

Infrared Sensor

Operators manual

CE-Conformity

The product complies with the following standards:

EMC:

Safety:

EN 61326-1:2006 (Basic requirements) EN 61326-2-3:2006 EN 61010-1:2001

The product accomplishes the requirements of the EMC Directive 2004/108/EG and of the Low Voltage Directive 2006/95/EG.

References to other chapters are marked as: ►

Warranty

Each single product passes through a quality process. Nevertheless, if failures occur please contact the customer service at once. The warranty period covers 24 months starting on the delivery date. After the warranty is expired the manufacturer guarantees additional 6 months warranty for all repaired or substituted product components. Warranty does not apply to damages, which result from misuse or neglect. The warranty also expires if you open the product. The manufacturer is not liable for consequential damage or in case of a non-intended use of the product. If a failure occurs during the warranty period the product will be replaced, calibrated or repaired without further charges. The freight costs will be paid by the sender. The manufacturer reserves the right to exchange components of the product instead of repairing it. If the failure results from misuse or neglect the user has to pay for the repair. In that case you may ask for a cost estimate beforehand.

CE

Optris GmbH

GERMANY

D – 13127 Berlin

Ferdinand-Buisson-Str. 14

Tel.: +49-30-500 197-0 Fax: +49-30-500 197-10

E-mail: info@optris.de Internet: www.optris.com

Content

	Page		Page
Description	3	Software CompactConnect	25
Scope of Supply	3	Installation	25
Maintenance	3	Communication Settings	26
Cautions	4	Digital Command Set	27
Factory Default Settings	4	Basics of Infrared Thermometry	29
Technical Data	6	Emissivity	30
General Specifications	6	Definition	30
Electrical Specifications	7	Determination of unknown Emissivities	30
Measurement Specifications	9	Characteristic Emissivities	31
Optical Charts	10	Appendix A – Emissivity Table Metals	32
Close Focus Optics	11	Appendix B – Emissivity Table Non Metals	33
LED Functions	12	Appendix C – Smart Averaging	34
Automatic Aiming Support	12		
Self Diagnostic	13		
Temperature Code Indication	14		
Installation	15		
Mechanical Installation	15		
Mounting Accessories	16		
Air Purge Collars	17		
Further Accessories	18		
Electrical Installation	19		
Schematic Circuit Diagrams for Maint. Appl.	23		

Description

The sensors of the optris CS series are non-contact infrared temperature sensors.

They calculate the surface temperature based on the emitted infrared energy of objects [**Basics of Infrared Thermometry**].

The sensor housing of the optris CS is made of stainless steel (IP63) and contains the complete sensor electronics. The optris CS has a fixed mounted connection cable.

The sensors CS are sensitive optical systems. Please use only the thread for mechanical installation. Avoid mechanical violence on the head – this may destroy the system (expiry of warranty).

Scope of Supply

- CS incl. connection cable, two mounting nuts and operators manual

Maintenance

Lens cleaning: Blow off loose particles using clean compressed air. The lens surface can be cleaned with a soft, humid tissue moistened with water or a water based glass cleaner.

PLEASE NOTE: Never use cleaning compounds which contain solvents (neither for the lens nor for the housing).

Cautions

Avoid abrupt changes of the ambient temperature.

In case of problems or questions which may arise when you use the CS, please contact our service department.

Read the manual carefully before the initial start-up. The producer reserves the right to change the herein described specifications in case of technical advance of the product.

Factory Default Settings

The unit has the following presetting at time of delivery:

	CS	CSTC If th
Emissivity:	0,950	0,950 the
Transmission:	1,000	1,000 pres
Average time:	0,3 s	0,3 s (bid
Smart averaging:	active	active
Smart averaging hysteresis:	2 °C	2 °C
Ambient temperature source:	internal (head)	internal (head)
Status-LED function:	Self diagnostic	Self diagnostic
Input (IN/ OUT/ green):	Communication input	Communication input
Output (OUT/ yellow):	mV output	inactive
Temperature range:	0350 °C	-40…1030°C
Output voltage:	03,5 V	according to t/c type K
Thermocouple output:	-	active
Vcc adjust:	inactive	inactive
Signal processing:	Hold mode: off	Hold mode: off
Calibration:	Gain 1,000/ Offset 0,0	Gain 1,000/ Offset 0,0
Failsafe:	inactive	inactive

