Features

- High Performance, Low Power AVR ${ }^{\circledR}$ 8-Bit Microcontroller
- Advanced RISC Architecture
- 120 Powerful Instructions - Most Single Clock Cycle Execution
- 32×8 General Purpose Working Registers
- Fully Static Operation
- Non-volatile Program and Data Memories
- 2/4/8K Byte of In-System Programmable Program Memory Flash (ATtiny24/44/84) Endurance: 10,000 Write/Erase Cycles
- 128/256/512 Bytes In-System Programmable EEPROM (ATtiny24/44/84)

Endurance: 100,000 Write/Erase Cycles

- 128/256/512 Bytes Internal SRAM (ATtiny24/44/84)
- Programming Lock for Self-Programming Flash Program and EEPROM Data Security
- Peripheral Features
- Two Timer/Counters, 8- and 16-bit counters with two PWM Channels on both
- 10-bit ADC

8 single-ended channels
12 differential ADC channel pairs with programmable gain (1x, 20x)
Temperature Measurement

- Programmable Watchdog Timer with Separate On-chip Oscillator
- On-chip Analog Comparator
- Universal Serial Interface
- Special Microcontroller Features
- debugWIRE On-chip Debug System
- In-System Programmable via SPI Port
- External and Internal Interrupt Sources
- Pin Change Interrupt on 12 pins
- Low Power Idle, ADC Noise Reduction, Standby and Power-down Modes
- Enhanced Power-on Reset Circuit
- Programmable Brown-out Detection Circuit
- Internal Calibrated Oscillator
- On-chip Temperature Sensor
- I/O and Packages
- 14-pin SOIC, PDIP and 20-pin QFN/MLF: Twelve Programmable I/O Lines
- Operating Voltage:
- 1.8-5.5V for ATtiny24V/44V/84V
- 2.7-5.5V for ATtiny24/44/84
- Speed Grade
- ATtiny24V/44V/84V: 0-4 MHz @ 1.8-5.5V, 0-10 MHz @ 2.7-5.5V
- ATtiny24/44/84: 0-10 MHz @ 2.7-5.5V, 0-20 MHz @ 4.5-5.5V
- Industrial Temperature Range
- Low Power Consumption
- Active Mode:
$1 \mathrm{MHz}, 1.8 \mathrm{~V}$: $380 \mu \mathrm{~A}$
- Power-down Mode:
1.8V: 100 nA

1. Pin Configurations

Figure 1-1. Pinout ATtiny24/44/84

QFN/MLF

1.1 Disclaimer

Typical values contained in this data sheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. Min and Max values will be available after the device is characterized.

2. Overview

The ATtiny24/44/84 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATtiny24/44/84 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

2.1 Block Diagram

Figure 2-1. Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATtiny24/44/84 provides the following features: 2/4/8K byte of In-System Programmable Flash, 128/256/512 bytes EEPROM, 128/256/512 bytes SRAM, 12 general purpose I/O lines, 32 general purpose working registers, a 8 -bit Timer/Counter with two PWM channels, a 16-bit timer/counter with two PWM channels, Internal and External Interrupts, a 8-channel 10-bit ADC, programmable gain stage ($1 \mathrm{x}, 20 \mathrm{x}$) for 12 differential ADC channel pairs, a programmable Watchdog Timer with internal Oscillator, internal calibrated oscillator, and three software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counter, ADC, Analog Comparator, and Interrupt system to continue functioning. The Power-down mode saves the register contents, disabling all chip functions until the next Interrupt or Hardware Reset. The ADC Noise Reduction mode stops the CPU and all I/O modules except ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low power consumption.

The device is manufactured ng Atmel's high density non-volatile memory technology. The Onchip ISP Flash allows the Program memory to be re-programmed In-System through an SPI serial interface, by a conventional non-volatile memory programmer or by an On-chip boot code running on the AVR core.

The ATtiny24/44/84 AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators, and Evaluation kits.

2.2 Pin Descriptions

2.2.1 VCC

Supply voltage.

2.2.2 GND

Ground.

2.2.3 Port B (PB3...PB0)

Port B is a 4-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability except PB3 which has the RESET capability. To use pin PB3 as an I/O pin, instead of RESET pin, program (' 0 ') RSTDISBL fuse. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port B also serves the functions of various special features of the ATtiny24/44/84 as listed on Section 12.3 "Alternate Port Functions" on page 61.

2.2.4 RESET

Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in Table 22-3 on page 183. Shorter pulses are not guaranteed to generate a reset.

