## $4.5 \Omega$ Rov, 16-Channel, Differential 8-Channel, $\pm 5 \mathrm{~V},+12 \mathrm{~V},+5 \mathrm{~V}$, and +3.3 V Multiplexers

## Data Sheet

## FEATURES

$4.5 \Omega$ typical on resistance
$1.1 \Omega$ on resistance flatness
$\pm 3.3 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$ dual supply operation
3.3 V to 16 V single supply operation

No $\mathrm{V}_{\mathrm{L}}$ supply required 3 V logic-compatible inputs
Rail-to-rail operation
Up to 378 mA of continuous current per channel
28-lead TSSOP and 32 -lead, $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ LFCSP

## APPLICATIONS

Communication systems
Medical systems
Audio signal routing
Video signal routing
Automatic test equipment
Data acquisition systems
Battery-powered systems
Sample-and-hold systems
Relay replacements

FUNCTIONAL BLOCK DIAGRAMS


Figure 1.


Figure 2.

## GENERAL DESCRIPTION

The ADG1606 and ADG1607 are monolithic iCMOS $^{\star}$ analog multiplexers comprising of 16 single channels and eight differential channels, respectively. The ADG1606 switches one of 16 inputs to a common output, as determined by the 4 -bit binary address lines (A0, A1, A2, and A3). The ADG1607 switches one of eight differential inputs to a common differential output, as determined by the 3-bit binary address lines (A0, A1, and A2). An EN input on both devices enables or disables the device. When disabled, all channels switch off. When enabled, each channel conducts equally well in both directions and has an input signal range that extends to the supplies.

The ultralow on resistance and on-resistance flatness of these switches make them ideal solutions for data acquisition and gain switching applications where low distortion is critical. $i \mathrm{CMOS}^{\star}$ construction ensures ultralow power dissipation, making the parts ideally suited for portable and batterypowered instruments.

## PRODUCT HIGHLIGHTS

1. $7.5 \Omega$ maximum on resistance over temperature.
2. Minimum distortion: THD + N = 0.04\%
3. 3 V logic-compatible digital inputs: $\mathrm{V}_{\mathrm{INH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}$.
4. No $\mathrm{V}_{\mathrm{L}}$ logic power supply required.

## ADG1606/ADG1607

## TABLE OF CONTENTS

Features .....  1
Applications. ..... 1
Functional Block Diagrams .....  1
General Description .....  1
Product Highlights .....  1
Revision History ..... 2
Specifications ..... 3
$\pm 5$ V Dual Supply .....  3
12 V Single Supply .....  4
5 V Single Supply .....  5
3.3 V Single Supply ..... 6
REVISION HISTORY
8/2016-Rev. 0 to Rev. A
Changed CP-32-2 to CP-32-7 ..... Throughout
Changes to Figure 4 ..... 9
Changes to Figure 6 ..... 11
Updated Outline Dimensions ..... 21
Changes to Ordering Guide ..... 21
Continuous Current per Channel, S or D .....  .7
Absolute Maximum Ratings .....  8
Thermal Resistance .....  8
ESD Caution .....  8
Pin Configurations and Function Descriptions .....  9
Typical Performance Characteristics. ..... 13
Test Circuits ..... 17
Terminology ..... 20
Outline Dimensions ..... 21
Ordering Guide ..... 21