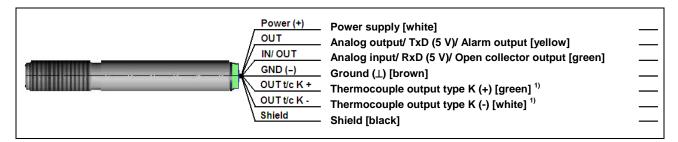
The default settings can be changed with the optional USB kit (USB adapter cable + software). If the unit is supplied together with the USB kit the output is already preset to digital communication (bidirectional). For a usage of the CS for online maintenance applications (in electrical cabinets e.g.) the following recommend settings are already included in the factory default setting (but not active):

OUT	At 3-state ou Pre-alarm diff No alarm leve Pre-alarm leve Alarm level: Service voltag	el: 8 V el: 5 V 0 V	are default:	
IN/ OUT	At Alarm out Mode: Temp code o Range setting		sed values abo	ve alarm level)
Vcc adjust	If activated the following settings are default: Output voltage range: 0-10 V Difference mode: activated			
	Alarm level	Alarm value (IN/ OUT pin)	Vcc	
	1	40 °C	11 V	
	2	45 °C	12 V	
	3	50 °C	13 V	
	4	55 °C	14 V	
	5	60 °C	15 V	
	6	65 °C	16 V	
	7	70 °C	17 V	
	8	75 °C	18 V	
	9	80 °C	19 V	
	10	85 °C	20 V	
				•

Technical Data

General Specifications

Environmental rating	IP63
Ambient temperature	-2080 °C
Storage temperature	-4085 °C
Relative humidity	1095 %, non condensing
Material	stainless steel
Dimensions	M12x1, 85 mm long
Weight	58 g
Cable length	1 m (standard), 3 m, 8 m, 15 m
Cable diameter	4,3 mm
Vibration	IEC 68-2-6: 3G, 11 – 200 Hz, any axis
Shock	IEC 68-2-27: 50G, 11 ms, any axis


Electrical Specifications

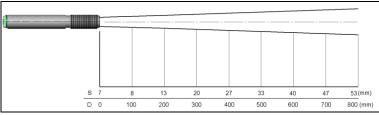
Use	ed pin	Function	
OUT	IN/ OUT		
х		Analog	0-5 $V^{(1)}$ or 0-10 $V^{(2)}$ / scalable
X		Alarm	output voltage adjustable; N/O or N/C
х		Alarm	3-state alarm output (three voltage level for no alarm, pre-alarm, alarm)
	х	Alarm	programmable open collector output [0-30 V DC/ 50 mA] ⁴⁾ Temp. Code Output (open collector [0-30 V DC/ 50 mA] ⁴⁾
	х	Temp. Code	Temp. Code Output (open collector [0-30 V DC/ 50 mA] ⁴⁾
	x	Input	 programmable functions: external emissivity adjustment ambient temperature compensation triggered signal output and peak hold function ⁵⁾
x	x	Serial digital ³⁾	uni- (burst mode) or bidirectional
OUT t/	/c K	Analog	Thermocouple output type K (only at model CSTCLT15); alternatively selectable to the mV output (software necessary)
Status	Status LED green LED with programmable functions: alarm indication (threshold independent from alarm outputs) automatic aiming support self diagnostics temperature code indication		
Vcc ac	djust mode	,	missivity and alarm values by variation of supply voltage/ or analog output

Output impedances	min. 10 kΩ load impedance
Current draw	10 mA
Power supply	530 VDC

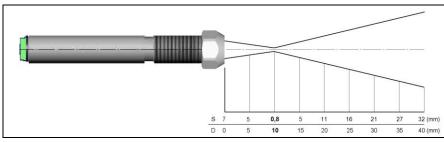
¹⁾ 0...4,6 V at supply voltage 5 VDC; also valid for alarm output ²⁾ only at supply voltage \ge 11 V ³⁾ inverted RS232, TTL, 9,6 kBaud

⁴⁾ loadable up to 500 mA if the mV output is not used $^{5)}$ High level: > 0,8 V/ Low level: < 0,8 V

¹⁾ only at model CSTCLT15 / The t/c wires are indicated with an additional cable marker to avoid wrong connections due to the identical cable colors of other wires (white, green).


