
Zmod DAC Reference Manual

The Digilent Zmod DAC (), is an open-source hardware SYZYGY^{TM 1)} compatible pod containing a dual-channel DAC () and the associated front end. The Zmod DAC () is intended to be used with any SYZYGYTM compatible carrier board having the required capabilities.

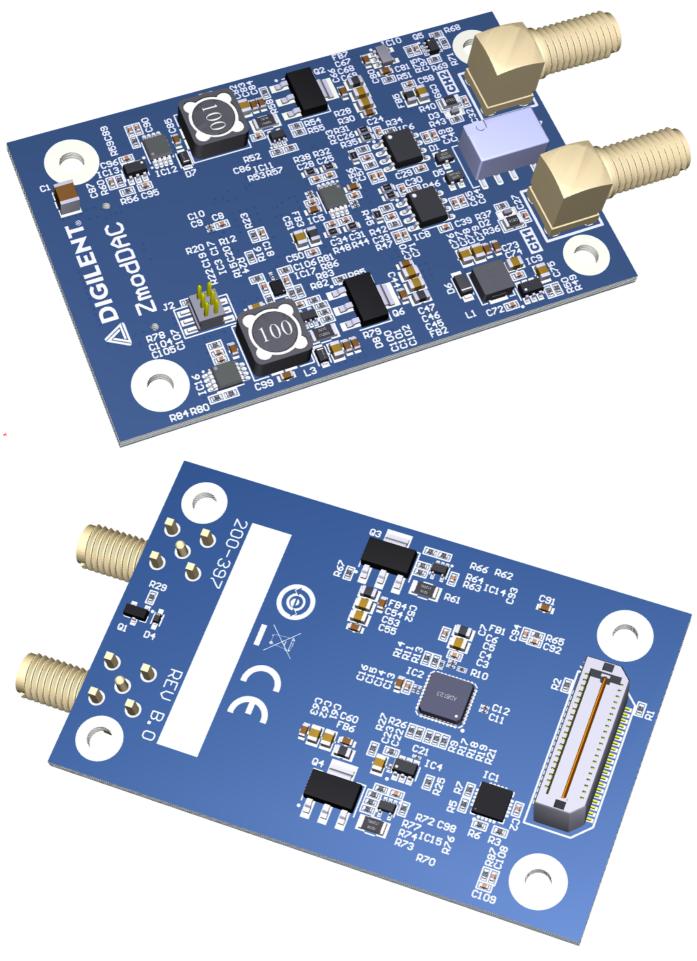


Figure 1. Zmod DAC top and bottom views.

The analog outputs can be connected to a circuit using SMA cables. Driven by the SYZYGYTM carrier, the Zmod DAC () can generate two simultaneous signals (50Ω , $\pm 5V$, single-ended, 14-bit, 100MS/s, 40MHz+ bandwidth).

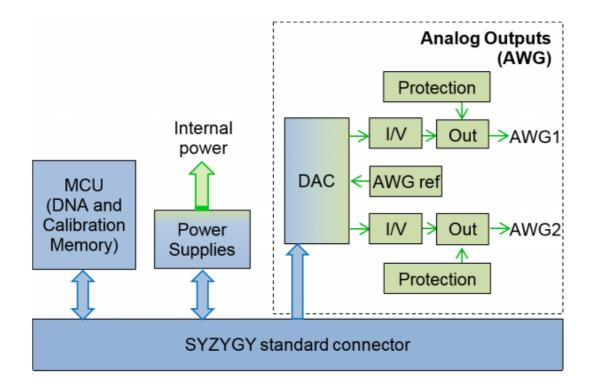
The Zmod DAC () was designed to be a piece in a modular, HW and SW open-source ecosystem. Combined with a SYZYGYTM carrier, other SYZYGYTM compatible pods, Zmod DAC () can be used for a variety of applications: data acquisition systems, closed loop controllers, etc.

This document describes the Zmod DAC ()'s circuits, with the intent of providing a better understanding of its electrical functions, operations, and a more detailed description of the hardware's features and limitations. It is not intended to provide enough information to enable complete duplication of the Zmod DAC (), but can help users to design custom configurations for programmable parts in the design.

Features

- Channels: 2
- Channel type: single ended
- Resolution: 14-bit
- Output Range: ±1.25V (Low Range); ±5V (High Range)
- Absolute Resolution: 167µV (Low Range); 665µV (High Range)
- Accuracy typical $\pm 0.2\%$ of Range
- Output impedance: 50Ω
- Sample rate (real time): 100MS/s.
- AC amplitude (max): ±5 V.
 Analog bandwidth: 40 MHz () @ 3dB, 20 MHz () @ 0.5dB, 14 MHz () @ 0.1dB
- Slew rate (2V step): 180V/µs

1. Architectural Overview and Block Diagram


Zmod ADC ()'s high-level block diagram is presented in Fig. 2 below. The core of the Zmod ADC () is the dual channel, high speed, low power, 14-bit, 125MS/s DAC (), AD9717). The carrier board is responsible to configure the internal registers of the DAC () circuit, provide the acquisition clock and generate the data.