2.2.5 Port A (PA7...PAO)

Port A is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port A has an alternate functions as analog inputs for the ADC, analog comparator, timer/counter, SPI and pin change interrupt as described in "Alternate Port Functions" on page 61

3. Resources

A comprehensive set of development tools, drivers and application notes, and datasheets are available for download on http://www.atmel.com/avr.

4. About Code Examples

This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details.

For I/O Registers located in extended I/O map, "IN", "OUT", "SBIS", "SBIC", "CBI", and "SBI" instructions must be replaced with instructions that allow access to extended I/O. Typically "LDS" and "STS" combined with "SBRS", "SBRC", "SBR", and "CBR".

5. Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x3F (0x5F)	SREG	1	T	H	S	V	N	Z	C	Page 9
0x3E (0x5E)	SPH	-	-	-	-	-	-	SP9	SP8	Page 12
0x3D (0x5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	Page 12
$0 \times 3 \mathrm{C}$ (0x5C)	OCROB	Timer/Counter0 - Output Compare Register B								Page 89
0x3B (0x5B)	GIMSK	-	INT0	PCIE1	PCIE0	-	-	-	-	Page 53
0x3A (0x5A	GIFR	-	INTF0	PCIF1	PCIF0	-	-	-	-	Page 54
0×39 (0x59)	TIMSK0	-	-	-	-	-	OCIEOB	OCIEOA	TOIE0	Page 90
0×38 (0x58)	TIFR0		-	-	-	-	OCFOB	OCFOA	TOV0	Page 90
0×37 (0x57)	SPMCSR	-	-	-	CTPB	RFLB	PGWRT	PGERS	SPMEN	Page 163
0×36 (0x56)	OCROA	Timer/Counter0 - Output Compare Register A								Page 89
0×35 (0x55)	MCUCR	-	PUD	SE	SM1	SM0	-	ISC01	ISC00	Page 53
0×34 (0x54)	MCUSR	-	-	-	-	WDRF	BORF	EXTRF	PORF	Page 46
0×33 (0x53)	TCCROB	FOCOA	FOCOB	-	-	WGM02	CS02	CS01	CSOO	Page 88
0×32 (0x52)	TCNT0	Timer/Counter0								Page 89
0×31 (0x51)	OSCCAL	CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CALO	Page 33
0×30 (0x50)	TCCROA	COM0A1	COMOAO	COM0B1	COMOBO	-		WGM01	WGM00	Page 85
0x2F (0x4F)	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	-		WGM11	WGM10	Page 114
0x2E (0x4E)	TCCR1B	ICNC1	ICES1	-	WGM13	WGM12	CS12	CS11	CS10	Page 116
0x2D (0x4D)	TCNT1H	Timer/Counter1 - Counter Register High Byte								Page 118
0x2C (0x4C)	TCNT1L	Timer/Counter1 - Counter Register Low Byte								Page 118
0x2B (0x4B)	OCR1AH	Timer/Counter1 - Compare Register A High Byte								Page 118
0x2A (0x4A)	OCR1AL	Timer/Counter1 - Compare Register A Low Byte								Page 118
0×29 (0x49)	OCR1BH	Timer/Counter1 - Compare Register B High Byte								Page 118
0×28 (0x48)	OCR1BL	Timer/Counter1-Compare Register B Low Byte								Page 118
