: All; Load voltage: 10 V (DC);
Continuous load current: 100 mA (DC);
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

5. LED operate current vs. ambient temperature characteristics
Tested sample: All; Load voltage: 10 V (DC); Continuous load current: 100 mA (DC)

8. Current vs. voltage characteristics of output at MOS portion
Measured portion: between terminals 4 and 6 ;
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

11.Turn off time vs. LED forward current characteristics
Measured portion: between terminals 4 and 6;
Load voltage: 10 V (DC)
Continuous load current: 100 mA (DC)
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

13.Max. switching frequency

Tested sample: AQV251G;
LED current: 5 mA ,
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