The **Analog Output** block is also called the **AWG** (Arbitrary Waveform Generator), because of similar structure and behavior to such a front end. The signals in this circuitry use "AWG" indexes, to indicate they are related to the AWG block. Signal and equations also use certain naming conventions. Analog voltages are prefixed with a "V" (for voltage), and suffixes and indexes are used in various ways: to specify the location in the signal path (OUT, DAC (), etc.); to indicate the related instrument (AWG, etc.); and to indicate the channel (1 or 2). Referring to the block diagram in Fig. 2 below:

The Arbitrary Outputs/AWG instrument block includes:

- DAC (): the digital-to-analog converter for both AWG channels
- **AWG ref**: refernce voltage for the DAC ()
- I/V: current to bipolar voltage converters
- Out: output stages
- **Protection**: output stages protection circuitry
- The Power Supplies and Control block generates all internal supply voltages.
- The MCU works as a I2C memory for two different purposes:
 - The **DNA** includes the standard **O** SYZYGYTM (https://syzygyfpga.io) pod identification information.
 - The **Calibration Memory** stores all calibration parameters. The Zmod <u>DAC ()</u> includes no analog calibration circuitry. Instead, a calibration operation is performed at manufacturing (or by the user), and parameters are stored in memory. The application software uses these parameters to correct the generated signals

In the sections that follow, schematics are not shown separately for identical blocks. For example, the AWG I/V schematic is only shown for channel 1 since the schematic for channel 2 is identical. Indexes are omitted where not relevant. As examples, in equation $\underline{2}$ below, $V_{outAWGFS}$ does not contain the channel index (because the equation applies to both channels 1 and 2).

2. Arbitrary Waveform Generator

2.1. AWG Reference

As shown in Fig. 3, the reference voltage for the AWG is generated by IC42

- Initial accuracy: $\pm 0.1\%$ (maximum)
- Maximum temperature coefficient: 8 ppm/°C
- Operating temperature range: -40°C to +125°C
- Output current: +10 mA source/-3 mA sink
- Low quiescent current: 100 μA (maximum) Low dropout voltage: 250 mV at 2 mA Output noise (0.1 Hz () to 10 Hz ()): <10 μV p-p at 1.2 V (typical)

A divided version is provided to the DAC ():

$$V_{REFIO_AWG} = V_{REF1V2_AWG} \cdot \frac{R_{27}}{R_{26} + R_{27}} = 1V$$
(1)

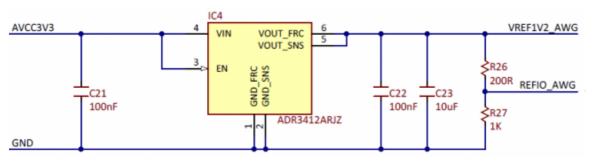
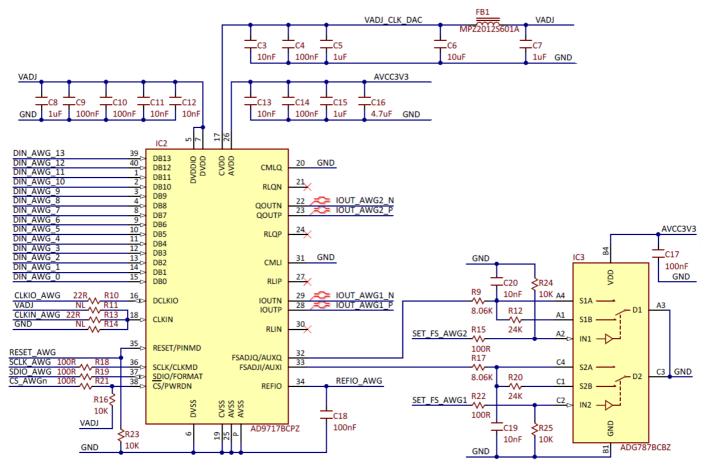



Figure 3. Reference voltage. []

The Analog Devices AD9717 dual, low-power 14-bit TxDAC digital-to-analog converter is used to generate the wave. The main features are:

- Power dissipation @ 3.3V, 2 mA output: 86 mW @ 125MS/s, sleep mode: <3 mW @ 3.3V
- Supply voltage: 1.8V to 3.3V
- SFDR to Nyquist: 84 dBc @ 1 MHz () output, 75 dBc @ 10 MHz () output
- AD9717 NSD @ 1 MHz () output, 125MS/s, 2 mA: -151 dBc/Hz ()
- Differential current outputs: 1 mA to 4 mA
- CMOS inputs with single-port operation
- Output common mode: 0 to 1.2 V
- Small footprint, 40-lead LFCSP RoHS-compliant package

Figure 4. DAC. []

The parallel Data Bus, the single ended 100 MHz () clock and the SPI configuration bus are driven by the SYZYGYTM carrier board

FPGA. External V_{REFIO_AWG} reference voltage is used. The Full Scale is set via the FSADJx pins. The @ ADG787 2.5 Ω CMOS Low Power Dual 2:1

MUX/DEMUX is used to connect R_{set} of either 8k Ω (for high gain) or 32k Ω (for low gain) from FSADJx pin to GND ().

The Full Scale DAC () output current is:

$$I_{outAWGFS} = 32 \cdot \frac{V_{REFIO_AWG}}{R_{set}}$$
(2)

For high-gain (High Range):

$$I_{outAWGFS_HG} = 32 \cdot \frac{1V}{8.06k\Omega} = 3.97mA \tag{3}$$

For low-gain (Low Range):

$$I_{outAWGFS_HG} = 32 \cdot \frac{1V}{32k\Omega} = 1mA$$
The @ ADG787 features:
$$(4)$$

- Single-supply 1.8V to 5.5V operation
- Low on resistance: 2.5 Ω typical

2.3. AWG I/V

IC5B in Fig. 5 converts the DAC () output currents to a bipolar voltage.