10/2009—Revision 0: Initial Version

ADG1606/ADG1607

## SPECIFICATIONS

## $\pm 5$ V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

| Parameter | $25^{\circ} \mathrm{C}$ | $\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$ | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ANALOG SWITCH |  |  |  |  |  |
| Analog Signal Range |  |  | V ${ }_{\text {d }}$ to $\mathrm{V}_{\text {SS }}$ | V |  |
| On Resistance (Ros) | 4.5 |  |  | $\Omega$ typ | $\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$; see Figure 26 |
|  | 5.5 | 6.7 | 7.5 | $\Omega$ max | $\mathrm{V}_{\mathrm{DD}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{S S}= \pm 4.5 \mathrm{~V}$ |
| On Resistance Match Between Channels ( $\Delta$ Rov) | 0.2 |  |  | $\Omega$ typ | $\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$ |
|  | 0.5 | 0.8 | 0.9 | $\Omega$ max |  |
| On Resistance Flatness ( RFLAT (ON) ) | 1.1 |  |  | $\Omega$ typ | $\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$ |
|  | 1.4 | 1.7 | 2 | $\Omega$ max |  |
| LEAKAGE CURRENTS |  |  |  |  | $\mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{S S}=-5.5 \mathrm{~V}$ |
| Source Off Leakage, Is (Off) | $\pm 0.02$ |  |  | nA typ | $\mathrm{V}_{S}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V}$; see Figure 27 |
|  | $\pm 0.15$ | $\pm 0.5$ | $\pm 3$ | nA max |  |
| Drain Off Leakage, $\mathrm{l}_{\mathrm{D}}$ (Off) | $\pm 0.05$ |  |  | nA typ | $V_{S}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V}$; see Figure 27 |
| ADG1606 | $\pm 0.2$ | $\pm 3$ | $\pm 25$ | nA max |  |
| Channel On Leakage, $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{On})$ | $\pm 0.1$ |  |  | nA typ | $\mathrm{V}_{S}=\mathrm{V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}$; see Figure 28 |
|  | $\pm 0.3$ | $\pm 3$ | $\pm 25$ | nA max |  |
| DIGITAL INPUTS |  |  |  |  |  |
| Input High Voltage, VINH |  |  | 2.0 | $V_{\text {min }}$ |  |
| Input Low Voltage, VINL |  |  | 0.8 | $V$ max |  |
| Input Current, linl or linh | $\pm 0.003$ |  |  | $\mu \mathrm{A}$ typ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{GND}}$ or $\mathrm{V}_{\mathrm{DD}}$ |
|  |  |  | $\pm 0.1$ | $\mu \mathrm{A}$ max |  |
| Digital Input Capacitance, $\mathrm{Cl}_{\text {IN }}$ | 4 |  |  | pF typ |  |
| DYNAMIC CHARACTERISTICS ${ }^{1}$ |  |  |  |  |  |
| Transition Time, trransition | 175 |  |  | ns typ | $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ |
|  | 214 | 247 | 275 | ns max | $\mathrm{V}_{\mathrm{s}}=2.5 \mathrm{~V}$; see Figure 29 |
| ton (EN) | 132 |  |  | ns typ | $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ |
|  | 162 | 180 | 188 | ns max | $\mathrm{V}_{\mathrm{s}}=2.5 \mathrm{~V}$; see Figure 31 |
| toff (EN) | 124 |  |  | ns typ | $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ |
|  | 153 | 176 | 202 | ns max | $\mathrm{V}_{\mathrm{s}}=2.5 \mathrm{~V}$; see Figure 31 |
| Break-Before-Make Time Delay, tbв $^{\text {m }}$ | 42 |  |  | ns typ | $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ |
|  |  |  | 15 | ns min | $\mathrm{V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=2.5 \mathrm{~V} \text {; see Figure } 30$ |
| Charge Injection | 27 |  |  | pC typ | $\mathrm{V}_{s}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{L}=1 \mathrm{nF}$; see Figure 32 |
| Off Isolation | -62 |  |  | dB typ | $\mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 33 |
| Channel-to-Channel Crosstalk | -62 |  |  | dB typ | $\mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 35 |
| Total Harmonic Distortion + Noise (THD + N) | 0.04 |  |  | \% typ | $\mathrm{R}_{\mathrm{L}}=110 \Omega, 5 \mathrm{Vp}-\mathrm{p}, \mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz ; see Figure 36 |
| -3 dB Bandwidth |  |  |  |  | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; see Figure 34 |
| ADG1606 | 21 |  |  | MHz typ |  |
| ADG1607 | 37 |  |  | MHz typ |  |
| $\mathrm{C}_{\mathrm{s}}$ (Off) | 18 |  |  | pF typ | $\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ |
| $\mathrm{C}_{\mathrm{D}}$ (Off) |  |  |  |  |  |
| ADG1606 | 248 |  |  | pF typ | $\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ |
| ADG1607 | 123 |  |  | pF typ | $\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ |
| $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{On})$ |  |  |  |  |  |
| ADG1606 | 271 |  |  | pF typ | $\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ |
| ADG1607 | 146 |  |  | pF typ | $\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ |
| POWER REQUIREMENTS ldo | 0.001 |  |  |  | $\mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{S S}=-5.5 \mathrm{~V}$ |
|  |  |  |  | $\mu \mathrm{A}$ typ | Digital inputs $=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD}}$ |
|  |  |  | 1.0 | $\mu \mathrm{A}$ max |  |
| $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {SS }}$ |  |  | $\pm 3.3 / \pm 8$ | V min/max |  |

