
GLASS PROBES

All illustration dimensions are in inches.

GLASS PROBES are shock resistant, rugged, glass encapsulated units which are ideally suited for immersion in fluid and convenient for mounting in air sensor assemblies. They are extremely reliable and stable and are usable in a wide variety of applications.

Resis. at 25°C (Ohms)	Part ① Number	Ratio	R-T Curve
1,000	121-102EAJ-Q01	7.04	11
2,000	121-202EAJ-Q01	7.04	11
5,000	121-502EAJ-Q01	7.04	11
10,000	121-103FAJ-001	7.59	12
50,000	121-503JAJ-Q01	9.53	14
100,000	121-104KAJ-Q01	10.45	15
200,000	121-204KAJ-Q01	10.45	15
500,000	121-504NAJ-Q01	11.89	4
I MEG.	121-105PAJ-Q01	13.12	5
10 MEG.	121-106QAJ-Q01	15.65	6

D.C. 1 mW/° C minimum; T.C. 22 Sec. maximum

MINI-PROBES *20% Tolerance @ 25° C				
1,000	120-102EAJ-Q01®	7.04	11	
2,000	120-202EAJ-Q01 ©	7.04	11	
10,000	120-103FAJ-Q01 (D)	7.59	12	
50,000	120-503JAJ-Q01 ©	9.53	14	
100,000	120-104KAJ-Q01 ©	10.45	15	

D.C. .7 mW/° C minimum; T.C. 10 Sec. maximum

(D) = Distributor item

Note: Other non-standard glass probes are available in lengths of 1/4", 3/4", 1", 1 1/4", 1 1/2", 1 3/4", 2", and diameters as small as .020."

^{*} Also available in tighter tolerances.