Measurement Specifications

Temperature range	-401030 °C (scalable via software)
Spectral range	814 μm
Optical resolution	15:1
CF-lens (optional)	0,8 mm@ 10 mm
Accuracy ^{1) 2)}	±1,5 °C or ±1,5 % of reading (whichever is greater)
Repeatability ¹⁾	±0,75 °C or ±0,75 % of reading (whichever is greater)
Temperature coefficient ³⁾	±0,05 K/ K or ±0,05 %/ K (whichever is greater)
Temperature resolution (NETD) ⁴⁾	0,1 K
Response time	25 ms (95 % signal/ adjustable up to 999 s via software)
Warm-up time	10 min
Emissivity/ Gain Transmissivity Interface (optional) Signal processing Software (optional)	0,1001,100 (adjustable via 0-5 VDC input or software) 0,1001,000 (adjustable via software) USB programming interface Average, Peak hold, Valley hold, Advanced peak hold with threshold and hysteresis, Triggered signal output, Triggered peak hold function (adjustable via software) CompactConnect

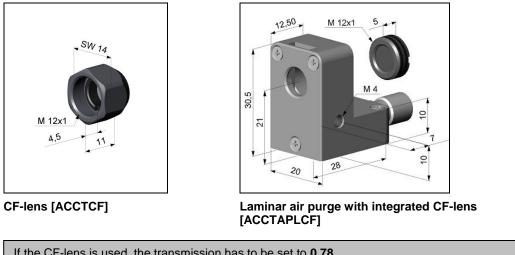

¹⁾ at ambient temperature 23±5 °C and object temperatures >0 °C
 ²⁾ Accuracy for thermocouple output: ±2,5°C or ±1%
 ³⁾ for ambient temperatures <18 °C and >28 °C
 ⁴⁾ at time constant ≥100 ms with smart averaging and an object temperature of 25 °C

Optical Charts

The following optical charts show the diameter of the measuring spot in dependence on the distance between measuring object and sensing head. The spot size refers to **90 % of the radiation energy**. The distance is always measured from the front edge of the sensor housing/ CF-lens holder/ air purge.

Optical chart CS (15:1)

Optical chart CS (15:1) with CF-lens (0,8 mm@ 10 mm)


The size of the measuring object and the optical resolution of the infrared thermometer determine the maximum distance between sensing head and measuring object.

In order to prevent measuring errors the object should fill out the field of view of the optics completely.

Consequently, the spot should at all times have at least the <u>same size like</u> the object or should be <u>smaller</u> <u>than</u> that.

Close Focus Optics

The optional CF-lens allows the measurement of small objects. The CF optics can also be combined with a laminar air purge:

If the CF-lens is used, the transmission has to be set to **0,78**. To change this value the optional USB-Kit (including CompactConnect software) is necessary.

LED Functions

The green LED can be programmed for the following functions. For the programming the **USB adapter cable incl. software (option)** is necessary. The factory default setting for the LED is self diagnostic.

LED Alarm	LED lights up if the object temperature exceeds or deceeds an alarm threshold
Automatic aiming support	Sighting feature for an accurate aiming of the CS to hot or cold objects
Self diagnostic	LED is indicating different states of the sensor
Temperature Code indication	Indication of the object temperature via the LED
Off	LED deactivated

Automatic Aiming Support

The automatic aiming support helps to adjust the unit to an object which has a temperature different to the background. If this function is activated via software the sensor is looking for the highest object temperature; means the threshold value for activating the LED will be automatically tuned.

This works also if the sensor is aimed at a new object (with probably colder temperature). After expiration of a certain reset time (default setting: 10s) the sensor will adjust the threshold level for activation of the LED new.

Self Diagnostic

With this function the current status of the sensor will be indicated by different flash modes of the LED.

