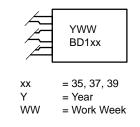
BD135, BD137, BD139

Plastic Medium Power Silicon NPN Transistor

This series of plastic, medium–power silicon NPN transistors are designed for use as audio amplifiers and drivers utilizing complementary or quasi complementary circuits.

Features

- Pb–Free Packages are Available
- DC Current Gain $-h_{FE} = 40$ (Min) @ I_C = 0.15 Adc
- BD 135, 137, 139 are complementary with BD 136, 138, 140


ON Semiconductor[®]

http://onsemi.com

1.5 A POWER TRANSISTORS NPN SILICON 45, 60, 80 V, 12.5 W

MARKING DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping [†]
BD135	TO-225AA	500 Units/Box
BD135G	TO-225AA (Pb-Free)	500 Units/Box
BD137	TO-225AA	500 Units/Box
BD137G	TO-225AA (Pb-Free)	500 Units/Box
BD139	TO-225AA	500 Units/Box
BD139G	TO-225AA (Pb-Free)	500 Units/Box

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MAXIMUM RATINGS

Rating		Symbol	Value	Unit
Collector–Emitter Voltage	BD135 BD137 BD139	V _{CEO}	45 60 80	Vdc
Collector-Base Voltage	BD135 BD137 BD139	V _{CBO}	45 60 100	Vdc
Emitter-Base Voltage		V _{EBO}	5.0	Vdc
Collector Current		۱ _C	1.5	Adc
Base Current		Ι _Β	0.5	Adc
Total Device Dissipation @ T _A = Derate above 25°C	= 25°C	P _D	1.25 10	Watts mW/°C
Total Device Dissipation @ T _C = Derate above 25°C	= 25°C	PD	12.5 100	Watts mW/°C
Operating and Storage Junction Temperature Range	٦	T _J , T _{stg}	-55 to +150	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Мах	Unit
Thermal Resistance, Junction-to-Case	θ၂Ϲ	10	°C/W
Thermal Resistance, Junction-to-Ambient	θ_{JA}	100	°C/W

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Semiconductor Components Industries, LLC, 2005 April, 2005 – Rev. 12

BD135, BD137, BD139

Characteristic	Symbol	Туре	Min	Max	Unlt
Collector–Emitter Sustaining Voltage* ($I_C = 0.03 \text{ Adc}, I_B = 0$)	BV _{CEO} *	BD 135 BD 137 BD 139	45 60 80	- - -	Vdc
Collector Cutoff Current ($V_{CB} = 30 \text{ Vdc}, I_E = 0$) ($V_{CB} = 30 \text{ Vdc}, I_E = 0, T_C = 125^{\circ}C$)	Ісво		- -	0.1 10	μAdc
Emitter Cutoff Current ($V_{BE} = 5.0 \text{ Vdc}, I_C = 0$)	I _{EBO}		-	10	μAdc
DC Current Gain ($I_C = 0.005 \text{ A}, V_{CE} = 2 \text{ V}$) ($I_C = 0.15 \text{ A}, V_{CE} = 2 \text{ V}$) ($I_C = 0.5 \text{ A} V_{CE} = 2 \text{ V}$)	h _{FE} *		25 40 25	_ 250 _	_
Collector–Emitter Saturation Voltage* ($I_c = 0.5 \text{ Adc}, I_B = 0.05 \text{ Adc}$)	V _{CE(sat)} *		-	0.5	Vdc
Base-Emitter On Voltage* ($I_c = 0.5 \text{ Adc}, V_{CE} = 2.0 \text{ Vdc}$)	V _{BE(on)} *		-	1	Vdc

*Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%.

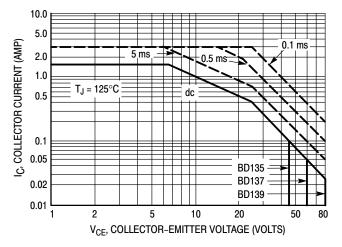
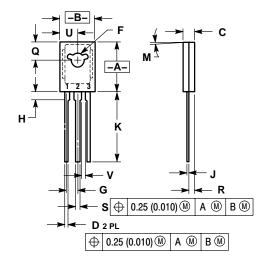
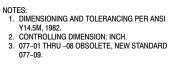




Figure 1. Active–Region Safe Operating Area

PACKAGE DIMENSIONS

TO-225AA CASE 77-09 ISSUE Z

	INCHES		MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.425	0.435	10.80	11.04	
В	0.295	0.305	7.50	7.74	
С	0.095	0.105	2.42	2.66	
D	0.020	0.026	0.51	0.66	
F	0.115	0.130	2.93	3.30	
G	0.094 BSC		2.39 BSC		
Н	0.050	0.095	1.27	2.41	
J	0.015	0.025	0.39	0.63	
K	0.575	0.655	14.61	16.63	
М	5°	TYP	5 ° TYP		
Q	0.148	0.158	3.76	4.01	
R	0.045	0.065	1.15	1.65	
S	0.025	0.035	0.64	0.88	
U	0.145	0.155	3.69	3.93	
٧	0.040		1.02		

STYLE 1: PIN 1. EMITTER 2. COLLECTOR 3. BASE

BD135, BD137, BD139

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters witch with seven the validated for each customer applications by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications in the He SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use persones that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.