JUMO DELOS SI

Electronic Pressure Switch with Display

B 40.5052 .0
Operating Manual

Contents

1 Typographical conventions 5
1.1 Warning signs 5
1.2 Note signs 5
2 Description 6
2.1 General 6
3 Identifying the instrument version 7
3.1 Nameplate 7
3.2 Block diagram 7
3.3 Type description 8
3.4 Accessories 10
4 Electrical connection 11
4.1 Installation instructions 11
4.2 Color assignment of M12 $\times 1$ round plug 11
4.3 Terminal assignment for output 470 12
4.4 Terminal assignment for output 471 12
4.5 Terminal assignment for outputs 475, 476, and 477 13
5 Mounting 14
5.1 General information 14
5.2 Dimensions of electronic pressure switches 16
5.3 Dimensions of process connections, not front-flush 17
5.4 Dimensions of process connections, front-flush 18
6 Operation 21
6.1 Controls 21
6.2 LC display 21
6.3 Levels 22
6.4 Parameter 23

Contents

7 Commissioning 26
7.1 Getting started 26
7.2 Unlocking the instrument (code entry) 27
7.3 Cancel operation 28
7.4 Selecting the unit of the measured value (Uni.P) 28
7.5 Setting the zero point (offset) (Off.P) 31
7.6 Setting the filter time constant (damping) (DamP) 32
7.7 Setting the output signal (S.TyP) 32
7.8 Setting scaling 33
7.9 Setting the error signal (S.Err) 36
7.10 Setting the switching function (B.Fct) 37
7.11 Setting the switching point (B.SP) 39
7.12 Setting the reset point (B.RSP) 40
7.13 Setting the switching difference (hysteresis) (B.HYS) 40
7.14 Setting the switching delay (B.DLY) 41
7.15 Setting the display alignment (D.Dir) 41
7.16 Setting the display unit (D.Uni) 42
7.17 Displaying the version of the operating device software (SW.Di) 43
7.18 Displaying the version of the signal stage software (SW.Si) 43
8 Calibration 44
8.1 Setting the zero point (offset) 44
9 Setup program 45
9.1 Function 45
9.2 Start the setup program 46
10 Eliminating errors and faults 48
10.1 Possible errors 48
11 Instrument description 49
11.1 Technical data 49

1 Typographical conventions

1.1 Warning signs

Danger

This symbol is used when there may be danger to personnel if the instructions are ignored or not followed correctly!

Caution

This symbol is used when there may be damage to equipment or data if the instructions are ignored or not followed correctly!

Caution

This symbol is used where special care is required when handling components liable to damage through electrostatic discharge.

1.2 Note signs

*

Note

This symbol is used to draw your special attention to a remark.

Footnote

Footnotes are remarks that refer to specific points in the text. Footnotes consist of two parts:
Marking in the text and the footnote text.
The markers in the text are arranged as sequential superscript numbers.

Action instruction

This symbol indicates that an action to be performed is described.
The individual steps are marked by this asterisk.
Example:

* Loosen Phillips-head screws.

2 Description

2.1 General

- Depending on its design, the instrument measures relative or absolute pressure in liquid and gaseous media.
- The pressure is displayed digitally.

Depending on the design, the following outputs are available:

- 1 PNP switching output
- 2 PNP switching outputs
- 1 PNP switching output + 1 analog output 4 ... $20 \mathrm{~mA}{ }^{1}$
-1 PNP switching output +1 analog output $0 \ldots 20 \mathrm{~mA}^{1}$
- 1 PNP switching output +1 analog output $0 \ldots 10 \mathrm{~V}^{1}$
- The instrument is also available in a design for use at elevated medium temperatures.
- The instrument can be adjusted directly on site or can be configured via PC with a setup program.

The protection type specified for the device (See section 11.1 "Technical data", page 49) can only be achieved with the control opening (1) closed.

[^0]
3 Identifying the instrument version

3.1 Nameplate

on the

 pressure switchJUMO Made in Germany
www.jumo.net

(1)

DELOS SI
405052/000
(2) —— TN 12345678
(3)
(4) —— $\bigcirc D C 12 \ldots 30 \mathrm{~V}$ - 0... 250 mbar
\square
(5) \qquad Є 4... $20 \mathrm{~mA} / \mathrm{OC}: 250 \mathrm{~mA}$ (6) F.-Nr.: 001234567801008350123

(1) Type
(5) Output signal
(2) Part number
(6) Manufacturing number
(3) Measuring range
(7) Date of manufacture
(4) Power supply voltage (year and calendar week)

3.2 Block diagram

[^1]
3 Identifying the instrument version

3.3 Type description

(1) Basic type

405052 JUMO DELOS SI
(2) Basic type extension

000 None
004 For elevated medium temperatures up to $200^{\circ} \mathrm{C}^{1}$
999 Special design
(3) Nominal (rated) measuring range

Measuring range - pressure
452 0 ... 400 mbar relative pressure
454 0... 1 bar relative pressure
457 0 ... 4 bar relative pressure
459 0 ... 10 bar relative pressure
461 0... 25 bar relative pressure
463 0 ... 60 bar relative pressure
Measuring range - vacuum
447 -400 ... 400 mbar relative pressure
$449-1 \ldots 1$ bar relative pressure
481 -1 ... 3 bar relative pressure
$483-1 \ldots 9$ bar relative pressure
$485-1 \ldots 24$ bar relative pressure
Measuring range absolute pressure
486 0 ... 400 mbar absolute pressure
488 0... 1 bar absolute pressure
491 0 ... 4 bar absolute pressure
493 0... 10 bar absolute pressure
495 0 ... 25 bar absolute pressure
506 0 ... 60 bar absolute pressure
(4) Output
$1 \times$ PNP switching output
470