Important AD8058 features:

- Low cost
- 325 MHz (), -3 dB bandwidth (G = +1)
- $1000 \text{ V}/\mu \text{s}$ slew rate
- Gain flatness: 0.1 dB to 28 MHz ()
- Low noise: 7 nV/ $\sqrt{\text{Hz}}$
- Low power: 5.4 mA/amplifier typical @ 5 V
- Low distortion: -85 dBc@5MHz, RL= $1k\Omega$
- Wide supply range from 3 V to 12 V $\,$
- Small packaging

$$V_{OUT \ IC5B} = I_{outAWGP} \cdot R_{48} - I_{outAWGN} \cdot R_{44} =$$
$$= (1 - 2 \cdot \{A_U\}) \cdot I_{outAWGFS} \cdot R_{44} = \{A_B\} \cdot I_{outAWGFS} \cdot R_{44}$$
(5)

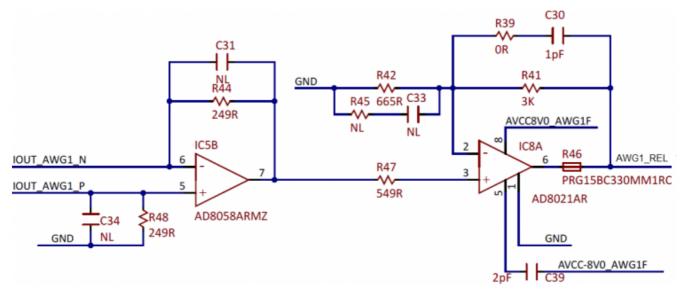
Where:

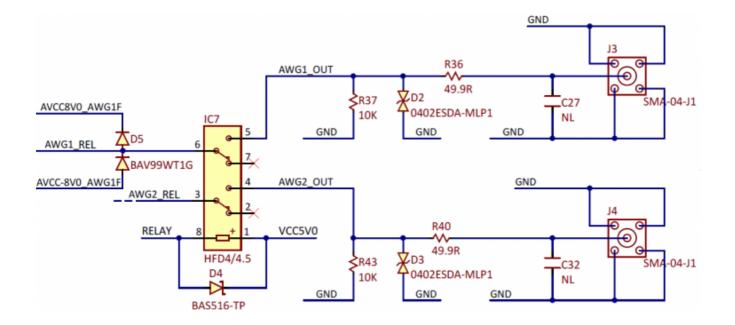
$n = 14; - DAC \ number \ of \ bits$

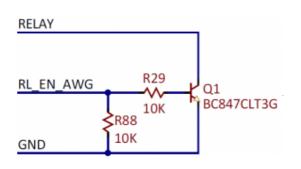
$$D \in \lfloor 0 \dots 2^n
angle = \lfloor 0 \dots 2^n - 1
floor; \ - integer \ unipolar \ DAC \ input \ number$$

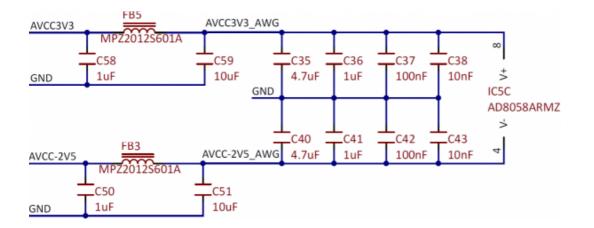
$$\{A_U\} = rac{D}{2^n} \in [0 \dots 1) \ ; \ - \ normalized \ unipolar \ DAC \ input \ number$$

$$\{A_B\} = (1 - 2 \cdot \{A_U\}) \in [-1 \dots 1); -normalized \ bipolar \ DAC \ input \ number \ (binary \ offset)$$
(6)


The IC5B output voltage range extends between:


$$-V_{OUT \ IC5B \ FS} \le V_{OUT \ IC5B} < -V_{OUT \ IC5B \ FS} \tag{7}$$


. ...


Where (for high gain, respectively, low gain):

$$V_{OUT \ IC5B \ FS \ HG} = I_{outAWG \ FS \ HG} \cdot R_{44} = 989mV$$
$$V_{OUT \ IC5B \ FS \ LG} = I_{outAWG \ FS \ LG} \cdot R_{44} = 249mV$$
(8)

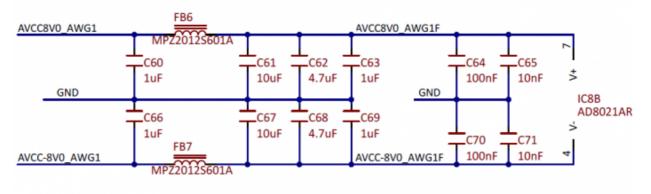


Figure 5. AWG I/V and Out. []

2.4. AWG Out

IC8 in Fig. 5 is the output stage of the AWG. features:

- Low noise: 2.1 nV/ $\sqrt{\text{Hz}}$ input voltage noise; 2.1 pA/ $\sqrt{\text{Hz}}$ input current noise
- Custom compensation
- Constant bandwidth from G = -1 to G = -10
- High speed: 200 MHz () (G = -1), 190 MHz () (G = -10)
- Low power: 34 mW or 6.7 mA typical for 5 V supply
- Output disable feature, 1.3 mA
- Low distortion: -93 dBc second harmonic, fC = 1 MHz (); -108 dBc third harmonic, fC = 1 MHz ()
- DC precision: 1 mV maximum input offset voltage; 0.5 μV/°C input offset voltage drift
- Wide supply range, 5 V to 24 V
- Low price
- Small packaging: Available in SOIC-8 and MSOP-8

$$V_{AWG REL} = V_{OUT IC5B} \cdot (1 + \frac{R_{41}}{R_{42}}) = 5.51 \cdot V_{OUT IC5B}$$
(9)

The output voltage range depends on High-gain versus Low-gain selection:

$$-5.49V < -5V < V_{AWG \ REL \ HG} < 5V < 5.45V$$

$$-1.37V < 1.25V < V_{AWG \ REL \ LG} < 1.25V < 1.37V$$
(10)

Low-gain is used to generate low amplitude signals with improved accuracy. Any amplitude of the output signal can be generated by combining LowGain/HighGain setting (rough) with the digital signal amplitude (fine).