[^0]
## ADG1606/ADG1607

## 12 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

| Parameter | $25^{\circ} \mathrm{C}$ | $\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$ | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ANALOG SWITCH |  |  |  |  |  |
| Analog Signal Range |  |  | 0 V to $\mathrm{V}_{\mathrm{DD}}$ | V |  |
| On Resistance (Ron) | 4 |  |  | $\Omega$ typ | $\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$; see Figure 26 |
|  | 5 | 6.2 | 7 | $\Omega$ max | $V_{\text {DD }}=10.8 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$ |
| On Resistance Match Between Channels ( $\Delta \mathrm{R}_{\mathrm{oN}}$ ) | 0.2 |  |  | $\Omega$ typ | $\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$ |
|  | 0.5 | 0.8 | 0.9 | $\Omega$ max |  |
| On Resistance Flatness (Rflation) | 1 |  |  | $\Omega$ typ | $\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$ |
|  | 1.3 | 1.6 | 1.9 | $\Omega$ max |  |
| LEAKAGE CURRENTS |  |  |  |  | $\mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$ |
| Source Off Leakage, $\mathrm{I}_{\text {( }}$ (Off) | $\pm 0.02$ |  |  | nA typ | $\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V}$; see Figure 27 |
|  | $\pm 0.15$ | $\pm 0.5$ | $\pm 3$ | $n A \max$ |  |
| Drain Off Leakage, $\mathrm{I}_{\mathrm{D}}$ (Off) | $\pm 0.05$ |  |  | nA typ | $\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V}$; see Figure 27 |
| ADG1606 | $\pm 0.2$ | $\pm 3$ | $\pm 25$ | nA max |  |
| Channel On Leakage, $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{On})$ | $\pm 0.1$ |  |  | nA typ | $V_{S}=V_{D}=1 \mathrm{~V}$ or 10 V ; see Figure 28 |
|  | $\pm 0.3$ | $\pm 3$ | $\pm 25$ | nA max |  |
| DIGITAL INPUTS |  |  |  |  |  |
| Input High Voltage, VINH | $\pm 0.003$ |  | 2.0 | $V$ min |  |
| Input Low Voltage, $\mathrm{V}_{\text {INL }}$ |  |  | 0.8 | $V$ max |  |
| Input Current, $\mathrm{l}_{\text {INL }}$ or $\mathrm{l}_{\text {INH }}$ |  |  |  | $\mu \mathrm{A}$ typ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{GND}}$ or $\mathrm{V}_{\mathrm{DD}}$ |
|  |  |  | $\pm 0.1$ | $\mu \mathrm{A}$ max |  |
| Digital Input Capacitance, $\mathrm{C}_{\text {IN }}$ | 4 |  |  | pF typ |  |
| DYNAMIC CHARACTERISTICS ${ }^{1}$ |  |  |  |  |  |
| Transition Time, ttransition | 143 |  |  | ns typ | $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ |
|  | 170 | 198 | 221 | ns max | $\mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}$; see Figure 29 |
| ton (EN) | 108 |  |  | ns typ | $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ |
|  | 128 | 136 | 142 | ns max | $\mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}$; see Figure 31 |
| toff (EN) | 90 |  |  | ns typ | $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ |
|  | 109 | 132 | 150 | ns max | $\mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}$; see Figure 31 |
| Break-Before-Make Time Delay, $\mathrm{t}_{\text {BBM }}$ | 40 |  |  | ns typ | $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ |
|  |  |  | 15 | ns min | $\mathrm{V}_{51}=\mathrm{V}_{52}=8 \mathrm{~V}$; see Figure 30 |
| Charge Injection | 33 |  |  | pC typ | $\mathrm{V}_{S}=6 \mathrm{~V}, \mathrm{R}_{S}=0 \Omega, C_{L}=1 \mathrm{nF}$; see Figure 32 |
| Off Isolation | -62 |  |  | dB typ | $\mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 33 |
| Channel-to-Channel Crosstalk | -62 |  |  | dB typ | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 35 |
| Total Harmonic Distortion + Noise (THD + N) | 0.04 |  |  | \% typ | $\mathrm{RL}_{\mathrm{L}}=110 \Omega, 5 \mathrm{Vp-p}, \mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz ; see Figure 36 |
| -3 dB Bandwidth |  |  |  |  | $\mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}$; see Figure 34 |
| ADG1606 | 22 |  |  | MHz typ |  |
| ADG1607 | 38 |  |  | MHz typ |  |
| $\mathrm{C}_{s}$ (Off) | 18 |  |  | pF typ | $\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ |
| $\mathrm{C}_{\mathrm{D}}$ (Off) |  |  |  |  |  |
| ADG1606 | 240 |  |  | pF typ | $\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ |
| ADG1607 | 120 |  |  | pF typ | $\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ |
| $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\text {S }}(\mathrm{On})$ |  |  |  |  |  |
| ADG1606 | 263 |  |  | pF typ | $\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ |
| ADG1607 | 143 |  |  | pF typ | $\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ |
| POWER REQUIREMENTSIdd |  |  |  |  | $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$ |
|  | 0.001 |  |  | $\mu \mathrm{A}$ typ | Digital inputs $=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD}}$ |
|  |  |  | 1.0 | $\mu \mathrm{A}$ max |  |
| ADG1606 | 300 |  |  | $\mu \mathrm{A}$ typ | Digital inputs $=5 \mathrm{~V}$ |
|  |  |  | 480 | $\mu \mathrm{A}$ max |  |
| ADG1607 | 370 |  |  | $\mu \mathrm{A}$ typ | Digital inputs $=5 \mathrm{~V}$ |
|  |  |  | 600 | $\mu \mathrm{A}$ max |  |
| $V_{\text {DD }}$ |  |  | 3.3/16 | V min/max |  |

${ }^{1}$ Guaranteed by design, not subject to production test.