$4751 \times$ PNP switching output + analog output $4 \ldots 20 \mathrm{~mA}$, three wires ${ }^{2}$
$4761 \times$ PNP switching output + analog output $0 \ldots 20 \mathrm{~mA}$, three wires ${ }^{2}$
$4771 \times$ PNP switching output + analog output $0 \ldots 10 \mathrm{~V}$, three wires ${ }^{2}$

1 Front-flush only for process connection.
2 Factory setting - the output is freely configurable.

3 Identifying the instrument version

(5) Process connection

Not front-flush

G 1/2
511
1/4-18 NPT
G $1 / 4$ to DIN 3852 T11
523
(6) Process connection material

Stainless steel 316L
(7) Electrical connection

Round plug M 12×1
(8) Measuring system filling medium

FDA-compliant oil
Special filling medium
(9) Extra codes

None
000
591 Throttle in pressure channel
624 Free of oil and grease
691 Cast version

Order code
Sample order

[^2]
3 Identifying the instrument version

3.4 Accessories

Sales No. Designation
40/00404585 4-pin cable connector (straight) M 12×1 with 2-m PVC cable
40/00409334 4-pin angle box M 12×1 with 2-m PVC cable
40/00522384 Setup program
40/00507861 Connecting cable (only required for programming with the setup program)
70/00456352 PC interface line including USB/TTL converter and adapter (USB connecting cable) ${ }^{1}$

[^3]
4 Electrical connection

4.1 Installation instructions

The electrical connection must only be performed by qualified personne!!

- The load circuits must be fused for the maximum load currents in each case to prevent the instrument from being destroyed.
- Electromagnetic compatibility meets the requirements of EN 61326,
- No other consumers can be connected to the power supply of the instrument.

The instrument is not suitable for installation in areas with an explosion hazard.

- Apart from faulty installation, incorrect settings on the instrument may also affect the proper functioning of the subsequent process or lead to damage. You should therefore always provide safety equipment that is independent of the instrument and it should only be possible for qualified personnel to make settings.

4.2 Color assignment of M12 $\times 1$ round plug

The following color assignment applies only to A-coded standard cables!

1 Brown
2 White
3 Blue
4 Black
5 Gray

4 Electrical connection

4.3 Terminal assignment for output 470

One PNP switching output	
Power supply voltage	
$1 \mathrm{L+}$	Highside Open Collector maximum 0.25 A
$3 \mathrm{L-}$	nc
Output	Inter
4 K 1	
2	
5	

4.4 Terminal assignment for output 471

Two PNP switching outputs	
Power supply voltage	
$1 \mathrm{L+}$	
$3 \mathrm{L-}$	Highside Open Collector maximum 0.25 A
Output	Interface
4 K 1	
2 K 2	
5	

4 Electrical connection

4.5 Terminal assignment for outputs 475, 476, and 477

Power supply voltage	$12 \ldots 30 \mathrm{~V} \mathrm{DC}$
$1 \mathrm{~L}+$	GND
$3 \mathrm{~L}-$	Highside Open Collector maximum 0.25 A
Output	$0(4) \ldots 20 \mathrm{~mA} / 0 \ldots 10 \mathrm{~V}$
4 K 1	Interface
2 Analog	
5	

5 Mounting

5.1 General information

The compatibility of the instrument with the measuring medium must be
tested,
See section 11.1 "Technical data", page 49 .

Mounting location

Installation
position

- Find a location that ensures easy accessibility for later operation.
- The fastening must be secure and must ensure low vibration for the instrument.
- Avoid direct sunlight!
- Permissible ambient temperature at the installation location See section 11.1 "Technical data", page 49.

The instrument can be mounted in any position.
The "vertical" installation position is recommended, see illustration.

5.1.1 Rotating the display

The display image can be rotated 180° in the software, See section "Display position", page 25. This may make it easier to read when the instrument is installed overhead, for example.

5 Mounting

5.1.2 Rotating the housing

The instrument housing can be rotated a maximum of 320° with the combination tool (1).

5 Mounting

5.2 Dimensions of electronic pressure switches

Type 405052/004-...

The overall height is 40 mm greater for instruments with basic type extension 004 (for increased medium temperature up to $200^{\circ} \mathrm{C}$). See drawing

5 Mounting

5.3 Dimensions of process connections, not front-flush

504

521

A = Profile seal DN G3/4
B = Profile seal DN G1/2
E = SW 27
F = SW 32

523

5 Mounting

5.4 Dimensions of process connections, front-flush

571

575

576

A = profile seal DN G3/4
D = Drill out after tapping
$B=$ profile seal DN G1
F = SW 32
C $=$ O-ring 26.7×1.78
G = SW 41

5 Mounting

603 to 607

Process connection	DN	$\varnothing \mathrm{D} 1$	$\varnothing \mathrm{D} 2$	$\varnothing \mathrm{D} 3$	$\varnothing \mathrm{D} 4$	L 1
603	20	36.5	30	$\mathrm{RD} 44 \times 1 / 6$	54	13
604	25	44	35	$R D 52 \times 1 / 6$	63	15
606	40	56	48	$R D 65 \times 1 / 6$	78	
607	50	68.5	61	$R D 78 \times 1 / 6$	92	16

612 to 616

Process connection	DN DIN 32676	DN (inches)	Nominal Size ISO 2852	øD1	ø D2
612	20		12 12.7 17.2 21.3	27.5	34
	15		25 33.7 38	43.5	50.5
	25	1 "	1.5 "	40	56.5

5 Mounting

997

E = SW 27
雨
Process connection 997 is EHEDG-certified
For detailed information about this process connection system, see data sheet 40.9711.