With the 14-bit DAC (), the absolute resolution of the AWG AC component is:

at Low Gain:
$$\frac{2.74V}{2^{14}} = 167\mu V$$

at High Gain: $\frac{10.9V}{2^{14}} = 665\mu V$ (11)

AD8021 is supplied with +8.5V/-8V (the VCC8V0 voltage is in fact 8.5V). Conform to the data sheet, the worst case output voltage swing is V_{+} +1.8V to V_{+} -2.2V.

The nominal resistance of the PTC in the feedback loop is 33 ohm. The maximum current delivered by te AWG is 30mA.

To avoid saturation, the voltage in $\underline{9}$ should stay in:

$$-8V + 1.8V + 33\Omega * 30mA = -5.21V < -5V < V_{AWG\ REL} < 5V < 8.5 - 2.2V - 33\Omega * 30mA = 5.31V$$
 (12)

Only inner (tighter) ranges are used in equations 10 and 12, for providing tolerance margins.

To generate a particular voltage value at the output of the AWG channel, the user application sends a signed 14 bit integer to the DAC (). This value is computed as:

$$N = \frac{(V_{Out} - CA)}{(1 + CG) \cdot (Range)} * 2^{13} \in (-2^{13}, +2^{13})$$
(13)

were:

- Vout = the desired output voltage. Could be separated in:
 - Voffset= the DC component voltage
 - Vamplitude= the AC instantaneous voltage
- CA = calibration additive constant (for the appropriate channel and gain; see Table 3)
- CG = calibration Gain constant (for the appropriate channel and gain; see Table 3)
- Range = the ideal AWG output stage range (approximation of the values in equation 10):
 - 1 * 1.33 = 1.33 (for LG: +/-1.25V) or
 - 4 * 1.33 = 5.32 (for HG: +/-5V)

The R146 PTC thermistor provides thermal protection in case of an output short-circuit.

The IC7 relay (non-latching) is OPEN at the power-on, decoupling the power-on glitch of the OpAmp from the load. It is CLOSED by the FPGA, via Q1. R37 is a pull down when IC7 is OPEN and a dummy load when IC7 is CLOSED. D2 is an ESD suppressor.

R36 is the 50Ω AWG output impedance.

2.3. AWG output stage protection

Important AD8565 features:

- Single-supply operation: 4.5 V to 16 V
- Input capability beyond the rails
- Rail-to-rail output swing
- Continuous output current: 35 mA
- Peak output current: 250 mA
- Offset voltage: 10 mV
- Slew rate: 6 V/μs
- Unity gain stable with large capacitive loads
- Supply current: 700 μA per amplifier
- Qualified for automotive applications Low cost

The protection circuit in Fig. 6 limit the Output stage supply currents, with fold-back:

$$\frac{AVCC8V0 \cdot R_{77}}{R_{72} + R_{77}} = \frac{(AVCC8V0 - R_{70} \cdot I_{out}) \cdot R_{74} + AVCC8V0AWG1 \cdot R_{73}}{R_{73} + R_{74}}$$
$$I_{out} = 0.0411 \cdot \frac{AVCC8V0}{10\Omega} + 0.012 \cdot \frac{AVCC8V0AWG1}{10\Omega}$$
(14)

The corner current (when $V_{CE} = 0.4V$) is:

$$I_{outC} = 42mA \tag{15}$$

The short-to-GND () current (when AVCC8V0AWG1 is forced to 0V) is:

$$I_{outSGND} = 33mA \tag{16}$$

The current (when AVCC8V0AWG1 is forced to -15V) is:

$$I_{outS-15} = 14mA \tag{17}$$

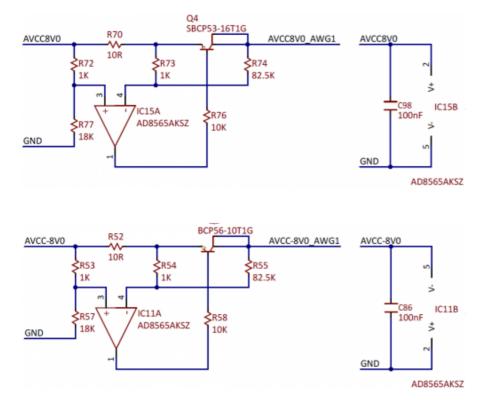


Figure 6. AWG Output stage protection []

2.5. AWG Spectral Characteristics

For low frequency range, the spectral characteristic was traced by a network analyzer function, with the ZmodDAC connected to a ZmodADC, as shown in Fig. 7. Since the ZmodADC BW is much wider, the overall system frequency characteristic represents the ZmodDAC characteristic. The BW is flat within 0.1dB up tp 10MHz+.

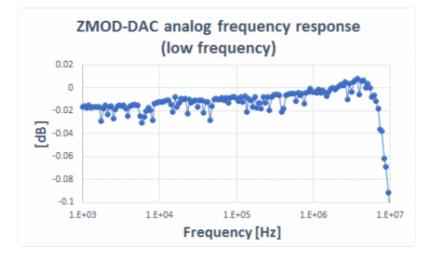


Figure 7. Low frequency AWG spectral characteristics []

However, the figure Fig. 7 cannot show the high frequency range of the Zmod DAC () BW: the Zmod DAC () samples at 100MSPS, which removes the 50MHz spectral component and attenuates the nearby frequencies.