ADG1606/ADG1607

## 5 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

| Parameter | $25^{\circ} \mathrm{C}$ | $\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$ | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ANALOG SWITCH |  |  |  |  |  |
| Analog Signal Range |  |  | 0 V to $\mathrm{V}_{\mathrm{DD}}$ | V |  |
| On Resistance (Ron) | 8.5 |  |  | $\Omega$ typ | $\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to 4.5 V, $\mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$; see Figure 26 |
|  | 9.5 | 11.5 | 12.5 | $\Omega$ max | $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$ |
| On Resistance Match Between Channels ( $\Delta$ Ros) | 0.3 |  |  | $\Omega$ typ | $\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to $4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$ |
|  | 0.8 | 1.1 | 1.2 | $\Omega$ max |  |
| On Resistance Flatness (Rflat(on)) | 1.8 |  |  | $\Omega$ typ | $\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to 4.5 V, $\mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$ |
|  | 2.4 | 2.7 | 3 | $\Omega$ max |  |
| LEAKAGE CURRENTS |  |  |  |  | $\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$ |
| Source Off Leakage, Is (Off) | $\pm 0.01$ |  |  | nA typ | $\mathrm{V}_{S}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V}$; see Figure 27 |
|  | $\pm 0.15$ | $\pm 0.5$ | $\pm 3$ | nA max |  |
| Drain Off Leakage, $\mathrm{I}_{\mathrm{D}}$ (Off) | $\pm 0.02$ |  |  | nA typ | $\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V}$; see Figure 27 |
| ADG1606 | $\pm 0.2$ | $\pm 3$ | $\pm 25$ | nA max |  |
| Channel On Leakage, $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{On}$ ) | $\pm 0.05$ |  |  | nA typ | $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V}$ or 4.5 V ; see Figure 28 |
|  | $\pm 0.3$ | $\pm 3$ | $\pm 25$ | nA max |  |
| DIGITAL INPUTS |  |  |  |  |  |
| Input High Voltage, Vinh | $\pm 0.003$ |  | 2.0 | $V$ min | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{GND}}$ or $\mathrm{V}_{\mathrm{DD}}$ |
| Input Low Voltage, $\mathrm{V}_{\text {INL }}$ |  |  | 0.8 | $V$ max |  |
| Input Current, $\mathrm{l}_{\text {INL }}$ or $\mathrm{l}_{\text {INH }}$ |  |  |  | $\mu \mathrm{A}$ typ |  |
|  |  |  | $\pm 0.1$ | $\mu \mathrm{A}$ max |  |
| Digital Input Capacitance, $\mathrm{Cl}_{\text {IN }}$ | 4 |  |  | pF typ |  |
| DYNAMIC CHARACTERISTICS ${ }^{1}$ |  |  |  |  |  |
| Transition Time, ttransition | 220 |  |  | ns typ | $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ |
|  | 280 | 324 | 360 | ns max | $\mathrm{V}_{\mathrm{S}}=2.5 \mathrm{~V}$; see Figure 29 |
| ton (EN) | 160 |  |  | ns typ | $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ |
|  | 202 | 221 | 234 | ns max | $\mathrm{V}_{\mathrm{s}}=2.5 \mathrm{~V}$; see Figure 31 |
| toff (EN) | 154 |  |  | ns typ | $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ |
|  | 197 | 232 | 259 | ns max | $\mathrm{V}_{\mathrm{s}}=2.5 \mathrm{~V}$; see Figure 31 |
| Break-Before-Make Time Delay, tBB | 45 |  |  | ns typ | $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ |
|  |  |  | 15 | ns min | $\mathrm{V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=2.5 \mathrm{~V}$; see Figure 30 |
| Charge Injection | 12 |  |  | pC typ | $\mathrm{V}_{\mathrm{S}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$; see Figure 32 |
| Off Isolation | -62 |  |  | dB typ | $R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 33 |
| Channel-to-Channel Crosstalk | -62 |  |  | dB typ | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 35 |
| Total Harmonic Distortion + Noise (THD + N) | 0.35 |  |  | \% typ | $\mathrm{R}_{\mathrm{L}}=110 \Omega, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \mathrm{~V}_{\mathrm{S}}=3.5 \mathrm{~V} \text { p-p; see }$ Figure 36 |
| -3 dB Bandwidth |  |  |  |  | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; see Figure 34 |
| ADG1606 | 19 |  |  | MHz typ |  |
| ADG1607 | 34 |  |  | MHz typ |  |
| $\mathrm{C}_{s}$ (Off) | 20 |  |  | pF typ | $\mathrm{V}_{\mathrm{s}}=2.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ |
| $C_{\text {d }}$ (Off) |  |  |  |  |  |
| ADG1606 | 270 |  |  | pF typ | $\mathrm{V}_{\mathrm{S}}=2.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ |
| ADG1607 | 137 |  |  | pF typ | $\mathrm{V}_{\mathrm{S}}=2.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ |
| $\mathrm{C}_{\mathrm{d}}, \mathrm{C}_{\text {S }}(\mathrm{On})$ |  |  |  |  |  |
| ADG1606 | 300 |  |  | pF typ | $\mathrm{V}_{\mathrm{s}}=2.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ |
| ADG1607 | 160 |  |  | pF typ | $\mathrm{V}_{\mathrm{S}}=2.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ |
| POWER REQUIREMENTS |  |  |  |  |  | $\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$ |
| $\mathrm{l}_{\mathrm{DD}}$ | 0.001 |  |  |  | $\mu \mathrm{A}$ typ | Digital inputs $=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD}}$ |
|  |  |  | 1.0 | $\mu \mathrm{A}$ max |  |
| $V_{\text {DD }}$ |  |  | 3.3/16 | $V$ min/max |  |