6 Operation

6.1 Controls

(1) Protective screw
(2) Hexagon socket

* Unscrew the protective screw (1).
* "Turn / push" the control element (2) with the enclosed combination tool (or a 0.5×3 screwdriver).

6.2 LC display

6.2.1 Measurement mode (normal display)

$$
\begin{gathered}
54.3 \mathrm{~B} \\
\text { bo }
\end{gathered}
$$

Example:
The display is lit yellow.

6 Operation

6.2.2 Settingmode

Example:
The display is lit red.

Operation

Continue
Yes (accept)
No (Cancel)
Timeout

Press the combination tool less than 1 second ($<1 \mathrm{~s}$)
Press the combination tool less than 1 second ($<1 \mathrm{~s}$)
Press the combination tool more than 3 seconds ($>3 \mathrm{~s}$)
No activity for more than 60 seconds ($>60 \mathrm{~s}$)

To To return to measuring mode:

- "No (Cancel)" or
- Wait for timeout $=$ no activity performed for 60 seconds.

6.3 Levels

6.4 Parameter

6.4.1 Input

Parameter	Display	Setting range ${ }^{1}$
Pressure unit	In	bar kPa MPa psi mbar Note: The units kPa and mbar cannot be configured for all measuring ranges.
Offset (zero-point correction)	$\mathrm{By} 5$	$-20.00 \ldots 0.00 \ldots+20.00 \%$ of the measuring range Note: Automatic offset correction See section 7.5 "Setting the zero point (offset) (Off.P)", page 31.
Damping (filter time constant)	Tha mom	$0.00 \ldots 99.99 \mathrm{~s}$

6.4.2 Analog output

Parameter	Display	Setting range ${ }^{1}$
Signal type (for analog output)	E140	$\begin{aligned} & 4 \ldots 20 \mathrm{~mA} \\ & 0 . . .20 \mathrm{~mA} \\ & 0 . . .10 \mathrm{~V} \end{aligned}$
Scaling start (for analog output)	50.20	0.00 ... 75.00\% of nominal measuring range
Scaling end (for analog output)	،	25.00 ... 100\% of nominal measuring range
Signal for error (for analog output)	Eizi	3.4 mA or 22 mA for output signal $4 . . .20 \mathrm{~mA}$ 0 mA or 22 mA for output signal $0 . . .20 \mathrm{~mA}$ 0 V or 10.7 V for output signal $0 . . .10 \mathrm{~V}$ Note: Depending on the configured output signal.

[^4]
6 Operation

6.4.3 Binary output 1

Parameter	Display	Setting range ${ }^{\text {1 }}$
Switching function (for switching output only)	Hysteresis, make contact	
Hysteresis, break contact		
Window, make contact		
Window, break contact		
See section 7.10 "Setting the switching function		
(B.Fct)", page 37.		

6.4.4 Binary output 2

Parameter	Display	Setting range ${ }^{1}$
Switching function (for second switching output only)	H0\%	Hysteresis, make contact Hysteresis, break contact Window, make contact Window, break contact See section 7.10 "Setting the switching function (B.Fct)", page 37.
Switching point (for second switching output only)	Bay	$0.00 \ldots 100.00 \%$ of nominal measuring range See section 7.10 "Setting the switching function (B.Fct)", page 37.
Reset point (for switching output only)	Bray	$0.00 \ldots 100.00 \%$ of nominal measuring range See section 7.10 "Setting the switching function (B.Fct)", page 37.
Hysteresis (for second switching output and configured switching point or reset point only)	Bray	$0.00 \ldots 100.00 \%$ of nominal measuring range See section 7.10 "Setting the switching function (B.Fct)", page 37. Note: Used only with window switching functions.

[^5]
6 Operation

6.4.5 Display and operation

Parameter	Display	Setting range ${ }^{1}$
Display position	IIT,	Normal (for normal operation) Rotated (for overhead operation) See section 7.15 "Setting the display alignment (D.Dir)", page 41.
Unit of actual value display (for analog output only)	Minn	Pressure unit (see parameter "Uni.P") Percentage of the scaled range See section 7.16 "Setting the display unit (D.Uni)", page 42.
Version D	EMAT	Software version of the operating device See section 7.17 "Displaying the version of the operating device software (SW.Di)", page 43.
Version S	-150,	Software version of the signal stage See section 7.18 "Displaying the version of the signal stage software (SW.Si)", page 43.
Code (can only be edited via setup program)	1000	$0000 \ldots 0072 \ldots 9999$ See section 7.2 "Unlocking the instrument (code entry)", page 27.

7 Commissioning

7.1 Getting started

This is a suggestion for configuring the instrument reliably in little time.
By checking the setting options of this list before starting the configuration, you can avoid timeouts during the configuration.