If activated, the LED will the sensor:	show one out of fi	ve possible states of
Status	LED mode	
Normal Sensor overheated Out of measuring range Not stable Alarm fault	intermittent off fast flash double flash intermittent on always on	
	The internal tem of the CS.	perature probes have

At a supply voltage (Vcc) \ge 12 V it takes about 5 minutes until the sensor works in a stable mode. Therefore, after switching on the unit, the LED will show a not stable state for up to 5 minutes.

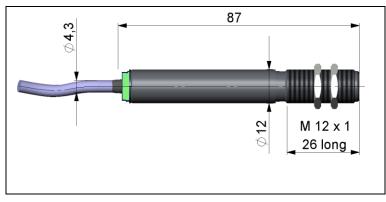
Sensor overheated:	The internal temperature probes have detected an invalid high internal temperature of the CS.
Out of meas. range:	The object temperature is out of measuring range.
Not stable:	The internal temperature probes have detected an unequally internal temperature of the CS.
Alarm fault:	Current through the switching transistor of the open-collector output is too high.

Temperature Code Indication

With this function the current measured object temperature will be indicated as percentage value by long and short flashing of the LED.

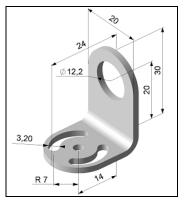
At a range setting of 0-100 °C \rightarrow 0-100% the LED flashing indicates the temperature in °C.

Long flashing \rightarrow first digit:	XX	
Short flashing \rightarrow second digit:	xx	
10-times long flashing \rightarrow first digit=0:	0 ×	
10-times short flashing \rightarrow second digit=0:	x 0	

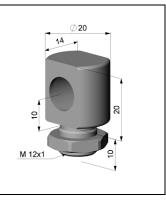

Examples

87 °C	8-times long flashing indicates	8 7
and afterwards	7-times short flashing indicates	8 7
31 °C	3-times long flashing indicates	3 1
and afterwards	1-time short flashing indicates	3 1
8 °C	10-times long flashing indicates	0 8
and afterwards	8-times short flashing indicates	0 8
20 °C	2-times long flashing indicates	2 0
and afterwards	10-times short flashing indicates	2 0

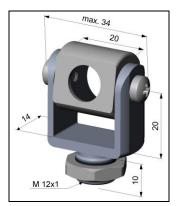
Installation


Mechanical Installation

The CS is equipped with a metric M12x1 thread and can be installed either directly via the sensor thread or with the help of the both hex nuts (standard) to the mounting bracket available.



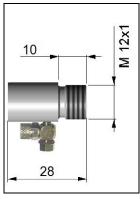
For an exact aiming of the sensor to an object the LED function **>** Automatic Aiming Support can be used.

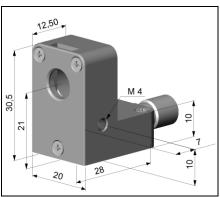

Mounting Accessories

Mounting bracket, adjustable in one axis [ACCTFB]

Mounting bolt with M12x1 thread, adjustable in one axis [ACCTMB]

Mounting fork with M12x1 thread, adjustable in 2 axes [ACCTMG]

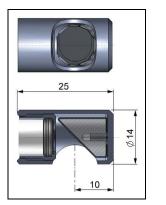

The **Mounting fork** can be combined with the **Mounting bracket** [ACCTFB] using the M12x1 thread.


Mounting bracket, adjustable in two axes [ACCTAB]

Air Purge Collars

The lens must be kept clean at all times from dust, smoke, fumes and other contaminants in order to avoid reading errors. These effects can be reduced by using an **air purge collar**. Make sure to use oil-free, technically clean air, only.

Standard air purge collar; fits to the mounting bracket; hose connection: 3x5 mm [ACCSAP]


Laminar air purge collar – the side air outlet prevents a cooling down of the object in short distances; hose connection: 3x5 mm [ACCTAPL]

A combination of the Laminar air purge collar with the bottom section of the Mounting fork allows an adjustment in two axes. [ACCTAPL+ACCTMG]

The needed amount of air (approx. 2...10 I/ min.) depends on the application and the installation conditions on-site.