To trace the analog bandwidth of the DAC () and output stage beyond the theoretical limit of $f_{SAMPLE}/2=50$ MHz, the following experiment was performed:

- The AWG was set to generate a 2MHz rectangular signal, 100mV amplitude;
- the theoretical amplitudes of the fundamental and first 69 harmonics was computed;
- the actual amplitudes of the fundamental and first 69 harmonics were measured with a high sampling rate scope (10GSPS, 2GHz BW);
- the dB difference between the theoretical and measured amplitudes was plotted. This represents an approximation of the frequency characteristic of the DAC () and output stage.

The characteristic is shown in Fig. 8.

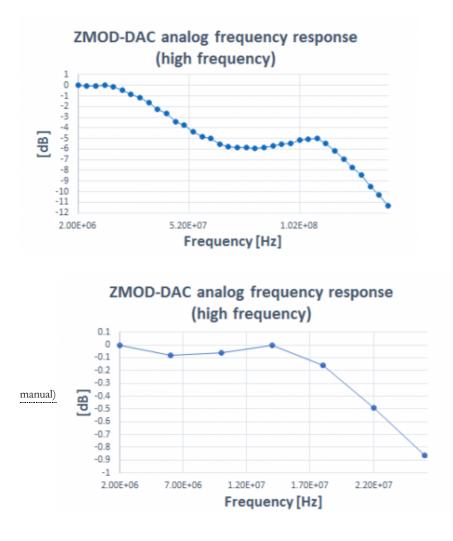


Figure 8. High Frequency AWG spectral characteristics (left), 1dB detail (right) []

The 3dB bandwidth is 40MHz+, the 0.5dB bandwidth is 20MHz+, the \pm 0.1dB flatness band is 14MHz+.

The 3dB bandwidth is close to the theoretical Nyquist limit for a 100MHz sampling system. This has the advantage of very sharp edges (see the rectangular signal in Fig. 9), but also generates alias effects. The ZmodADC generated signals were recorded with a high BW scope in Fig. 9, and the right side of Fig. 10 and Fig. 11. In Fig. 11, the sinus frequency is 10MHz, and the 100MHz samples are clearly visible. In the left side of Fig. 10 and Fig. 11, the same scope was used, but with 20MHz BW limitation. The rectangular signal edges are slower and the sine wave samples are not visible.

The typical Slew Rate of the AWG can be read in Fig. 9:

$$SR = \frac{2.05V}{11.2ns} = 183V/\mu S$$
(18)

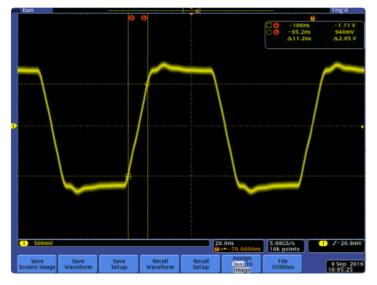


Figure 9. AWG rectangular signal (large signal)

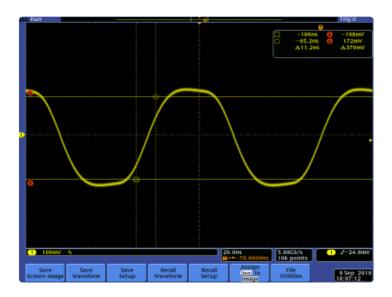
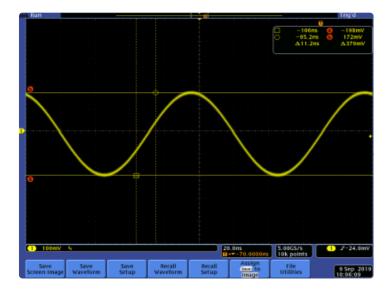



Figure 10. AWG rectangular signal (small signal); scope set at 20MHz BW limit (left), full BW (right)

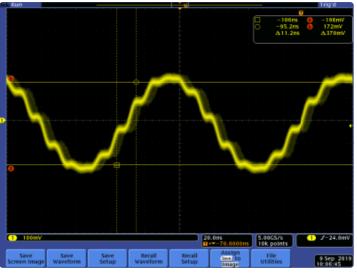
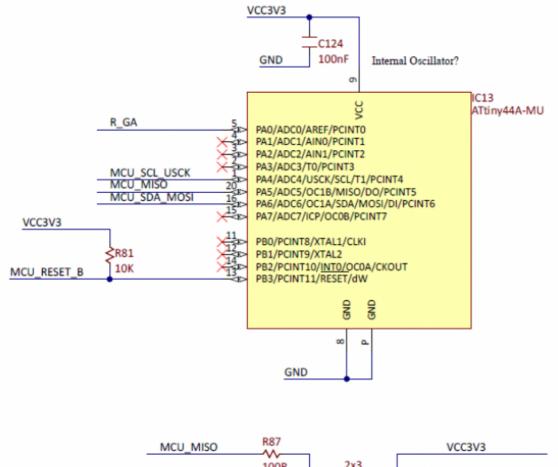



Figure 11. AWG sinusoidal signal (smallsignal); scope set at 20MHz BW limit (left), full BW (right) []

3. MCU

The ATtinny44 MCU works as a I2C memory, storing the SYZYGYTM DNA information and the Calibration Coefficients. The J5 connector is used for programming the MCU and the SYZYGYTM DNA at manufacturing.

The DNA and the Factory Calibration Coefficients are stored in the Flash memory of the MCU, which appears to the I2C interface as "read-only". The User Calibration Coefficients are stored in the EEPROM () memory of the MCU, which is write-protected via a magic number at a magic address. The memory structure can be consulted below.