* Mounting the instrument, See section 5 "Mounting", page 14.
* Installing the instrument, See section 4 "Electrical connection", page 11.
* Unlocking the instrument, See section 7.2 "Unlocking the instrument (code entry)", page 27.
* Selecting the unit of the measured value, See section 7.4 "Selecting the unit of the measured value (Uni.P)", page 28.
* Adjusting the output signal, See section 7.7 "Setting the output signal (S.TyP)", page 32.
* Adjusting the scaling of the output signal (restricting the measuring range), See section 7.8 "Setting scaling", page 33.
* Setting the switching function, See section 7.10 "Setting the switching function (B.Fct)", page 37.
* Setting the switching point, See section 7.11 "Setting the switching point (B.SP)", page 39.

7 Commissioning

7.2 Unlocking the instrument (code entry)

The instrument is protected by a code to prevent unauthorized operation.
The code is set to 0072 in the factory. It can only be changed with the setup program. If the code is set to 0000 with the setup program, the instrument is unprotected.

Unlocking

(1)

* Unscrew the protective screw (1)
* Continue briefly pressing the combination tool (2) until the third " 0 " from the left is flashing.
The color of the display also changes to "red."
* Turn the combination tool until "7" is displayed.
* Continue briefly pressing the combination tool until the fourth " 0 " from the left is flashing.
* Turn the combination tool until "2" is displayed.

* Press the combination tool briefly - the instrument switches to the

7 Commissioning

parameter level．

After an incorrect code is entered：
EロロE

7．3 Cancel operation

＊Press and hold the combination tool（2）longer than 3 seconds or ＊wait for timeout（no activity for longer than 60 seconds）．

7．4 Selecting the unit of the measured value（Uni．P）

＊Unlock the instrument，See section 7.2 ＂Unlocking the instrument（code entry）＂，page 27.
＊＂Rotate＂until the bottom line shows＂Uni．P＂．
＊＂Press＂

$$
\begin{aligned}
& \text { の曰品に } \\
& \text { U } \\
& \text {, }
\end{aligned}
$$

＊The measured pressure is shown in millibar．
＊＂Press＂

The measured pressure is shown in bar．

7 Commissioning

＊＂Rotate＂

$$
\begin{aligned}
& \text { ーばに }
\end{aligned}
$$

The measured pressure is shown in Kilopascal．
＊＂Rotate＂

$$
\begin{aligned}
& \text { MEG } \\
& 16, ~
\end{aligned}
$$

The measured pressure is shown in Megapascal（IPa）．
＊＂Rotate＂

$$
\begin{array}{ll}
\hline P G 1 \\
109
\end{array}
$$

The measured pressure is shown in psi．
To confirm setting：＂Press＂until the display is no longer flashing．

7 Commissioning

7.4.1 Display and setting options of the instrument

Measuring range	Unit	Display	
		Start	End
-0.4 ... 0.4 bar	mbar	-400.0	400.0
	bar	-0.400	0.400
	kPa	-40.00	40.00
	MPa	-0.040	0.040
	psi	-5.802	5.802
-1 ... 3 bar	mbar	-1000	3000
	bar	-1.000	3.000
	kPa	-100.0	300.0
	MPa	-0.100	0.300
	psi	-14.50	43.51
0 ... 60 bar	mbar	0000	9999
	bar	00.00	60.00
	kPa	0000	6000
	MPa	0.000	6.000
	psi	000.0	870.2
-1 ... 9 bar	mbar	-1000	9000
	bar	-1.000	9.000
	kPa	-100.0	900.0
	MPa	-0.100	0.900
	psi	-14.5	130.5
-1 ... 24 bar	mbar	-1000	9999
	bar	-1.00	24.00
	kPa	-100	2400
	MPa	-0.100	2.400
	psi	-14.5	348.1

Gray cells are units that cannot be configured! Display overflow values do not appear in operation or in setup!

7 Commissioning

7.5 Setting the zero point (offset) (Off.P)

7.5.1 Automatic offset adjustment

This setting is used to accept the current measured value as the new zero point.
Automatic offset adjustment is only possible for instruments with a relative pressure measuring range!

* Unlock the instrument, See section 7.2 "Unlocking the instrument (code entry)", page 27.
* "Rotate" until the bottom line shows "Off.P".
* "Press" twice in quick succession

The current measured value is accepted as the zero point.

7.5.2 Edited offset setting

This setting is used to increase or reduce the measured pressure selectively by an adjustable value.

* Unlock the instrument, See section 7.2 "Unlocking the instrument (code entry)", page 27.
* "Rotate" until the bottom line shows "Off.P".
* "Press"

"-" means: the offset is negative - the measured pressure is reduced.
Enter the value "digit by digit."

7 Commissioning

7.6 Setting the filter time constant (damping) (DamP)

The filter time constant (damping) can be used to smooth the measured value.
Small filter time constant: the display is refreshed quickly.
Large filter time constant: Display refresh is slower.
The value is entered in seconds with two places after the decimal.

* Unlock the instrument, See section 7.2 "Unlocking the instrument (code entry)", page 27.
* "Rotate" until the bottom line shows "Dam.P".
* "Press"

 5

7.7 Setting the output signal (S.TyP)

* Unlock the instrument, See section 7.2 "Unlocking the instrument (code entry)", page 27.
* "Rotate" until the bottom line shows "S.TyP".
* "Press"

Example
4.20A = output signal $4 \ldots 20 \mathrm{~mA}$
$0.20 \mathrm{~A}=$ output signal $0 \ldots 20 \mathrm{~mA}$
$0.10 \mathrm{U}=$ output signal $0 . .10 \mathrm{~V}$

7.8 Setting scaling

Customerspecific measuring range

Example

Scaling

Simple

 exampleThe customer measuring range (2) is defined by:

- Range start (4)
- Range end (5)
- Span (MSP)

Actual

The instrument has a nominal measuring range (1) from 0 to 4 bar

Target

The customer would like to measure the pressure in the range from 1 to 2 bar (25% of the nominal measuring range).
Range start (5) is 1 bar
Range end (6) is 2 bar
Span (MSP) is 1 bar

The scaling of the instrument's output signal describes how the measured pressure is converted into an output signal.