0×27 (0x47)	DWDR	DWDR[7:0]								Page 159
0×26 (0x46)	CLKPR	CLKPCE	-	-	-	CLKPS3	CLKPS2	CLKPS1	CLKPSO	Page 33
0×25 (0x45)	ICR1H	Timer/Counter1 - Input Capture Register High Byte								Page 119
0×24 (0x44)	ICR1L	Timer/Counter1 - Input Capture Register Low Byte								Page 119
0×23 (0x43)	GTCCR	TSM	-	-	-	-	-	-	PSR10	Page 122
0×22 (0x42)	TCCR1C	FOC1A	FOC1B	-	-	-	-	-	-	Page 117
0×21 (0x41)	WDTCSR	WDIF	WDIE	WDP3	WDCE	WDE	WDP2	WDP1	WDP0	Page 46
0×20 (0x40)	PCMSK1	-	-	-	-	PCINT11	PCINT10	PCINT9	PCINT8	Page 54
0x1F (0x3F)	EEARH	-	-	-	-	-	-	-	EEAR8	Page 23
0x1E (0x3E)	EEARL									Page 23
0x1D (0x3D)	EEDR									Page 23
0x1C (0x3C)	EECR	-	-	EEPM1	EEPM0	EERIE	EEMPE	EEPE	EERE	Page 23
0x1B (0x3B)	PORTA	PORTA7	PORTA6	PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTAO	Page 72
0x1A (0x3A)	DDRA	DDA7	DDA6	DDA5	DDA4	DDA3	DDA2	DDA1	DDA0	Page 72
0×19 (0x39)	PINA	PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINAO	Page 72
0×18 (0x38)	PORTB	-	-	-	-	PORTB3	PORTB2	PORTB1	PORTB0	Page 72
0×17 (0x37)	DDRB	-	-	-	-	DDB3	DDB2	DDB1	DDB0	Page 72
0×16 (0x36)	PINB	-	-	-	-	PINB3	PINB2	PINB1	PINB0	Page 73
0x15 (0x35)	GPIOR2	General Purpose I/O Register 2								Page 25
0x14 (0x34)	GPIOR1	General Purpose I/O Register 1								Page 25
0×13 (0x33)	GPIOR0	General Purpose I/O Register 0								Page 25
0×12 (0x32)	PCMSK0	PCINT7	PCINT6	PCINT5	PCINT4	PCINT3	PCINT2	PCINT1	PCINTO	Page 55
0x11 (0x31))	Reserved	-								
0×10 (0x30)	USIBR	USI Buffer Register								Page 131
0x0F (0x2F)	USIDR	USI Data Register								Page 131
0x0E (0x2E)	USISR	USISIF	USIOIF	USIPF	USIDC	USICNT3	USICNT2	USICNT1	USICNT0	Page 131
0x0D (0x2D)	USICR	USISIE	USIOIE	USIWM1	USIWM0	USICS1	USICSO	USICLK	USITC	Page 132
0x0C (0x2C)	TIMSK1	-	-	ICIE1	-	-	OCIE1B	OCIE1A	TOIE1	Page 119
0x0B (0x2B)	TIFR1	-	-	ICF1	-	-	OCF1B	OCF1A	TOV1	Page 120
0x0A (0x2A)	Reserved	-								
0x09 (0x29)	Reserved	-								
0×08 (0x28)	ACSR	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	Page 137
0×07 (0x27)	ADMUX	REFS1	REFSO	MUX5	MUX4	MUX3	MUX2	MUX1	MUX0	Page 151
0×06 (0x26)	ADCSRA	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	Page 154
0×05 (0x25)	ADCH	ADC Data Register High Byte								Page 155
0×04 (0x24)	ADCL	ADC Data Register Low Byte								Page 155
0×03 (0x23)	ADCSRB	BIN	ACME	-	ADLAR	-	ADTS2	ADTS1	ADTS0	Page 156
0×02 (0x22)	Reserved	-								
0×01 (0x21)	DIDR0	ADC7D	ADC6D	ADC5D	ADC4D	ADC3D	ADC2D	ADC1D	ADCOD	Page 138,Page 157
0x00 (0x20)	PRR	-	-	-	-	PRTIM1	PRTIM0	PRUSI	PRADC	Page 36

Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
2. I/O Registers within the address range $0 \times 00-0 \times 1 F$ are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operation the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0×00 to $0 \times 1 \mathrm{~F}$ only.
6. Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	\#Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS					
ADD	Rd, Rr	Add two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}+\mathrm{Rr}$	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}+\mathrm{Rr}+\mathrm{C}$	Z,C,N,V,H	1
ADIW	Rdi, K	Add Immediate to Word	Rdh:Rdl \leftarrow Rdh:Rdl + K	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{Rr}$	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{K}$	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{Rr}-\mathrm{C}$	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{K}-\mathrm{C}$	Z,C,N,V,H	1
SBIW	Rdl, K	Subtract Immediate from Word	Rdh:Rdl \leftarrow Rdh:Rdl - K	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet \mathrm{Rr}$	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet \mathrm{K}$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd} v \mathrm{Rr}$	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$\mathrm{Rd} \leftarrow \mathrm{Rdv}$ K	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd} \oplus \mathrm{Rr}$	Z,N,V	1
COM	Rd	One's Complement	$\mathrm{Rd} \leftarrow 0 \times \mathrm{FF}-\mathrm{Rd}$	Z,C,N, V	1
NEG	Rd	Two's Complement	$\mathrm{Rd} \leftarrow 0 \times 00-\mathrm{Rd}$	Z,C,N,V,H	1
SBR	Rd, K	Set Bit(s) in Register	$\mathrm{Rd} \leftarrow \mathrm{Rdv} \mathrm{K}$	Z,N,V	1
CBR	Rd, K	Clear Bit(s) in Register	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet(0 x \mathrm{FF}-\mathrm{K})$	Z,N,V	1
INC	Rd	Increment	$\mathrm{Rd} \leftarrow \mathrm{Rd}+1$	Z,N,V	1
DEC	Rd	Decrement	$\mathrm{Rd} \leftarrow \mathrm{Rd}-1$	Z,N,V	1
TST	Rd	Test for Zero or Minus	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet \mathrm{Rd}$	Z,N,V	1
CLR	Rd	Clear Register	$\mathrm{Rd} \leftarrow \mathrm{Rd} \oplus \mathrm{Rd}$	Z,N,V	1
SER	Rd	Set Register	$\mathrm{Rd} \leftarrow 0 \mathrm{xFF}$	None	1
BRANCH INSTRUCTIONS					
RJMP	k	Relative Jump	$\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	2
IJMP		Indirect Jump to (Z)	$\mathrm{PC} \leftarrow \mathrm{Z}$	None	2
RCALL	k	Relative Subroutine Call	$\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	3
ICALL		Indirect Call to (Z)	$\mathrm{PC} \leftarrow \mathrm{Z}$	None	3
RET		Subroutine Return	$\mathrm{PC} \leftarrow$ STACK	None	4
RETI		Interrupt Return	$\mathrm{PC} \leftarrow$ STACK	1	4
CPSE	Rd, Rr	Compare, Skip if Equal	if ($\mathrm{Rd}=\mathrm{Rr}$) $\mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2/3
CP	Rd, Rr	Compare	$\mathrm{Rd}-\mathrm{Rr}$	Z, N, V, C, H	1
CPC	Rd, Rr	Compare with Carry	$\mathrm{Rd}-\mathrm{Rr}-\mathrm{C}$	Z, N,V,C,H	1
CPI	Rd, K	Compare Register with Immediate	Rd-K	Z, N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if $(\operatorname{Rr}(\mathrm{b})=0) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if $(\operatorname{Rr}(\mathrm{b})=1) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2/3
SBIC	P, b	Skip if Bit in I/O Register Cleared	if $(P(b)=0) P C \leftarrow P C+2$ or 3	None	1/2/3
SBIS	P, b	Skip if Bit in I/O Register is Set	if $(\mathrm{P}(\mathrm{b})=1) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) $=1$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) $=0$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BREQ	k	Branch if Equal	if $(\mathrm{Z}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRNE	k	Branch if Not Equal	if $(\mathrm{Z}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRCS	k	Branch if Carry Set	if $(\mathrm{C}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRCC	k	Branch if Carry Cleared	if ($\mathrm{C}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRSH	k	Branch if Same or Higher	if ($\mathrm{C}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRLO	k	Branch if Lower	if ($\mathrm{C}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRMI	k	Branch if Minus	if $(\mathrm{N}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRPL	k	Branch if Plus	if ($\mathrm{N}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if ($\mathrm{N} \oplus \mathrm{V}=0$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if $(\mathrm{N} \oplus \mathrm{V}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if $(\mathrm{H}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if $(\mathrm{H}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRTS	k	Branch if T Flag Set	if $(\mathrm{T}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRTC	k	Branch if T Flag Cleared	if ($\mathrm{T}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if $(\mathrm{V}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if $(\mathrm{V}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRIE	k	Branch if Interrupt Enabled	if $(\mathrm{I}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRID	k	Branch if Interrupt Disabled	if $(\mathrm{I}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BIT AND BIT-TEST INSTRUCTIONS					
SBI	P, b	Set Bit in I/O Register	$\mathrm{l} / \mathrm{O}(\mathrm{P}, \mathrm{b}) \leftarrow 1$	None	2
CBI	P, b	Clear Bit in I/O Register	$\mathrm{l} / \mathrm{O}(\mathrm{P}, \mathrm{b}) \leftarrow 0$	None	2
LSL	Rd	Logical Shift Left	$\operatorname{Rd}(\mathrm{n}+1) \leftarrow \operatorname{Rd}(\mathrm{n}), \operatorname{Rd}(0) \leftarrow 0$	Z,C,N, V	1
LSR	Rd	Logical Shift Right	$\mathrm{Rd}(\mathrm{n}) \leftarrow \operatorname{Rd}(\mathrm{n}+1), \mathrm{Rd}(7) \leftarrow 0$	Z,C,N, V	1