[^1]
## ADG1606/ADG1607

### 3.3 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{sS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 4.


[^2]
## CONTINUOUS CURRENT PER CHANNEL, S OR D

Table 5. ADG1606

| Parameter | $25^{\circ} \mathrm{C}$ | $85^{\circ} \mathrm{C}$ | $125{ }^{\circ} \mathrm{C}$ | Unit |
| :---: | :---: | :---: | :---: | :---: |
| CONTINUOUS CURRENT, S OR D |  |  |  |  |
| $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-5 \mathrm{~V}$ |  |  |  |  |
| TSSOP ( $\theta_{\mathrm{jA}}=97.9^{\circ} \mathrm{C} / \mathrm{W}$ ) | 259 | 168 | 105 | mA maximum |
| LFCSP ( $\theta_{\text {JA }}=46^{\circ} \mathrm{C} / \mathrm{W}$ ) | 357 | 217 | 122 | mA maximum |
| $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$ |  |  |  |  |
| $\operatorname{TSSOP}\left(\theta_{\mathrm{jA}}=97.9^{\circ} \mathrm{C} / \mathrm{W}\right)$ | 273 | 175 | 108 | mA maximum |
| LFCSP ( $\theta_{\text {JA }}=46^{\circ} \mathrm{C} / \mathrm{W}$ ) | 378 | 224 | 122 | mA maximum |
| $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$ |  |  |  |  |
| TSSOP ( $\theta_{\text {JA }}=97.9^{\circ} \mathrm{C} / \mathrm{W}$ ) | 199 | 136 | 91 | mA maximum |
| $\operatorname{LFCSP}\left(\theta_{\mathrm{JA}}=46^{\circ} \mathrm{C} / \mathrm{W}\right)$ | 276 | 178 | 108 | mA maximum |
| $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$ |  |  |  |  |
| TSSOP ( $\theta_{\text {jA }}=97.9^{\circ} \mathrm{C} / \mathrm{W}$ ) | 164 | 119 | 80 | mA maximum |
| LFCSP ( $\theta_{\text {JA }}=46^{\circ} \mathrm{C} / \mathrm{W}$ ) | 227 | 154 | 98 | mA maximum |

Table 6. ADG1607

| Parameter | $25^{\circ} \mathrm{C}$ | $85^{\circ} \mathrm{C}$ | $125^{\circ} \mathrm{C}$ | Unit |
| :---: | :---: | :---: | :---: | :---: |
| CONTINUOUS CURRENT, S OR D |  |  |  |  |
| $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-5 \mathrm{~V}$ |  |  |  |  |
| $\operatorname{TSSOP}\left(\theta_{\mathrm{JA}}=97.9^{\circ} \mathrm{C} / \mathrm{W}\right)$ | 192 | 133 | 91 | mA maximum |
| LFCSP ( $\theta_{\mathrm{JA}}=46^{\circ} \mathrm{C} / \mathrm{W}$ ) | 266 | 175 | 108 | mA maximum |
| $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$ |  |  |  |  |
| TSSOP ( $\theta_{\text {JA }}=97.9^{\circ} \mathrm{C} / \mathrm{W}$ ) | 203 | 140 | 91 | mA maximum |
| LFCSP ( $\theta_{\mathrm{JA}}=46^{\circ} \mathrm{C} / \mathrm{W}$ ) | 280 | 178 | 108 | mA maximum |
| $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$ |  |  |  |  |
| TSSOP ( $\theta_{\mathrm{JA}}=97.9^{\circ} \mathrm{C} / \mathrm{W}$ ) | 147 | 108 | 70 | mA maximum |
| LFCSP ( $\theta_{\text {JA }}=46^{\circ} \mathrm{C} / \mathrm{W}$ ) | 206 | 140 | 94 | mA maximum |
| $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$ |  |  |  |  |
| TSSOP ( $\theta_{\text {JA }}=97.9^{\circ} \mathrm{C} / \mathrm{W}$ ) | 122 | 91 | 56 | mA maximum |
| LFCSP ( $\theta_{\text {JA }}=46^{\circ} \mathrm{C} / \mathrm{W}$ ) | 168 | 119 | 84 | mA maximum |

## ADG1606/ADG1607

ABSOLUTE MAXIMUM RATINGS
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 7.

| Parameter | Rating |
| :---: | :---: |
| $\mathrm{V}_{\text {D }}$ to $\mathrm{V}_{\text {SS }}$ | 18 V |
| $V_{\text {D }}$ to GND | -0.3 V to +18 V |
| $V_{\text {ss }}$ to GND | +0.3 V to -18 V |
| Analog Inputs ${ }^{1}$ | $\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first |
| Digital Inputs ${ }^{2}$ | GND -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first |
| Peak Current, S or D | 1.1 A (pulsed at 1 ms , 10\% duty cycle maximum) |
| Continuous Current, S or D ${ }^{3}$ | Data + 15\% |
| Operating Temperature Range Industrial (B Version) | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Junction Temperature | $150^{\circ} \mathrm{C}$ |
| Reflow Soldering Peak Temperature, Pb Free | $260^{\circ} \mathrm{C}$ |