Actual

The instrument has a nominal measuring range (1) from 0 to 4 bar and the instrument has an output signal from 4 to 20 mA (3).

Target

The customer would like:
the "Customer measuring range" (2) from 0 to 4 bar (100% of nominal measuring range (1)
should correspond to the output signal (3) from 4 to 20 mA (100\%).
The scaling is $1: 1$ (100% to 100%).

Customerspecific scaling

[^6]
7 Commissioning

Example

Inversion of the output signal

Actual

The instrument has a nominal measuring range (1) from 0 to 4 bar and the instrument has an output signal from 4 to 20 mA (3).

Target

The customer would like:
the "Customer measuring range" (2) from 1 to 2 bar (25% of nominal measuring range (1)
should correspond to the output signal from 4 to 20 mA (100\%).
The scaling is $1: 4$ (25% to 100%).

The instrument provides the option of inverting the output signal (3).
The output signal

- 0 to 20 mA becomes output signal 20 to 0 mA
- 4 to 20 mA becomes output signal 20 to 4 mA
- 0 to 10 V becomes output signal 10 to 0 V

Example

20 to 4 mA

Abbreviations

(1)	Nominal measuring range (NMB)	(4)	Range start (MA)
(2)	Customer measuring range (MB)	(5)	Range end (ME)
(3)	Output signal		Span (MSP)

7 Commissioning

7.8.1 Setting the starting value of scaling (Sc.Lo)

The output signal can only be scaled for instruments with
analog output!

Setting range: 0 to 75% of the nominal measuring range
Factory setting: Initial value of measuring range

Example \quad The instrument has a nominal measuring range $-400 \ldots+400 \mathrm{mbar}$
The output signal of the instrument is $0 \ldots 20 \mathrm{~mA}$ The output signal of the instrument is 0 ... 20 mA

Objective: The range from 0 to 200 mbar (customer's measuring range) will be represented on the output side by 0 ... 20 mA .
Setting: The initial value of scaling (Sc.Lo) $=0.000$
The final value of scaling $(\mathrm{Sc} . \mathrm{Hi})=200.0$
Result: At a pressure of less than 0 mbar the instrument reports an error (value below lower measuring range limit) and makes the corresponding error signal (0 mA) available at the output.
At a pressure of 0 mbar the instrument makes 0 mA available at the output.
At a pressure of +200 mbar the instrument makes 20 mA available at the output.
At a pressure greater than +200 mbar the instrument reports an error (measuring range exceeded) and makes the corresponding error signal (22 mA) available at the output.

Setting

* Unlock the instrument, See section 7.2 "Unlocking the instrument (code entry)", page 27.
* "Rotate" until the bottom line shows "Sc.Lo".
* "Press"

"-" Flashing

Continuous

7 Commissioning

7.8.2 Setting the final value of scaling (Sc.Hi)

な The output signal can only be scaled for instruments with analog output!
Explanation See section 7.8.1 "Setting the starting value of scaling (Sc.Lo)", page 35.

Setting range: 25 to 100% of the nominal measuring range
Factory setting: Final value of measuring range

Setting

* Unlock the instrument, See section 7.2 "Unlocking the instrument (code entry)", page 27.
* "Rotate" until the bottom line shows "Sc .Hi".
* "Press"

Enter the value "digit by digit."

7.9 Setting the error signal (S.Err)

雨

Only for instruments with analog output, an error signal is generated for overrange or underrange!

Setting

* Unlock the instrument, See section 7.2 "Unlocking the instrument (code entry)", page 27.
* "Rotate" until the bottom line shows "S .Err".
* "Press"

7 Commissioning

Example

$3.40 \mathrm{nA}=$	For underrange error signal $=0 \mathrm{~mA}$ for measuring range $0 \ldots 20 \mathrm{~mA}$ error signal $=3.4 \mathrm{~mA}$ for measuring range $4 \ldots 20 \mathrm{~mA}$ error signal $=0 \mathrm{~V}$ for measuring range $0 \ldots 10 \mathrm{~V}$
$22 \mathrm{nA}=$	For overrange error signal $=22 \mathrm{~mA}$ for measuring range $0 \ldots 20 \mathrm{~mA}$ error signal $=22 \mathrm{~mA}$ for measuring range $4 \ldots 20 \mathrm{~mA}$ error signal $=10.7 \mathrm{~V}$ for measuring range $0 \ldots 10 \mathrm{~V}$

7.10 Setting the switching function (B.Fct)

General
 The response of the instrument's switching output can be selected:

- Hysteresis make contact
- Hysteresis break contact
- Window function make contact
- Window function break contact

7.10.1 Hysteresis

Relay behavior

[^7]
7 Commissioning

$0=$ Hysteresis of make contact (switching difference) (factory setting)

$1=$ Hysteresis of break contact (switching difference) $=$ min. contact

7.10.2 Window

Relay response

7 Commissioning

$2=$ Window function make contact

$3=$ Window function break contact

7.11 Setting the switching point (B.SP)

See section 7.10 "Setting the switching function (B.Fct)", page 37.
Setting range: 0 to 100% of the nominal measuring range
Factory setting: $\quad 50 \%$ of the nominal measuring range
Setting

* Unlock the instrument, See section 7.2 "Unlocking the instrument (code entry)", page 27.
* "Rotate" until the bottom line shows "B.SP".
* "Press"

$$
\begin{array}{|c|c|}
\hline 189 \\
\hline 108
\end{array}
$$

"-" Flashing

Continuous

Enter the value "digit by digit."