Mnemonics	Operands	Description	Operation	Flags	\#Clocks
ROL	Rd	Rotate Left Through Carry	$\mathrm{Rd}(0) \leftarrow \mathrm{C}, \mathrm{Rd}(\mathrm{n}+1) \leftarrow \mathrm{Rd}(\mathrm{n}), \mathrm{C} \leftarrow \operatorname{Rd}(7)$	Z,C,N, V	1
ROR	Rd	Rotate Right Through Carry	$\mathrm{Rd}(7) \leftarrow \mathrm{C}, \mathrm{Rd}(\mathrm{n}) \leftarrow \operatorname{Rd}(\mathrm{n}+1), \mathrm{C} \leftarrow \operatorname{Rd}(0)$	Z,C,N, V	1
ASR	Rd	Arithmetic Shift Right	$\operatorname{Rd}(\mathrm{n}) \leftarrow \operatorname{Rd}(\mathrm{n}+1), \mathrm{n}=0 . .6$	Z,C,N, V	1
SWAP	Rd	Swap Nibbles	$\operatorname{Rd}(3.0) \leftarrow \operatorname{Rd}(7 . .4), \operatorname{Rd}(7 . .4) \leftarrow \operatorname{Rd}(3 . .0)$	None	1
BSET	s	Flag Set	SREG(s) $\leftarrow 1$	SREG(s)	1
BCLR	s	Flag Clear	SREG(s) $\leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$\mathrm{T} \leftarrow \operatorname{Rr}$ (b)	T	1
BLD	Rd, b	Bit load from T to Register	$\operatorname{Rd}(\mathrm{b}) \leftarrow \mathrm{T}$	None	1
SEC		Set Carry	$C \leftarrow 1$	C	1
CLC		Clear Carry	$\mathrm{C} \leftarrow 0$	C	1
SEN		Set Negative Flag	$N \leftarrow 1$	N	1
CLN		Clear Negative Flag	$N \leftarrow 0$	N	1
SEZ		Set Zero Flag	$\mathrm{Z} \leftarrow 1$	Z	1
CLZ		Clear Zero Flag	$\mathrm{Z} \leftarrow 0$	Z	1
SEI		Global Interrupt Enable	$1 \leftarrow 1$	I	1
CLI		Global Interrupt Disable	$1 \leftarrow 0$	1	1
SES		Set Signed Test Flag	$S \leftarrow 1$	S	1
CLS		Clear Signed Test Flag	$\mathrm{S} \leftarrow 0$	S	1
SEV		Set Twos Complement Overflow.	$\mathrm{V} \leftarrow 1$	V	1
CLV		Clear Twos Complement Overflow	$\mathrm{V} \leftarrow 0$	V	1
SET		Set T in SREG	$\mathrm{T} \leftarrow 1$	T	1
CLT		Clear T in SREG	$\mathrm{T} \leftarrow 0$	T	1
SEH		Set Half Carry Flag in SREG	$\mathrm{H} \leftarrow 1$	H	1
CLH		Clear Half Carry Flag in SREG	$\mathrm{H} \leftarrow 0$	H	1
DATA TRANSFER INSTRUCTIONS					
MOV	Rd, Rr	Move Between Registers	$\mathrm{Rd} \leftarrow \mathrm{Rr}$	None	1
MOVW	Rd, Rr	Copy Register Word	$\mathrm{Rd}+1: \mathrm{Rd} \leftarrow \mathrm{Rr}+1: \mathrm{Rr}$	None	1
LDI	Rd, K	Load Immediate	$\mathrm{Rd} \leftarrow \mathrm{K}$	None	1
LD	Rd, X	Load Indirect	$\mathrm{Rd} \leftarrow(\mathrm{X})$	None	2
LD	Rd, X^{+}	Load Indirect and Post-Inc.	$\mathrm{Rd} \leftarrow(\mathrm{X}), \mathrm{X} \leftarrow \mathrm{X}+1$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$\mathrm{X} \leftarrow \mathrm{X}-1, \mathrm{Rd} \leftarrow(\mathrm{X})$	None	2
LD	Rd, Y	Load Indirect	$\mathrm{Rd} \leftarrow(\mathrm{Y})$	None	2
LD	Rd, $\mathrm{Y}+$	Load Indirect and Post-Inc.	$\mathrm{Rd} \leftarrow(\mathrm{Y}), \mathrm{Y} \leftarrow \mathrm{Y}+1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Dec.	$\mathrm{Y} \leftarrow \mathrm{Y}-1, \mathrm{Rd} \leftarrow(\mathrm{Y})$	None	2