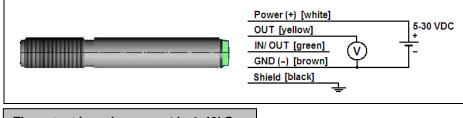
Further Accessories

M 12x1 4,5 11

Right angle mirror Enables measurement with 90° angle [ACCTRAM]

Protective window same mechanical size as CF lens [ACCTPW]

USB-Kit: USB adapter cable incl. terminal block and software CD [ACCSUSBK]


If the protective window is used, the transmission has to be set to **0,83**. To change this value the optional USB-Kit (including CompactConnect software) is necessary.

► All accessories can be ordered using the according part numbers in brackets [].

Electrical Installation

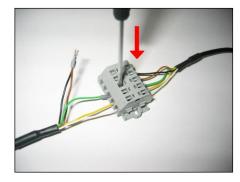
Please use a stabilized power supply unit with an output voltage in the range of **5–30 VDC** which can supply **100 mA**. The residual ripple should be max. **200 mV**.

Analog device (mV output on OUT pin)

The output impedance must be $\geq 10k\Omega$.

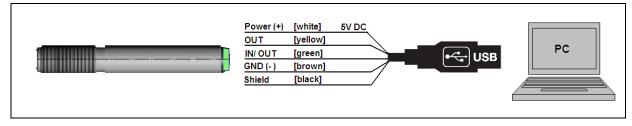
Analog device (thermocouple type K output on OUT t/c K pins / only at model CSTCLT15)

On the model CSTCLT15 you can choose between a mV output (0-5 or 0-10 V; scalable via software) and a thermocouple output type K.

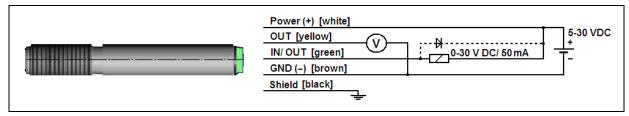

The factory default setting is thermocouple output. **Factory default settings**

This output supplies a voltage according to the t/c characteristic curve type K. If you want to extend this output you have to use a suitable thermocouple extension cable (NiCr-Ni).

IMPORTANT: The shield [black] on the CS is not connected to GND [brown]. In any case it is necessary to connect the shield to ground or GND (whichever works best)!


Digital communication

For a digital communication the optional USB programming kit is required. Please connect each wire of the USB adapter cable with the same coloured wire of the sensor cable by using the terminal block. Press with a screw driver as shown in the picture to loose a contact.

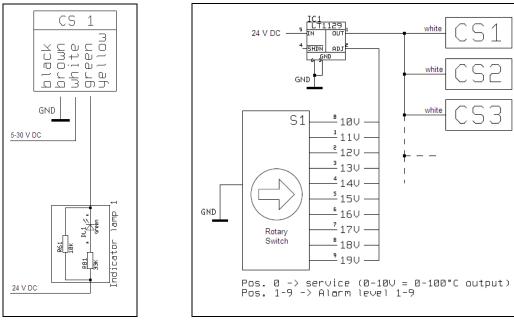


The sensor is offering two ways of digital communication:

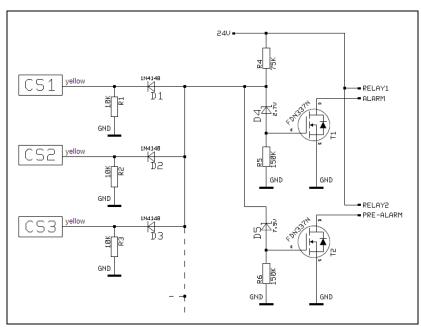
- bidirectional communication (sending and receiving data)
- unidirectional communication (burst mode the sensor is sending data only)

Open collector output

The open collector output is an additional alarm output on the CS and can control an external relay e.g. In addition the analog output can be used simultaneously.