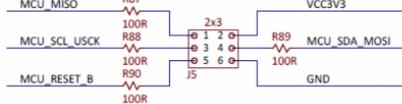


Figure 12. The MCU

- Program Memory Type: Flash
- Program Memory Size (KB): 4
- CPU Speed (MIPS/DMIPS): 20
- SRAM Bytes: 256
- Data EEPROM ()/HEF (bytes): 256
- Digital Communication Peripherals: 1-SPI, 1-I2C
- Capture/Compare/PWM Peripherals: 1 Input Capture, 1 CCP, 4PWM
- Timers: 1 x 8-bit, 1 x 16-bit
- Number of Comparators: 1
- Temperature Range (C): -40 to 85
- Operating Voltage Range (V): 1.8 to 5.5
- Pin Count: 14
- Low Power: Yes

Table 1. The Flash memory structure []

Address	Function	Size (Bytes)
0x8000 - 0x80FF	DNA	256
0x8100 - 0x817F	Factory Calibration	128
0x8180 - 0x83FF	Future use	896

3.1. SYZYGYtm DNA

The Zmod DAC () is compliant with SYZYGYTM Specification (https://syzygyfpga.io/specification/). It contains an MCU able to calculate the Geographical Address and provide the DNA information via I2C. The DNA is stored in the MCU FLASH at the address range: 0x8000 - 0x80FF with the following structure:

Table 2. The Zmod ADC DNA structure []

Contents	Туре	Size(Bytes)	Value	Address
DNA full data length	uint16	2	91	0x8000
DNA header length	uint16	2	40	0x8002
SYZYGY DNA major version	uint8	1	1	0x8004
SYZYGY DNA minor version	uint8	1	0	0x8005
Required SYZYGY DNA major version	uint8	1	1	0x8006
Required SYZYGY DNA minor version	uint8	1	0	0x8007
Maximum operating 5V load (mA)	uint16	2	600	0x8008
Maximum operating 3.3V load (mA)	uint16	2	1	0x800A
Maximum VIO load (mA)	uint16	2	10	0x800C
Attribute flags	uint16	2	0	0x800E
Minimum operating VIO1 (10 mV steps)	uint16	2	180	0x8010
Maximum operating VIO1 (10 mV steps)	uint16	2	180	0x8012
Minimum operating VIO2 (10 mV steps)	uint16	2	170	0x8014
Maximum operating VIO2 (10 mV steps)	uint16	2	190	0x8016
Minimum operating VIO3 (10 mV steps)	uint16	2	0	0x8018
Maximum operating VIO3 (10 mV steps)	uint16	2	0	0x801A
Minimum operating VIO4 (10 mV steps)	uint16	2	0	0x801C
Maximum operating VIO4 (10 mV steps)	uint16	2	0	0x801E
Manufacturer name length	uint8	1	12	0x8020
Product name length	uint8	1	13	0x8021
Product model / Part number length	uint8	1	13	0x8022
Product version / revision length	uint8	1	1	0x8023
Serial number length	uint8	1	12	0x8024
RESERVED	uint8	1	0	0x8025
CRC-16 (most significant byte)	uint8	1	0xA5	0x8026
CRC-16 (least significant byte)	uint8	1	0x1E	0x8027
	END DATA	HEADER		I
Manufacturer name	string	12	Digilent Inc	0x8028

Contents	Туре	Size(Bytes)	Value	Address
Product name	string	13	Zmod DAC () 1411	0x8034
Product model / Part number	string	13	Zmod DAC () 1411	0x8041
Product version / revision	string	1	С	0x804E
Serial number	string	12	210397000000	0x804F

3.2. Calibration Memory

The analog circuitry described in previous chapters includes passive and active electronic components. The datasheet specs show parameters (resistance, capacitance, offsets, bias currents, etc.) as typical values and tolerances. The equations in previous chapters consider typical values. Component tolerances affect DC and AC performances of the Zmod DAC (). To minimize these effects, the design uses:

- 0.1% resistors and 1% capacitors in all the critical analog signal paths
- Capacitive trimmers for balancing the Scope Input Divider and Gain Selection
- No other mechanical trimmers (as these are big, expensive, unreliable and affected by vibrations, aging, and temperature drifts)
- Software calibration, at manufacturing
- User software calibration, as an option

A software calibration is performed on each device as a part of the manufacturing test. The AWG outputs are connected to calibrated voltmeters. A set of measurements is used to identify all the DC errors (Gain, Offset) of each analog stage. Correction (Calibration) parameters are computed and stored in the Calibration Memory, on the Zmod DAC () device, both as Factory Calibration Data and User Calibration Data. The WaveForms software allows the user performing an in-house calibration and overwrite the User Calibration Data. Returning to Factory Calibration is always possible.

The Software reads the calibration parameters from the Zmod DAC () MCU via the I2C bus and uses them to correct the generated signals. The structure of the data is shown below:

Heading 1	Name	Size (Bytes)	Туре	Flash Address (Factory Calibration)	EEPROM () Address (User Calibration)
Magic ID		1	uchar 0xAD	0x8100	0x7000
Calibration Time		4	unix timestamp	0x8104	0x7004
Channel 1 LG Gain	CG	4	float32	0x8108	0x7008
Channel 1 LG Offset	СА	4	float32	0x810C	0x700C
Channel 1 HG Gain	CG	4	float32	0x8110	0x7010
Channel 1 HG Offset	СА	4	float32	0x8114	0x7014
Channel 2 LG Gain	CG	4	float32	0x8118	0x7018
Channel 2 LG Offset	СА	4	float32	0x811C	0x701C
Channel 2 HG Gain	CG	4	float32	0x8120	0x7020

Table 3. The Calibration Data Structure

Heading 1	Name	Size (Bytes)	Туре	Flash Address (Factory Calibration)	EEPROM () Address (User Calibration)
Channel 2 HG Offset	СА	4	float32	0x8124	0x7024
Channel 1 Linearity		34	uchar	0x8146	0x7046
Channel 2 Linearity		34	uchar	0x8168	0x7068
Log		22	string	0x817E	0x707E
CRC		1	uchar	0x817F	0x707F

Table 4. The EEPROM Memory Map

Address	Function	Size (Bytes)
0x7000 - 0x707F	User Calibration	128
0x7080 - 0x70FF	Future Use	128

At the power up the EEPROM () memory is protected against write operations. To disable the write protection one has to write a magic number to a magic address over I2C. To re-enable the write protection one has to write a any other number to the magic address.