LDD	Rd, $\mathrm{Y}+\mathrm{q}$	Load Indirect with Displacement	$\mathrm{Rd} \leftarrow(\mathrm{Y}+\mathrm{q})$	None	2
LD	Rd, Z	Load Indirect	$\mathrm{Rd} \leftarrow(\mathrm{Z})$	None	2
LD	Rd, Z_{+}	Load Indirect and Post-Inc.	$\mathrm{Rd} \leftarrow(\mathrm{Z}), \mathrm{Z} \leftarrow \mathrm{Z}+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$\mathrm{Z} \leftarrow \mathrm{Z}-1, \mathrm{Rd} \leftarrow(\mathrm{Z})$	None	2
LDD	Rd, $\mathrm{Z}+\mathrm{q}$	Load Indirect with Displacement	$\mathrm{Rd} \leftarrow(\mathrm{Z}+\mathrm{q})$	None	2
LDS	Rd, k	Load Direct from SRAM	$\mathrm{Rd} \leftarrow(\mathrm{k})$	None	2
ST	X, Rr	Store Indirect	$(\mathrm{X}) \leftarrow \mathrm{Rr}$	None	2
ST	$\mathrm{X}+\mathrm{Rr}$	Store Indirect and Post-Inc.	$(\mathrm{X}) \leftarrow \mathrm{Rr}, \mathrm{X} \leftarrow \mathrm{X}+1$	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	$X \leftarrow X-1,(X) \leftarrow R \mathrm{Rr}$	None	2
ST	Y, Rr	Store Indirect	$(\mathrm{Y}) \leftarrow \mathrm{Rr}$	None	2
ST	$\mathrm{Y}+$, Rr	Store Indirect and Post-Inc.	$(\mathrm{Y}) \leftarrow \mathrm{Rr}, \mathrm{Y} \leftarrow \mathrm{Y}+1$	None	2
ST	- Y, Rr	Store Indirect and Pre-Dec.	$\mathrm{Y} \leftarrow \mathrm{Y}-1,(\mathrm{Y}) \leftarrow \mathrm{Rr}$	None	2
STD	$\mathrm{Y}+\mathrm{q}, \mathrm{Rr}$	Store Indirect with Displacement	$(\mathrm{Y}+\mathrm{q}) \leftarrow \mathrm{Rr}$	None	2
ST	Z, Rr	Store Indirect	$(\mathrm{Z}) \leftarrow \mathrm{Rr}$	None	2
ST	$\mathrm{Z}+$, Rr	Store Indirect and Post-Inc.	$(Z) \leftarrow \operatorname{Rr}, \mathrm{Z} \leftarrow \mathrm{Z}+1$	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	$\mathrm{Z} \leftarrow \mathrm{Z}-1,(\mathrm{Z}) \leftarrow \mathrm{Rr}$	None	2
STD	$\mathrm{Z}+\mathrm{q}, \mathrm{Rr}$	Store Indirect with Displacement	$(\mathrm{Z}+\mathrm{q}) \leftarrow \mathrm{Rr}$	None	2
STS	k, Rr	Store Direct to SRAM	$(\mathrm{k}) \leftarrow \mathrm{Rr}$	None	2
LPM		Load Program Memory	$\mathrm{R} 0 \leftarrow(\mathrm{Z})$	None	3
LPM	Rd, Z	Load Program Memory	$\mathrm{Rd} \leftarrow(\mathrm{Z})$	None	3
LPM	Rd, Z_{+}	Load Program Memory and Post-Inc	$\mathrm{Rd} \leftarrow(\mathrm{Z}), \mathrm{Z} \leftarrow \mathrm{Z}+1$	None	3
SPM		Store Program Memory	$(\mathrm{z}) \leftarrow \mathrm{R} 1: \mathrm{R} 0$	None	
IN	Rd, P	In Port	$\mathrm{Rd} \leftarrow \mathrm{P}$	None	1
OUT	P, Rr	Out Port	$\mathrm{P} \leftarrow \mathrm{Rr}$	None	1
PUSH	Rr	Push Register on Stack	STACK $\leftarrow \mathrm{Rr}$	None	2
POP	Rd	Pop Register from Stack	Rd \leftarrow STACK	None	2
MCU CONTROL INSTRUCTIONS					
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR/Timer)	None	1
BREAK		Break	For On-chip Debug Only	None	N/A