7 Commissioning

7.12 Setting the reset point (B.RSP)

See section 7.10 "Setting the switching function (B.Fct)", page 37.
Setting range: 0 to 100% of the nominal measuring range
Factory setting: 40% of the nominal measuring range
Setting

* Unlock the instrument, See section 7.2 "Unlocking the instrument (code entry)", page 27.
* "Rotate" until the bottom line shows "B.RSP".
* "Press"

雨

Enter the value "digit by digit."

7.13 Setting the switching difference (hysteresis) (B.HYS)

See section 7.10 "Setting the switching function (B.Fct)", page 37.
Setting range: 0 to 100% of the nominal measuring range
Factory setting: 40% of the nominal measuring range
Setting

* Unlock the instrument, See section 7.2 "Unlocking the instrument (code entry)", page 27.
* "Rotate" until the bottom line shows "B.HYS".
* "Press"

Enter the value "digit by digit."

\qquad

7 Commissioning

7.14 Setting the switching delay (B.DLY)

```
Setting range: 0.00 to 99.99 s
Factory setting: 0.00 s
```

Setting

Unlock the instrument, See section 7.2 "Unlocking the instrument (code entry)", page 27.

* "Rotate" until the bottom line shows "B.DLY".
* "Press"

Enter the value "digit by digit."

7.15 Setting the display alignment (D.Dir)

```
Setting range: std = standard = instrument upright
    turn = turned = instrument overhead
Factory setting: std
```


Setting

* Unlock the instrument, See section 7.2 "Unlocking the instrument (code entry)", page 27.
* "Rotate" until the bottom line shows "D.Dir".
* "Press"

or

7 Commissioning

7.16 Setting the display unit (D.Uni)

Setting range:
Uni.P = pressure unit set as for "Uni.P", See section 7.4 "Selecting the unit of the measured value (Uni.P)", page 28.

Pro2 = percentage of scaled measuring range = "Sc. Hi " minus "Sc.Lo", See section 7.8.1 "Setting the starting value of scaling (Sc.Lo)", page 35 and See section 7.8.2 "Setting the final value of scaling (Sc.Hi)", page 36.
Factory setting: std

Setting

Uni.P = the measured value is displayed in the unit that was selected, See section 7.4 "Selecting the unit of the measured value (Uni.P)", page 28.
or

Pro. 2 = the measured value is displayed as a percentage of the scaled measuring range, See section 7.8.1 "Setting the starting value of scaling (Sc.Lo)", page 35 and See section 7.8 .2 "Setting the final value of scaling (Sc.Hi)", page 36.

Example

The measuring range of the instrument was set to from -50 to +350 mbar and the scaled measuring range is 300 mbar . If the instrument measures a pressure of $+150 \mathrm{mbar}, 50 \%$ is displayed.

7 Commissioning

7.17 Displaying the version of the operating device software (SW.Di)

Setting range: Read only
Factory setting:

Setting

* Unlock the instrument, See section 7.2 "Unlocking the instrument (code entry)", page 27.
* "Rotate" until the bottom line shows "SW.Di".
* "Press"

"Alternating"

7.18 Displaying the version of the signal stage software (SW.Si)

Setting range: Read only
Factory setting:
Setting

* Unlock the instrument, See section 7.2 "Unlocking the instrument (code entry)", page 27.
* "Rotate" until the bottom line shows "SW.Sir".
* "Press"

"Alternating"

8 Calibration

8.1 Setting the zero point (offset)

8.1.1 Automatic offset adjustment

Automatic offset adjustment is only possible for instruments with a relative pressure measuring range!

On the instrument

See section 7.5.1 "Automatic offset adjustment", page 31.

By setup program
not possible.

8.1.2 Edited offset setting

On the instrument
See section 7.5.2 "Edited offset setting", page 31.

By setup program

Connect the instrument with the PC and start the setup program, See section 9 "Setup program", page 45 and following.
Input / offset.

9 Setup program

9.1 Function

Configurable parameters

The optionally available PC setup software (TN 20/00522384) can be used to operate the instrument conveniently from a PC.
Depending on the device design, the following settings are possible, for example:

- Measuring range and limits of measuring range.
- Response of outputs when the measuring range is exceeded.
- Functions of switching outputs K1 and K2.
- Setting special functions (for example tables for special linearizations).
Data can be transferred from or to the transmitter if it is connected
to the power supply; See section 4 "Electrical connection", page
11 and following. 11 and following.

Connection

(1)	Power supply DC 24 V	(a)	4-pin cable socket (straight) M12x1 with 2-m PVC cable TN 40/00404585 or 4-pin angle box M12x1 with 2-m PVC cable TN 40/00409334
(2)	Pressure switch type 405052	(b)	Connecting cable TN 70/00507861
(3)	USB/TTL converter Part of TN 70/00456352	(c)	PC interface line (gray) Part of (3)
(4)	Notebook / PC		

9 Setup program

* Install the setup program software on the notebook / PC.

During the installation, the driver for the USB/TTL converter is also installed on the PC.