## THERMAL RESISTANCE

$\theta_{\text {JA }}$ is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 8. Thermal Resistance

| Package Type | $\boldsymbol{\theta}_{\mathbf{J A}}$ | $\boldsymbol{\theta}_{\mathbf{\prime c}}$ | Unit |
| :--- | :--- | :--- | :--- |
| 28-Lead TSSOP | 97.9 | 14 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| 32-Lead LFCSP | 46 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

ESD CAUTION

|  | ESD (electrostatic discharge) sensitive device. <br> Charged devices and circuit boards can discharge <br> without detection. Although this product features <br> patented or proprietary protection circuitry, damage <br> may occur on devices subjected to high energy ESD. <br> Therefore, proper ESD precautions should be taken to <br> avoid performance degradation or loss of functionality. |
| :--- | :--- |

${ }^{1}$ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.
${ }^{2}$ Overvoltages at the $\mathrm{Ax}, \mathrm{EN}, \mathrm{Sx}$, or Dx pins are clamped by internal diodes. Current should be limited to the maximum ratings given.
${ }^{3}$ See Table 5.
Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating may be applied at any one time.

## PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS



Figure 3. ADG1606 TSSOP Pin Configuration


Figure 4. ADG1606 LFCSP Pin Configuration

Table 9. ADG1606 Pin Function Descriptions

| Pin No. |  | Mnemonic | Description |
| :---: | :---: | :---: | :---: |
| TSSOP | LFCSP |  |  |
| 1 | 31 | $V_{\text {DD }}$ | Most Positive Power Supply Potential. |
| 2,3,13 | $\begin{aligned} & 12,13,26, \\ & 27,28,30,32 \end{aligned}$ | NC | No Connect. |
| 4 | 1 | S16 | Source Terminal 16. This pin can be an input or an output. |
| 5 | 2 | S15 | Source Terminal 15. This pin can be an input or an output. |
| 6 | 3 | S14 | Source Terminal 14. This pin can be an input or an output. |
| 7 | 4 | S13 | Source Terminal 13. This pin can be an input or an output. |
| 8 | 5 | S12 | Source Terminal 12. This pin can be an input or an output. |
| 9 | 6 | S11 | Source Terminal 11. This pin can be an input or an output. |
| 10 | 7 | S10 | Source Terminal 10. This pin can be an input or an output. |
| 11 | 8 | S9 | Source Terminal 9. This pin can be an input or an output. |
| 12 | 9 | GND | Ground (0V) Reference. |
| 14 | 10 | A3 | Logic Control Input. |
| 15 | 11 | A2 | Logic Control Input. |
| 16 | 14 | A1 | Logic Control Input. |
| 17 | 15 | A0 | Logic Control Input. |
| 18 | 16 | EN | Active High Digital Input. When this pin is low, the device is disabled and all switches are turned off. When this pin is high, the Ax logic inputs determine which switch is turned on. |
| 19 | 17 | S1 | Source Terminal 1. This pin can be an input or an output. |
| 20 | 18 | S2 | Source Terminal 2. This pin can be an input or an output. |
| 21 | 19 | S3 | Source Terminal 3. This pin can be an input or an output. |
| 22 | 20 | S4 | Source Terminal 4. This pin can be an input or an output. |
| 23 | 21 | S5 | Source Terminal 5. This pin can be an input or an output. |
| 24 | 22 | S6 | Source Terminal 6. This pin can be an input or an output. |
| 25 | 23 | S7 | Source Terminal 7. This pin can be an input or an output. |
| 26 | 24 | S8 | Source Terminal 8. This pin can be an input or an output. |
| 27 | 25 | Vss | Most Negative Power Supply Potential. In single-supply applications, this pin can be connected to ground. |
| 28 | 29 | D | Drain Terminal. This pin can be an input or an output. |
|  | EPAD | Exposed Pad | The exposed pad is connected internally. For increased reliability of the solder joints and maximum thermal capability, it is recommended that the pad be soldered to the substrate, $\mathrm{V}_{\mathrm{ss}}$. |

## ADG1606/ADG1607

Table 10. ADG1606 Truth Table

| A3 | A2 | A1 | A0 | EN | On Switch |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $X^{1}$ | $X^{1}$ | $X^{1}$ | $X^{1}$ | 0 | None |
| 0 | 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 0 | 1 | 2 | 3 |
| 0 | 0 | 1 | 1 | 4 | 5 |
| 0 | 1 | 0 | 0 | 1 | 6 |
| 0 | 1 | 0 | 1 | 1 | 7 |
| 0 | 1 | 1 | 1 | 1 | 8 |
| 0 | 1 | 0 | 1 | 9 |  |
| 0 | 0 | 0 | 1 | 10 |  |
| 1 | 0 | 1 | 1 | 11 |  |
| 1 | 1 | 0 | 1 | 12 |  |
| 1 | 1 | 1 | 1 | 13 |  |
| 1 | 1 | 1 | 1 | 14 |  |
| 1 | 1 | 1 | 1 | 15 |  |
| 1 | 0 | 1 | 16 |  |  |

${ }^{1} \mathrm{X}=$ don't care.