Table 5. The Write Protection Disable magic number and address

Magic Number	Magic Adress
0xD2	0x6FFF

4. Power Supplies

This block includes the internal power supplies.

The Zmod DAC () gets the digital rails from the carrier board, via the SYZYGY[™] connector:

- VCC5V0 used for relays and analog supplies
- VCC3V3 used for the MCU and analog supplies
- Vadj = 1.8V used for the DAC () digital rail

The internal analog rails sequence is:

- AVCC3V3 DAC () analog rail, I/V converter (after VCC5V0)
- AVCC-2V5 I/V converter (after VCC5V0)
- AVCC-8V0, AVCC8V0 AWG output stage (after VCC3V3)

4.1. AVCC3V3

The analog supply AVCC3V3 is built from VCC5V0 using IC10, an ③ ADP122 5.5 V Input, 300 mA, Low Quiescent Current, CMOS Linear Regulator, Fixed Output Voltage. To reduce noise in the I/V stage, the rail uses the LC filter: FB5 in Fig. 5.

- Input voltage supply range: 2.3 V to 5.5 V
- 300 mA maximum output current
- Fixed and adjustable output voltage versions
- Very low dropout voltage: 85 mV at 300 mA load
- Low quiescent current: 45 µA at no load
- Low shutdown current: $<1 \ \mu A$
- Initial accuracy: $\pm 1\%$ accuracy
- Up to 31 fixed-output voltage options available from 1.75 V to 3.3 V

- Adjustable-output voltage range 0.8 V to 5.0 V (ADP123)
- Excellent PSRR performance: 60 dB at 100 kHz ()
- Excellent load/line transient response
- Optimized for small 1.0 μF ceramic capacitors
- Current limit and thermal overload protection
- Logic controlled enable
- Compact packages: 5-lead TSOT and 6-lead 2 mm \times 2 mm LFCSP

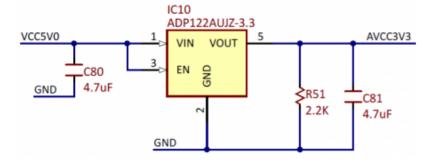


Figure 13. AVCC3V3 []

4.2. AVCC-2V5

The AVCC-2V5 analog power supply is implemented with the ② ADP2301 Step-Down regulator in an inverting Buck-Boost configuration. See application Note ③ AN-1083: Designing an Inverting Buck Boost Using the ADP2300 and ADP2301 To reduce noise and reduce the crosstalk between supplied circuits, the rail uses the LC filter: FB3 in Fig. 5.. The ADP2301 features:

- 1.2 A maximum load current
- $\pm 2\%$ output accuracy over temperature range
- 1.4 MHz () switching frequency
- High efficiency up to 91%
- Current-mode control architecture
- Output voltage from 0.8 V to $0.85 \times \text{VIN}$
- Automatic PFM/PWM mode switching
- Integrated high-side MOSFET and bootstrap diode,
- Internal compensation and soft start
- Undervoltage lockout (UVLO), Overcurrent protection (OCP) and thermal shutdown (TSD)
- Available in ultrasmall, 6-lead TSOT package

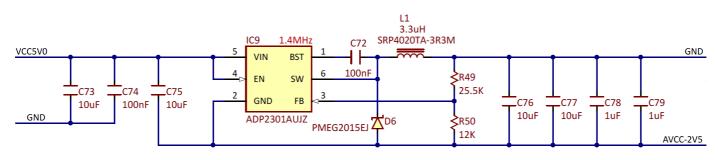


Figure 14. AVCC-2V5 []

The output voltage is:

$$V_{OUT} = -V_{FB} \cdot \frac{R_{49} + R_{50}}{R_{50}} = -2.5V \tag{19}$$

Where:

$$V_{FB} = 0.8V \ typical \tag{20}$$

4.3. AVCC8V0

The user power supplies Fig. 15 use Switching Converter in SEPIC DC-to-DC topology. Main features:

- 1.4A current limit
- Minimum input voltage 1.8V
- Pin-selectable 650 kHz () or 1.3 MHz () PWM frequency
- Adjustable output voltage up to 20 V
- Adjustable soft start
- Undervoltage lockout

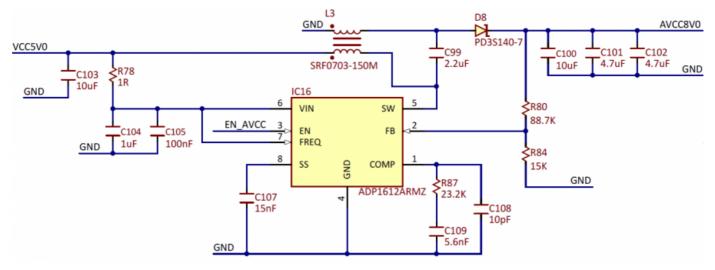


Figure 15. AVCC8V0 []

The output voltage is:

$$V_{OUT} = V_{FB} \cdot \frac{R_{80} + R_{84}}{R_{84}} = 8.538V$$
 (21)

Where:

$$V_{FB} = 1.235V \ typical \tag{22}$$

The supply is enabled after VCC5V0 and AVCC3V3 (see EN_AVCC in Fig. 16)

4.4. AVCC-8V0

The user power supplies Fig. 16 use @ ADP1612 Switching Converter in CUK DC-to-DC topology.