7. Ordering Information

7.1 ATtiny24

Speed (MHz)	Power Supply	Ordering Code ${ }^{(1)}$	Package ${ }^{(2)}$	Operational Range
10	1.8-5.5V	ATtiny24V-10SSU ATtiny24V-10PU ATtiny24V-10MU	$\begin{aligned} & 14 \mathrm{~S} 1 \\ & 14 \mathrm{P} 3 \\ & 20 \mathrm{M} 1 \end{aligned}$	$\begin{gathered} \text { Industrial } \\ \left(-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}\right) \end{gathered}$
20	2.7-5.5V	ATtiny24-20SSU ATtiny24-20PU ATtiny24-20MU	$\begin{aligned} & 14 \mathrm{~S} 1 \\ & 14 \mathrm{P} 3 \\ & 20 \mathrm{M} 1 \end{aligned}$	$\begin{gathered} \text { Industrial } \\ \left(-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}\right) \end{gathered}$

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

Package Type	
14S1	14-lead, 0.150" Wide Body, Plastic Gull Wing Small Outline Package (SOIC)
14P3	14-lead, 0.300 " Wide, Plastic Dual Inline Package (PDIP)
20M1	20-pad, $4 \times 4 \times 0.8 \mathrm{~mm}$ Body, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

7.2 ATtiny44

Speed (MHz)	Power Supply	Ordering Code $^{(1)}$	Package $^{(2)}$	Operational Range		
10	$1.8-5.5 \mathrm{~V}$	ATtiny44V-10SSU	ATtiny44V-10PU	14 S 1		
		ATtiny44V-10MU	14 P 3	20 M 1		Industrial
:---:						
$\left(-40^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$						

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

Package Type	
14S1	14-lead, 0.150" Wide Body, Plastic Gull Wing Small Outline Package (SOIC)
14P3	14-lead, 0.300 " Wide, Plastic Dual Inline Package (PDIP)
20M1	20-pad, $4 \times 4 \times 0.8 \mathrm{~mm}$ Body, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

7.3 ATtiny84

Speed (MHz)	Power Supply	Ordering Code ${ }^{(1)}$	Package $^{(2)}$	Operational Range
10	$1.8-5.5 \mathrm{~V}$	ATtiny84V-10PU ATtiny84V-10MU	14 P 3 20 M 1	Industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$
	$2.7-5.5 \mathrm{~V}$	ATtiny84-20PU ATtiny84-20MU	14 P 3 20 M 1	Industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

Package Type	
14S1	14-lead, 0.150" Wide Body, Plastic Gull Wing Small Outline Package (SOIC)
14P3	14-lead, 0.300 " Wide, Plastic Dual Inline Package (PDIP)
20M1	20-pad, $4 \times 4 \times 0.8 \mathrm{~mm}$ Body, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

8. Packaging Information

8.1 20M1

8.214 P 3

8.3 14S1

Top View

End View

COMMON DIMENSIONS
(Unit of Measure $=\mathrm{mm} /$ inches)

SYMBOL	MIN	NOM	MAX	NOTE
A	$1.35 / 0.0532$	-	$1.75 / 0.0688$	
A1	$0.1 / .0040$	-	$0.25 / 0.0098$	
b	$0.33 / 0.0130$	-	$0.5 / 0.02005$	
D	$8.55 / 0.3367$	-	$8.74 / 0.3444$	2
E	$3.8 / 0.1497$	-	$3.99 / 0.1574$	3
H	$5.8 / 0.2284$	-	$6.19 / 0.2440$	
L	$0.41 / 0.0160$	-	$1.27 / 0.0500$	4
e	$1.27 / 0.050$ BSC			

Notes: 1. This drawing is for general information only; refer to JEDEC Drawing MS-012, Variation AB for additional information.
2. Dimension D does not include mold Flash, protrusions or gate burrs. Mold Flash, protrusion and gate burrs shall not exceed $0.15 \mathrm{~mm}\left(0.006{ }^{\prime \prime}\right)$ per side.
3. Dimension E does not include inter-lead Flash or protrusion. Inter-lead flash and protrusions shall not exceed 0.25 mm (0.010 ") per side.
4. L is the length of the terminal for soldering to a substrate.
5. The lead width B, as measured $0.36 \mathrm{~mm}\left(0.014^{\prime \prime}\right)$ or greater above the seating plane, shall not exceed a maximum value of $0.61 \mathrm{~mm}\left(0.024^{\prime \prime}\right)$ per side.