Direct connection to an RS232 interface on the computer

For a bidirectional RS232 connection of the sensor the following interface circuit can be used: MAX3381E (manufacturer: Maxim):


Model	CSv1/ CSMv1	CSv2	CSMv2	CSM2W/ CX
UART voltage (RxD)	5 V	3,3 V	3,3 V	3,3 V
UART voltage (TxD)	5 V	2,5 V	2,5 V	2,5 V

previous sensor versions:

Schematic Circuit Diagrams for Maintenance Applications

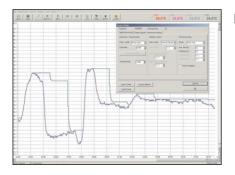
Open collector output for direct 24V DC signal lamp control Common power supply voltage change to adjust simultaneously alarm levels and emissivity values [Vcc adjust mode]

Simple common alarm and pre-alarm generation

Software CompactConnect

Installation

Insert the installation CD into the according drive on your computer. If the autorun option is activated the **installation wizard** will start automatically. Otherwise please start **setup.exe** from the CD-ROM. Follow the instructions of the wizard until the installation is finished.


Minimum system requirements:

- Windows XP, Vista, 7
- USB interface
- Hard disc with at least 30 MByte free space
- At least 128 MByte RAM
- CD-ROM drive

The installation wizard will place a launch icon on the desktop and in the start menu: [Start]\Programs\CompactConnect.

If you want to uninstall the software from your system please use the uninstall icon in the start menu.

You will find a detailed software manual on the CD.

Main Features:

- Graphic display for temperature trends and automatic data logging for analysis and documentation
- Complete sensor setup and remote controlling
- Adjustment of signal processing functions
- Programming of outputs and functional inputs

Communication Settings

Serial Interface

Baud rate:9600 baudData bits:8Parity:noneStop bits:1Flow control:off

Protocol

All sensors of the CS series are using a binary protocol. To get a fast communication the protocol has no additional overhead with CR, LR or ACK bytes. To power the sensor the control signal "DTR" has to be set.

Digital Command Set

Decimal	HEX	Binary/ ASCII	Command	Data	Answer	Result	Unit
1	0x01	binary	READ Temp - Target	no	byte1 byte2	= (byte1 x 256 + byte2 - 1000) / 10	°C
2	0x02		READ Temp - Head	no	byte1 byte2	= (byte1 x 256 + byte2 - 1000) / 10	°C
3	0x03	binary	READ current Temp - Target	no	byte1 byte2	= (byte1 x 256 + byte2 - 1000) / 10	°C
4	0x04	binary	READ Emissivity	no	byte1 byte2	= (byte1 x 256 + byte2) / 1000	
5	0x05	binary	READ Transmission	no	byte1 byte2	= (byte1 x 256 + byte2) / 1000	
9	0x09	binary	READ Processor Temperature	no	byte1	= (byte1 x 256 + byte2 - 1000) / 10	
14	0x0E	binary	READ Serial number	no	byte1 byte2 byte3	= byte1 x 65536 + byte2 x 256 + byte3	
15	0x0F	binary	READ FW Rev.	no	byte1 byte2	= byte1 x 256 + byte2	
129	0x81	binary	SET DAC mV/ mA	byte1	byte1	byte 1= mV (mA) x 10 (e.g. 4mA = 4 x 10=40)	°C
130	0x82	binary	RESET of DAC mV/ mA output				1
132	0x84	binary	SET Emissivity	byte1 byte2	byte1 byte2	= (byte1 x 256 + byte2) / 1000	
· EXAMPLES Readout of	(all bytes in object temp	n HEX) perature	s: (byte1 x 256 + byte2 - 10000) / 100				
EXAMPLES Readout of Send:	(all bytes i r object temp 01	n HEX) perature Command for re	s: (byte1 x 256 + byte2 - 10000) / 100 eadout of object temperature ture in tenth degree + 1000	04 D3 = dec. 12 1235 - 1000 = 2	35		
EXAMPLES Readout of Send: Receive:	(all bytes in object temp 01 04 D3	n HEX) perature Command for re Object tempera	eadout of object temperature ture in tenth degree + 1000	04 D3 = dec. 12	35		
EXAMPLES Readout of Send: Receive:	(all bytes in object temp 01 04 D3	n HEX) perature Command for re	eadout of object temperature ture in tenth degree + 1000	04 D3 = dec. 12 1235 - 1000 = 2	35		
EXAMPLES Readout of Send: Receive: Readout of	(all bytes in object temp 01 04 D3	n HEX) berature Command for re Object tempera berature (at CSn	eadout of object temperature ture in tenth degree + 1000	04 D3 = dec. 12 1235 - 1000 = 2	35		
EXAMPLES Readout of Send: Receive: Readout of Send:	(all bytes in object temp 01 04 D3 object temp 01	n HEX) perature Command for re Object tempera perature (at CSn Command for re	eadout of object temperature ture in tenth degree + 1000 nicro 2Whs)	04 D3 = dec. 12 1235 - 1000 = 2	35 C 350 2350		
EXAMPLES Readout of Send: Receive: Readout of Send: Receive:	(all bytes in object temp 01 04 D3 object temp 01 30 3E	n HEX) perature Command for re Object tempera perature (at CSn Command for re	eadout of object temperature ture in tenth degree + 1000 nicro 2Whs) eadout of object temperature	04 D3 = dec. 12: 1235 - 1000 = 2: 235 / 10 = 23,5 ° 30 3E = dec. 12: 12350 - 10000 =	35 C 350 2350		
EXAMPLES Readout of Send: Receive:	(all bytes in object temp 01 04 D3 object temp 01 30 3E	n HEX) perature Command for re Object tempera perature (at CSn Command for re	eadout of object temperature ture in tenth degree + 1000 nicro 2Whs) eadout of object temperature	04 D3 = dec. 12: 1235 - 1000 = 2: 235 / 10 = 23,5 ° 30 3E = dec. 12: 12350 - 10000 =	35 C 350 2350 50 °C		