Figure 5. ADG1607 TSSOP Pin Configuration


Figure 6. ADG1607 LFCSP Pin Configuration

Table 11. ADG1607 Pin Function Descriptions

| Pin No. |  | Mnemonic | Description |
| :---: | :---: | :---: | :---: |
| TSSOP | LFCSP |  |  |
| 1 | 29 | $V_{D D}$ | Most Positive Power Supply Potential. |
| 2 | 31 | DB | Drain Terminal B. This pin can be an input or an output. |
| 3,13,14 | $\begin{aligned} & 11,12,13,26, \\ & 28,30,32 \end{aligned}$ | NC | No Connect. |
| 4 | 1 | S8B | Source Terminal 8B. This pin can be an input or an output. |
| 5 | 2 | S7B | Source Terminal 7B. This pin can be an input or an output. |
| 6 | 3 | S6B | Source Terminal 6B. This pin can be an input or an output. |
| 7 | 4 | S5B | Source Terminal 5B. This pin can be an input or an output. |
| 8 | 5 | S4B | Source Terminal 4B. This pin can be an input or an output. |
| 9 | 6 | S3B | Source Terminal 3B. This pin can be an input or an output. |
| 10 | 7 | S2B | Source Terminal 2B. This pin can be an input or an output. |
| 11 | 8 | S1B | Source Terminal 1B. This pin can be an input or an output. |
| 12 | 9 | GND | Ground (0 V) Reference. |
| 15 | 10 | A2 | Logic Control Input. |
| 16 | 14 | A1 | Logic Control Input. |
| 17 | 15 | A0 | Logic Control Input. |
| 18 | 16 | EN | Active High Digital Input. When this pin is low, the device is disabled and all switches are turned off. When this pin is high, the Ax logic inputs determine which switch is turned on. |
| 19 | 17 | S1A | Source Terminal 1A. This pin can be an input or an output. |
| 20 | 18 | S2A | Source Terminal 2A. This pin can be an input or an output. |
| 21 | 19 | S3A | Source Terminal 3A. This pin can be an input or an output. |
| 22 | 20 | S4A | Source Terminal 4A. This pin can be an input or an output. |
| 23 | 21 | S5A | Source Terminal 5A. This pin can be an input or an output. |
| 24 | 22 | S6A | Source Terminal 6A. This pin can be an input or an output. |
| 25 | 23 | S7A | Source Terminal 7A. This pin can be an input or an output. |
| 26 | 24 | S8A | Source Terminal 8A. This pin can be an input or an output. |
| 27 | 25 | $\mathrm{V}_{\text {ss }}$ | Most Negative Power Supply Potential. In single-supply applications, this pin can be connected to ground. |
| 28 | 27 | DA | Drain Terminal A. This pin can be an input or an output. |
|  | EPAD | Exposed Pad | The exposed pad is connected internally. For increased reliability of the solder joints and maximum thermal capability, it is recommended that the pad be soldered to the substrate, $\mathrm{V}_{5 s}$. |

## ADG1606/ADG1607

Table 12. ADG1607 Truth Table

| A2 | A1 | A0 | EN | On Switch Pair |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{X}^{1}$ | $\mathrm{X}^{1}$ | $\mathrm{X}^{1}$ | 0 | None |
| 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 1 | 2 |
| 0 | 1 | 0 | 1 | 3 |
| 0 | 1 | 1 | 1 | 4 |
| 1 | 0 | 0 | 1 | 5 |
| 1 | 0 | 1 | 1 | 6 |
| 1 | 1 | 0 | 1 | 7 |
| 1 | 1 | 1 | 1 | 8 |

[^3]
## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 7. On Resistance as a Function of $V_{D}\left(V_{s}\right)$ for Dual Supply


Figure 8. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Single Supply


Figure 9. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, $\pm 5$ V Dual Supply


Figure 10. On Resistance as a Function of $V_{D}\left(V_{s}\right)$ for Different Temperatures, 12 V Single Supply


Figure 11. On Resistance as a Function of $V_{D}\left(V_{s}\right)$ for Different Temperatures, 5 V Single Supply


Figure 12. On Resistance as a Function of $V_{D}\left(V_{s}\right)$ for Different Temperatures, 3.3 V Single Supply