* Screw the connecting cable (b) onto the plug of the pressure switch (2).
* Connect the USB/TTL converter (3) to the connecting cable (b) and PC interface line (gray) (c).
* Connect the PC interface line (gray) (c) to the notebook (4).
* Connect the cable (a) to the power supply (1) and connecting cable (b).

9.2 Start the setup program

Start / Programs / JUMO instruments / Setup program JUMO DELOS K, SI,

9 Setup program

HP

10 Eliminating errors and faults

10.1 Possible errors

Display	Possible cause	Measure
$\begin{array}{llll} - & - & - & - \\ i & & \\ i & i & i \end{array}$	$\begin{array}{ll}- & \text { Overrange or } \\ \text { underrange } \\ - & \text { Broken sensor. }\end{array}$	Configure other measuring range, Chapter 7.4 "Selecting the unit of the measured value (Uni.P)".
	Device error: - 1 = Internal communication error - 2 = Error analog output - 3 = Short circuit Switching output 1 - 4 = Short circuit Switching output 2 - 5 = VCC 8 V outside of working range - 6 to 8 = Internal communication error - 9 = Invalid configuration	1), 6), 7), 8): Call Customer Service; see the back of the Operating Manual. 2): Check the ambient temperature. Check output for broken line. Output burden is too high (for current output) or too low (for voltage output). 3), 4): Check the corresponding switching output. 5): Check the power supply. 9): Check the configuration.
$\left[\begin{array}{llll}- & - & - & - \\ E-1 & 1\end{array}\right.$	Display overflow: Upper display: "- - - -" Lower display: Parameter name Value is less than -9999 or greater than 9999.	Check the corresponding switching output. Check the power supply.

11 Instrument description

11.1 Technical data

General

Reference conditions	DIN 16086 and EN 60770
Sensor system Construction Pressure transfer medium Permissible load change	Silicon sensor with stainless steel separating diaphragm Synthetic oil, FDA-compliant more than 10 million
Location Mounting location Calibration location Location-dependent zero point offset - Basic type extension 000 (standard design) - Basic type extension 004 (for elevated medium temperature)	Any Device standing vertically, process connection on bottom Zero point correction possible locally or via setup (20\% of nominal measuring range) ≤ 1 mbar $\leq 10 \mathrm{mbar}$
Display Type Alignment Size Color Switching state indicator Measuring unit	Backlit LCD Display can be rotated 180° (via setup) Housing can be turned 320° (mechanically) Display field $16 \times 26 \mathrm{~mm} /$ font size $7 \mathrm{~mm} / 2 \times 4$ places Normal operation:amber Error: red Setup mode: red K1, K2 mbar, bar, kPa, MPa, psi, \%
Operation Local via setup	With accompanying combination tool or screwdriver 0.5×3 Pin 12 of the M12 round plug

11 Instrument description

Input

All measuring ranges can be overloaded to -1 bar (vacuum-proof)

Relative pressure							
Measuring range	0.4	1	4	10	25	60	bar
Overload capacity Bursting pressure	1.6	4	16	40	100	240	
	2	5	20	50	125	300	
Measuring range Overload capacity Bursting pressure	-0.4...0.4	-1... 1	-1... 3	-1... 9	-1... 24		bar
	1.6	4	16	40	100		
	2	5	20	50	125		
Absolute pressure							
Measuring range Overload capacity Bursting pressure	0.4	1	4	10	25	60	bar
	1.6	4	16	40	100	240	
	2	5	20	50	125	300	

Outputs

Analog output	
Freely configurable	$4 \ldots 20 \mathrm{~mA}+1 \times$ PNP switching output standard $0 \ldots 20 \mathrm{~mA}+1 \times$ PNP switching output $0 \ldots 10 \mathrm{~V}+1 \times$ PNP switching output
Jump response T_{90}	$\leq 100 \mathrm{~ms}$
Switching output	
Number	$1 \times$ PNP switching output $2 \times$ PNP switching output
Switching type	Break contact / make contact
Switching function	Window / hysteresis
Switching capacity	
- Voltage drop from U_{B}	$\mathrm{PNP} \leq 2 \mathrm{~V}$
- Contact rating	On $\leq 250 \mathrm{~mA} /$ Off $\leq 1 \mathrm{~mA}$
- Switching cycles	> 10 million
Response time	$\leq 20 \mathrm{~ms}$
Short-circuit proof	Yes
Current load check	
- Time interval	$2 \mathrm{~s} ; \mathrm{T}_{\text {ON }} 40 \mathrm{~ms}$
- Periodic protective circuit in case of overcurrent	$\begin{aligned} & \mathrm{f}=0.5 \mathrm{~Hz} \\ & \text { Display: Err3 switching output K1, Err4 switching output K2 } \end{aligned}$
Setting range	
Analog output	Turn down 1:4

11 Instrument description

Switching output - Switching point - Reset point - Hysteresis - Damping - Delay	Configurable in the nominal measuring range (> reset point) Configurable in the nominal measuring range (< switching point) Configurable in the nominal measuring range $99.99 \mathrm{sec}$ $99.99 \mathrm{sec}$
Burden 4 to 20 mA 0 to 20 mA 0 to 10 V	$\begin{aligned} & \mathrm{R}_{\mathrm{i}} \geq(\mathrm{UB}-6.5 \mathrm{~V}) / 0.022 \mathrm{~A} \\ & \mathrm{R}_{\mathrm{i}} \geq(\mathrm{UB}-6.5 \mathrm{~V}) / 0.022 \mathrm{~A} \\ & \mathrm{R} \geq 10 \mathrm{k} \Omega \end{aligned}$