Burstmode (unidirectional)			
After switch on a continuous serial signa	I will be created.	The burst string can be config	ured with the software.
Burst string	Example	Complete burst string	Conversion to decimal value
Burst string 2 synchronisation bytes: AAAA	Example 	Complete burst string	Conversion to decimal value

Basics of Infrared Thermometry

Depending on the temperature each object emits a certain amount of infrared radiation. A change in the temperature of the object is accompanied by a change in the intensity of the radiation. For the measurement of "thermal radiation" infrared thermometry uses a wave-length ranging between 1 μ and 20 μ m. The intensity of the emitted radiation depends on the material. This material contingent constant is described with the help of the emissivity which is a known value for most materials (see enclosed table emissivity).

Infrared thermometers are optoelectronic sensors. They calculate the surface temperature on the basis of the emitted infrared radiation from an object. The most important feature of infrared thermometers is that they enable the user to measure objects contactless. Consequently, these products help to measure the temperature of inaccessible or moving objects without difficulties. Infrared thermometers basically consist of the following components:

- lens
- spectral filter
- detector
- electronics (amplifier/ linearization/ signal processing)

The specifications of the lens decisively determine the optical path of the infrared thermometer, which is characterized by the ratio Distance to Spot size.

The spectral filter selects the wavelength range, which is relevant for the temperature measurement. The detector in cooperation with the processing electronics transforms the emitted infrared radiation into electrical signals.

Emissivity

Definition

The intensity of infrared radiation, which is emitted by each body, depends on the temperature as well as on the radiation features of the surface material of the measuring object. The emissivity (ϵ – Epsilon) is used as a material constant factor to describe the ability of the body to emit infrared energy. It can range between 0 and 100 %. A "blackbody" is the ideal radiation source with an emissivity of 1,0 whereas a mirror shows an emissivity of 0,1.

If the emissivity chosen is too high, the infrared thermometer may display a temperature value which is much lower than the real temperature – assuming the measuring object is warmer than its surroundings. A low emissivity (reflective surfaces) carries the risk of inaccurate measuring results by interfering infrared radiation emitted by background objects (flames, heating systems, chamottes). To minimize measuring errors in such cases, the handling should be performed very carefully and the unit should be protected against reflecting radiation sources.

Determination of unknown Emissivities

- ► First, determine the actual temperature of the measuring object with a thermocouple or contact sensor. Second, measure the temperature with the infrared thermometer and modify the emissivity until the displayed result corresponds to the actual temperature.
- ► If you monitor temperatures of up to 380°C you may place a special plastic sticker (emissivity dots part number: ACLSED) onto the measuring object, which covers it completely. Now set the emissivity to 0,95 and take the temperature of the sticker. Afterwards, determine the temperature of the adjacent area on the measuring object and adjust the emissivity according to the value of the temperature of the sticker.