Figure 13. Leakage Currents as a Function of Temperature, $\pm 5$ V Dual Supply


Figure 14. Leakage Currents as a Function of Temperature, 12 V Single Supply


Figure 15. Leakage Currents as a Function of Temperature, 5 V Single Supply


Figure 16. Leakage Currents as a Function of Temperature, 3.3 V Single Supply


Figure 17. IDD vs. Logic Level


Figure 18. Charge Injection vs. Source Voltage


Figure 19. Transition Time vs. Temperature


Figure 20. Off Isolation vs. Frequency


Figure 21. ADG1606 Crosstalk vs. Frequency


Figure 22. ADG1607 Crosstalk vs. Frequency


Figure 23. ADG1606 On Response vs. Frequency


Figure 24. THD $+N$ vs. Frequency


Figure 25. ACPSRR vs. Frequency

## TEST CIRCUITS



Figure 26. On Resistance


Figure 28. On Leakage


Figure 27. Off Leakage


Figure 29. Address to Output Switching Times, ttransition


Figure 30. Break-Before-Make Delay, $t_{B B M}$

## ADG1606/ADG1607



Figure 31. Enable Delay, toN (EN), toff (EN)


1sIMILAR CONNECTION FOR ADG1607.
08489-032
Figure 32. Charge Injection


Figure 33. Off Isolation


Figure 34. Bandwidth


CHANNEL-TO-CHANNEL CROSSTALK $=20 \log \frac{v_{\text {OUT }}}{v_{S}}$
Figure 35. Channel-to-Channel Crosstalk


Figure 36. THD $+N$

## ADG1606/ADG1607

## TERMINOLOGY

Ron
Ohmic resistance between the D and S terminals.

## $\Delta R_{\text {on }}$

Difference between the Ron of any two channels.
$\mathbf{R}_{\text {FLAT(ON) }}$
Flatness is defined as the difference between the maximum and minimum value of on resistance as measured.

## Is $_{s}$ (Off)

Source leakage current when the switch is off.
$\mathrm{I}_{\mathrm{D}}$ (Off)
Drain leakage current when the switch is off.

## $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathbf{O n})$

Channel leakage current when the switch is on.
$V_{D}, V_{S}$
Analog voltage on Terminal D and Terminal S.
$\mathrm{C}_{\mathrm{s}}$ (Off)
Channel input capacitance for the off condition.
$\mathrm{C}_{\mathrm{D}}$ (Off)
Channel output capacitance for the off condition.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}$ (On)
On switch capacitance.
$\mathrm{C}_{\text {IN }}$
Digital input capacitance.
ton (EN)
Delay time between the $50 \%$ and $90 \%$ points of the digital input and the switch on condition.
$t_{\text {Off }}$ (EN)
Delay time between the $50 \%$ and $90 \%$ points of the digital input and the switch off condition.

## $\mathbf{t}_{\text {transition }}$

Delay time between the $50 \%$ and $90 \%$ points of the digital inputs and the switch on condition when switching from one address state to another.
$\mathbf{t}_{\text {ввм }}$
Off time measured between the $80 \%$ points of the switches when switching from one address state to another.
$V_{\text {INL }}$
Maximum input voltage for Logic 0 .
$V_{\text {INH }}$
Minimum input voltage for Logic 1.
IINL, $\mathbf{I}_{\text {inh }}$
Input current of the digital input.
IDD
Positive supply current.
Iss
Negative supply current.
Off Isolation
A measure of unwanted signal coupling through an off channel.

## Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

## Bandwidth

The frequency at which the output is attenuated by 3 dB .
On Response
The frequency response of the on switch.
THD + N
The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

AC Power Supply Rejection Ratio (ACPSRR)
Measures the ability of a part to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p. The ratio of the amplitude of signal on the output to the amplitude of the modulation is the ACPSRR.

## OUTLINE DIMENSIONS



Figure 37. 28-Lead Thin Shrink Small Outline Package [TSSOP]
( $R U-28$ )
Dimensions shown in millimeters


FOR PROPER CONNECTION O THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET.

COMPLIANT TO JEDEC STANDARDS MO-220-WHHD.
Figure 38. 32-Lead Lead Frame Chip Scale Package [LFCSP]
$5 \mathrm{~mm} \times 5 \mathrm{~mm}$ Body and 0.75 mm Package Height
(CP-32-7)
Dimensions shown in millimeters

ORDERING GUIDE

| Model $^{1}$ | Temperature Range | Package Description | Package Option |
| :--- | :--- | :--- | :--- |
| ADG1606BRUZ $_{\text {ADG1606BRUZ-REEL7 }}$ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 28 -Lead Thin Shrink Small Outline Package $[$ TSSOP $]$ |
| ADG1606BCPZ-REEL7 | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 28-Lead Thin Shrink Small Outline Package $[$ TSSOP $]$ | RU-28 |
| ADG1607BRUZ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 28-Lead Lead Frame Chip Scale Package [LFCSP] | CP-32-7 |
| ADG1607BRUZ-REEL7 Shrink Small Outline Package $[$ TSSOP] | RU-28 |  |  |
| ADG1607BCPZ-REEL7 | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 28-Lead Thin Shrink Small Outline Package [TSSOP] |
| RU-28 |  |  |  |

[^4]
## NOTES


[^0]:    ${ }^{1}$ Guaranteed by design, not subject to production test.

[^1]:    ${ }^{1}$ Guaranteed by design, not subject to production test.

[^2]:    ${ }^{1}$ Guaranteed by design, not subject to production test.

[^3]:    ${ }^{1} \mathrm{X}=$ don't care.

[^4]:    ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