Mechanical properties

Process connection	
Material	Stainless steel 316L
Surface	Ra $\leq 0.8 \mu \mathrm{~m}$
Process seal	All flange connections are welded and therefore have no seals
- Process connection	
$521,523,571,575$,	FPM standard
576,652	
- Process connection	
997 (JUMO PEKA)	

11 Instrument description

Ambient conditions

Permissible temperatures	
Measuring material	$-25 \ldots+100^{\circ} \mathrm{C}\left(+135^{\circ} \mathrm{C}\right.$ max. 1 hour per day)
- for basic type extension 004	$-25 \ldots+200^{\circ} \mathrm{C}$
Environment	$-25 \ldots+75^{\circ} \mathrm{C}$
- Ambient temperature $-50^{\circ} \mathrm{C}$	Restricted function: Stationary use only, danger of broken cable, display does not function
Storage	$-40 \ldots+85^{\circ} \mathrm{C}$
Permissible relative humidity	
- in operation	100\% incl. condensation on instrument outer sleeve
- in storage	90\% without condensation
Permissible mechanical loading	
- Vibration strength	$20 \mathrm{~g}, 10$... 2000 Hz per IEC 60068-2-6
- Shock resistance	50 g for $11 \mathrm{~ms} / 100 \mathrm{~g}$ for $1 \mathrm{~ms} \mathrm{per} \mathrm{IEC} \mathrm{60068-2-27}$
Electromechanical compatibility	(Only with 4-pin connecting cable and grounded enclosure)
- Interference emission	Class A per EN 61326
- Interference immunity	Performance characteristic A per EN 61326
Protection	IP 67 to DIN 60529

11 Instrument description

Accuracy

Relative pressure							
Nominal (rated) measuring range Linearity ${ }^{1}$	0.4	1	4	10	25	60	bar
	0.15	0.15	0.1	0.1	0.1	0.1	\% of end val. of nom. mess. range
Accuracy at $+20^{\circ} \mathrm{C}^{2}$ Accuracy at $-20 \ldots+75^{\circ} \mathrm{C}^{3}$	0.35	0.3	0.25	0.25	0.25	0.25	\% of end val. of nom. mess. range
	0.7	0.6	0.5	0.5	0.5	0.5	\% of end val. of nom. mess. range
Nominal (rated) measuring range Linearity ${ }^{1}$	-0.4...0.4	-1... 1	-1... 3	-1... 9	-1... 24		bar
	0.15	0.15	0.1	0.1	0.1		\% of end val. of nom. mess. range
Accuracy at $+20^{\circ} \mathrm{C}^{2}$ Accuracy at $-20 \ldots+75^{\circ} \mathrm{C}^{3}$	0.35	0.3	0.25	0.25	0.25		$\%$ of end val. of nom. mess. range
	0.7	0.6	0.5	0.5	0.5		\% of end val. of nom. mess. range
Absolute pressure							
Nominal (rated) measuring range Linearity ${ }^{1}$	0.4	1	4	10	25	60	bar
	0.15	0.15	0.1	0.1	0.1	0.1	\% of end val. of nom. mess. range
Accuracy at $+20^{\circ} \mathrm{C}^{2}$ Accuracy at $-20 \ldots+75^{\circ} \mathrm{C}^{3}$	0.35	0.3	0.25	0.25	0.25	0.25	\% of end val. of nom. mess. range
	0.7	0.6	0.5	0.5	0.5	0.5	\% of end val. of nom. mess. range
Long-term stability	0.2\% with	refere	cond	ns to	61298-1		

[^8]JUMO GmbH \& Co. KG
Street address:
Moritz-Juchheim-Straße 1 36039 Fulda, Germany Delivery address: Mackenrodtstraße 14 36039 Fulda, Germany Postal address: 36035 Fulda, Germany Phone: +49 661 6003-0 Fax: +49661 6003-607
E-mail: mail@jumo.net Internet: www.jumo.net

JUMO Instrument Co. Ltd.
JUMO House
Temple Bank, Riverway
Harlow - Essex CM20 2DY, UK
Phone: +44 1279635533
Fax: $\quad+441279635262$
E-mail: sales@jumo.co.uk
Internet: www.jumo.co.uk

JUMO Process Control, Inc.
8 Technology Boulevard Canastota, NY 13032, USA
Phone: 315-697-JUMO 1-800-554-JUMO
Fax: 315-697-5867
E-mail: info@jumo.us Internet: www.jumo.us

[^0]: 1 The output is freely configurable.

[^1]: optional

[^2]: 3 For matching process connection adapter see data sheet 40.9711
 4 For measuring ranges up to 25 bar only

[^3]: 1 Please order a connecting cable as well.

[^4]: ${ }^{1}$ The default setting is marked in bold.

[^5]: ${ }^{1}$ The default setting is marked in bold.

[^6]: It is often useful to scale part of the nominal measuring range to the output signal.

[^7]: Setting

 * Unlock the instrument, See section 7.2 "Unlocking the instrument (code entry)", page 27.
 * "Rotate" until the bottom line shows "B.Fct".
 * "Press"

[^8]: 1 Linearity based on limit point setting
 2 Includes: linearity, hysteresis, repeatability, deviation from initial and final values of measuring range.
 3
 Includes: linearity, hysteresis, repeatability, deviation from initial and final values of measuring range, thermal effect on initial value of measuring range and span.