Cove a part of the surface of the measuring object with a black, flat paint with an emissivity of 0,98. Adjust the emissivity of your infrared thermometer to 0,98 and take the temperature of the colored surface. Afterwards, determine the temperature of a directly adjacent area and modify the emissivity until the measured value corresponds to the temperature of the colored surface.

CAUTION: On all three methods the object temperature must be different from ambient temperature.

Characteristic Emissivities

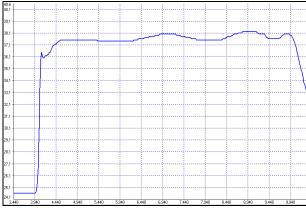
In case none of the methods mentioned above help to determine the emissivity you may use the emissivity tables ► Appendix A and B. These are average values, only. The actual emissivity of a material depends on the following factors:

- temperature
- measuring angle
- geometry of the surface
- thickness of the material
- constitution of the surface (polished, oxidized, rough, sandblast)
- spectral range of the measurement
- transmissivity (e.g. with thin films)

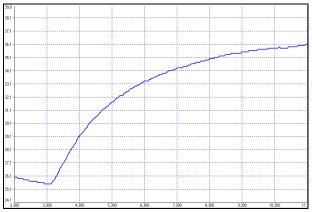
Appendix A – Emissivity Table Metals

	Material	typical Emissivity
Aluminium	non oxidized	0,02-0,1
	polished	0,02-0,1
	roughened	0,1-0,3
	oxidized	0,2-0,4
Brass	polished	0,01-0,05
	roughened	0,3
	oxidized	0,5
Copper	polished	0,03
	roughened	0,05-0,1
	oxidized	0,4-0,8
Chrome		0,02-0,2
Gold		0,01-0,1
Haynes	alloy	0,3-0,8
Inconel	electro polished	0,15
	sandblast	0,3-0,6
	oxidized	0,7-0,95
Iron	non oxidized	0,05-0,2
	rusted	0,5-0,7
	oxidized	0,5-0,9
	forged, blunt	0,9
Iron, casted	non oxidized	0,2
	oxidized	0,6-0,95
Lead	polished	0,05-0,1

	Material	typical Emissivity
Lead	roughened	0,4
	oxidized	0,2-0,6
Magnesium		0,02-0,1
Mercury		0,05-0,15
Molybdenum	non oxidized	0,1
	oxidized	0,2-0,6
Monel (Ni-Cu)		0,1-0,14
Nickel	electrolytic	0,05-0,15
	oxidized	0,2-0,5
Platinum	black	0,9
Silver		0,02
Steel	polished plate	0,1
	rustless	0,1-0,8
	heavy plate	0,4-0,6
	cold-rolled	0,7-0,9
	oxidized	0,7-0,9
Tin	non oxidized	0,05
Titanium	polished	0,05-0,2
	oxidized	0,5-0,6
Wolfram	polished	0,03-0,1
Zinc	polished	0,02
	oxidized	0,1


Appendix B – Emissivity Table Non Metals

	Material	typical Emissivity
Asbestos		0,95
Asphalt		0,95
Basalt		0,7
Carbon	non oxidized	0,8-0,9
	graphite	0,7-0,8
Carborundum		0,9
Ceramic		0,95
Concrete		0,95
Glass		0,85
Grit		0,95
Gypsum		0,8-0,95
Ice		0,98
Limestone		0,98
Paint	non alkaline	0,9-0,95
Paper	any color	0,95
Plastic >50 µm	non transparent	0,95
Rubber		0,95
Sand		0,9
Snow		0,9
Soil		0,9-0,98
Textiles		0,95
Water		0,93
Wood	natural	0,9-0,95


Appendix C – Smart Averaging

The average function is generally used to smoothen the output signal. With the adjustable parameter time this function can be optimal adjusted to the respective application. One disadvantage of the average function is that fast temperature peaks which are caused by dynamic events are subjected to the same averaging time. Therefore those peaks can only be seen with a delay on the signal output.

The function **Smart Averaging** eliminates this disadvantage by passing those fast events without averaging directly through to the signal output.

Signal graph with Smart Averaging function

Signal graph without Smart Averaging function