IC13 introduces the required inversion for the negative supply. S ADA4841 features:

- Low power: 1.1 mA/amp
- Low wideband noise: 2.1 nV/ \sqrt{Hz} , 1.4 pA/ \sqrt{Hz}
- Low 1/f noise: 7 nV/ $\sqrt{\text{Hz}}$ @ 10 Hz (), 13 pA/ $\sqrt{\text{Hz}}$ @ 10 Hz ()
- Low distortion: -105 dBc (a) 100 kHz (), VO = 2 V p-p
- High speed: 80 MHz (), -3 dB bandwidth (G = +1), $12 \text{ V/}\mu\text{s}$ slew rate, 175 ns settling time to 0.1%
- Low offset voltage: 0.3 mV maximum
- Rail-to-rail output
- Power down
- Wide supply range: $2.7~\mathrm{V}$ to $12~\mathrm{V}$

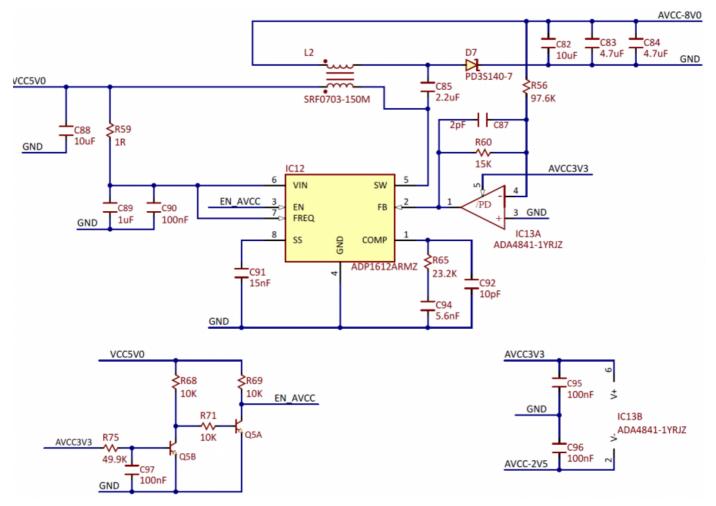


Figure 16. AVCC-8V0 []

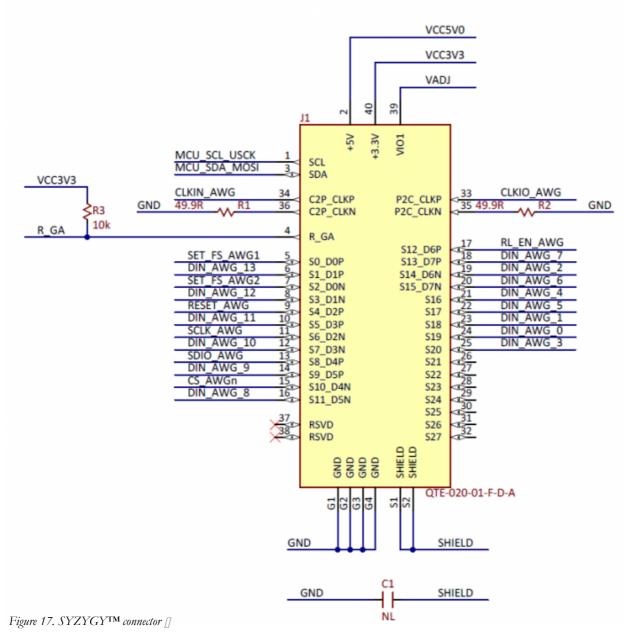
The output voltage is:

$$V_{AVCC8V0} = -V_{FB} \cdot \frac{R_{56}}{R_{60}} = -8.035V$$
 (23)

Where:

$$V_{FB} = 1.235V \ typical \tag{24}$$

The supply is enabled after VCC5V0 and AVCC3V3.


5. The SYZYGYTM Connector

The SYZYGY[™] connector in provides the interface with the carrier board. The used signals are:

- Power rails
 - VCC5V0
 - VCC3V3
 - $\circ~V\!ADJ$ needs to be set by the carier board to 1.8V
 - GND ()
 - Shield
- SYZYGY[™] I2C bus:
 - MCU_SCLUSCK
 - MCU_SDA_MOSI ()
- DAC () single ended input clock CLKIN_AWG (coupled with GND () in the differential C2P pair)
- DAC () single ended output clock:
- CLKIO_AWG (coupled with GND () in the differential P2C pair)
- R_GA for geographical address identification
- Gain selector signals:
 - SET_FS_AWG1

SET_FS_AWG2

- DAC () data bus: DIN_AWG_0...13
- ADC () SPI bus:
 - CS ()_SC1n
 - SCLK ()_SC
- SDIO_SC • relay control
 - RL_EN_AWG enables the AWG outputs
- RESET_AWG

6. The SYZYGYTM compatibility table

Table 6. The SYZYGYTM compatibility table \square

Parameter	Value
Maximum 5V supply current	600mA
Maximum 3.3V supply current	1mA
VIO supply voltage	1.8V

Parameter	Value
Maximum VIO supply current	10mA
Total number of I/O	21
Number of differential I/O pairs	0
Width	Single

Written by Mircea Dabacan, PhD, Technical University of Cluj-Napoca Romania

 $\underline{1}\underline{)}$ The "SYZYGYTM " mark is owned by Opal Kelly.