2/5/02

| 2325 Orchard Parkway | TITLE
 14S1, 14-lead, 0.150" Wide Body, Plastic Gull
 Wing Small Outline Package (SOIC) | DRAWING NO. | REV. |
| :--- | :--- | :---: | :---: | :---: |

9. Errata

The revision letter in this section refers to the revision of the ATtiny24/44/84 device.

9.1 ATtiny24

9.1.1 Rev. D

No known errata.
9.1.2 Rev. C

- Reading EEPROM when system clock frequency is below 900 kHz may not work

1. Reading EEPROM when system clock frequency is below 900 kHz may not work

Reading data from the EEPROM at system clock frequency below 900 kHz may result in wrong data read.

Problem Fix/Work around
Avoid using the EEPROM at clock frequency below 900 kHz .
9.1.3 Rev. B

- EEPROM read from application code does not work in Lock Bit Mode 3
- Reading EEPROM when system clock frequency is below 900 kHz may not work

1. EEPROM read from application code does not work in Lock Bit Mode 3

When the Memory Lock Bits LB2 and LB1 are programmed to mode 3, EEPROM read does not work from the application code.

Problem Fix/Work around
Do not set Lock Bit Protection Mode 3 when the application code needs to read from EEPROM.
2. Reading EEPROM when system clock frequency is below 900 kHz may not work

Reading data from the EEPROM at system clock frequency below 900 kHz may result in wrong data read.

Problem Fix/Work around
Avoid using the EEPROM at clock frequency below 900 kHz .

9.1.4 Rev. A

Not sampled.

9.2 ATtiny44

9.2.1 Rev. B

No known errata.

9.2.2 Rev. A

- Reading EEPROM when system clock frequency is below $900 \mathbf{k H z}$ may not work

1. Reading EEPROM when system clock frequency is below 900 kHz may not work

Reading data from the EEPROM at system clock frequency below 900 kHz may result in wrong data read.

Problem Fix/Work around
Avoid using the EEPROM at clock frequency below 900 kHz .
9.3 ATtiny84
9.3.1 Rev. A

No known errata.

10. Datasheet Revision History

10.1 Rev E. 09/06

1. All characterization data is moved to "Electrical Characteristics" on page 180.
2. All Register Descriptions are gathered up in separate sections in the end of each chapter.
3. Updated "System Control and Reset" on page 40.
4. Updated Table 13-3 on page 85 , Table 13-6 on page 86 , Table $13-8$ on page 87, Table 14-2 on page 114 and Table 14-4 on page 116.
5. Updated "Fast PWM Mode" on page 105.
6. Updated Figure 14-7 on page 106 and Figure 18-1 on page 140.
7. Updated "Analog Comparator Multiplexed Input" on page 135.
8. Added note in Table 21-11 on page 171.
9. Updated "Electrical Characteristics" on page 180.
10. Updated "Typical Characteristics - Preliminary Data" on page 188.
10.2 Rev D. 08/06
11. Updated "Calibrated Internal RC Oscillator" on page 30.
12. Updated "Oscillator Calibration Register - OSCCAL" on page 33.
13. Added Table 22-1 on page 182.
14. Updated code examples in "SPI Master Operation Example" on page 126.
15. Updated code examples in "SPI Slave Operation Example" on page 127.
16. Updated "Signature Bytes" on page 167.

10.3 Rev C. 07/06

1. Updated Features in "USI - Universal Serial Interface" on page 123.
2. Added "Clock speed considerations" on page 130.
3. Updated Bit description in "ADMUX - ADC Multiplexer Selection Register" on page 151.
4. Added note to Table 20-1 on page 163.
10.4 Rev B. 05/06
5. Updated "Default Clock Source" on page 27
6. Updated "Power Reduction Register" on page 36.
7. Updated Table 22-3 on page 183, Table 9-4 on page 42, Table 18-3 on page 151, Table 21-5 on page 167, Table 21-11 on page 171, Table 21-15 on page 177, Table 22-6 on page 185.
8. Updated Features in "Analog to Digital Converter" on page 139.
9. Updated Operation in "Analog to Digital Converter" on page 139.
10. Updated "Temperature Measurement" on page 150.
11. Updated DC Characteristics in "Electrical Characteristics" on page 180.
12. Updated "Typical Characteristics - Preliminary Data" on page 188.
13. Updated "Errata" on page 223.
10.5 Rev A. 12/05

Initial revision.

Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G750QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.
© 2006 Atmel Corporation. All rights reserved. ATMEL ${ }^{\circledR}$, logo and combinations thereof, Everywhere You Are ${ }^{\circledR}$, AVR $^{\circledR}$, AVR Studio $^{\circledR}$, and others, are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

