

0.5 Ω CMOS 1.65 V TO 3.6 V **4-Channel Multiplexer**

ADG804 Data Sheet

FEATURES

 0.5Ω typical on resistance 0.8 Ω maximum on resistance at 125°C 1.65 V to 3.6 V operation Automotive temperature range: -40°C to +125°C High current carrying capability: 300 mA continuous Rail-to-rail switching operation Fast switching times <25 ns Typical power consumption (<0.1 μW)

APPLICATIONS

MP3 players Power routing Battery-powered systems PCMCIA cards **Cellular phones** Modems Audio and video signal routing **Communication systems**

GENERAL DESCRIPTION

The ADG804 is a low voltage 4-channel CMOS multiplexer comprising four single channels. This device offers ultralow on resistance of less than 0.8 Ω over the full temperature range. The digital inputs can handle 1.8 V logic with a 2.7 V to 3.6 V supply.

The ADG804 switches one of four inputs to a common output, D, as determined by the 3-bit binary address lines, A0, A1, and EN. A Logic 0 on the EN pin disables the device. The ADG804 has break-before-make switching.

The ADG804 is fully specified for 3.3 V, 2.5 V, and 1.8 V supply operation. It is available in a 10-lead MSOP package.

FUNCTIONAL BLOCK DIAGRAM

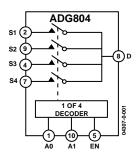


Figure 1.

PRODUCT HIGHLIGHTS

- $<0.8 \Omega$ over full temperature range of -40° C to $+125^{\circ}$ C.
- Single 1.65 V to 3.6 V operation.
- Operational with 1.8 V CMOS logic.
- High current handling capability (300 mA continuous current at 3.3 V).
- Low THD + N (0.02% typ).
- Small 10-lead MSOP package.

Rev. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Revision History	2
Specifications	3
Absolute Maximum Ratings	<i>6</i>
ESD Caution	(
Pin Configuration	7

Typical Performance Characteristics	8
Test Circuits	1
Outline Dimensions	3
Ordering Guide	3

REVISION HISTORY

9/11—Rev. 0 to Rev. A

Changes to Maximum Leakage Currents Parameter and	
Conditions, Table 1	3
Changes to Maximum Leakage Currents Parameter and	
Conditions, Table 2	4
Changes to Maximum Leakage Currents Parameter and	
Conditions, Table 3	5
Added Lead Temperature Parameter	6
Updated Outline Dimensions	13
Changes to Ordering Guide	13

4/04—Revision 0: Initial Version

SPECIFICATIONS

 $V_{\rm DD}$ = 2.7 V to 3.6 V, GND = 0 V, unless otherwise noted. 1

Table 1.

Parameter	+25°C	−40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V _{DD}	V	
On Resistance (R _{ON})	0.5			Ωtyp	$V_{DD} = 2.7 \text{ V}$; $V_S = 0 \text{ V}$ to V_{DD} , $I_S = 10 \text{ mA}$; Figure 18
	0.65	0.75	0.8	Ω max	
On Resistance Match between	0.04			Ωtyp	$V_{DD} = 2.7 \text{ V}; V_S = 0.65 \text{ V}, I_S = 10 \text{ mA}$
Channels (ΔR _{ON})		0.075	0.08	Ω max	
On Resistance Flatness (R _{FLAT(ON)})	0.1			Ωtyp	$V_{DD} = 2.7 \text{ V}; V_S = 0 \text{ V to } V_{DD},$
,		0.15	0.16	Ω max	$I_{S} = 10 \text{ mA}$
LEAKAGE CURRENTS					$V_{DD} = 3.6 \text{ V}$
Source Off Leakage I _S (OFF)	±0.1			nA typ	$V_S = 1 \text{ V/2.6 V; } V_D = 2.6 \text{ V/1 V; Figure 19}$
, , , , , , , , , , , , , , , , , , ,	±2			nA max	
Drain Off Leakage I _D (OFF)	±0.1			nA typ	$V_S = 1 \text{ V}/2.6 \text{ V}; V_D = 2.6 \text{ V}/1 \text{ V}; Figure 19$
	±2			nA max	15
Channel On Leakage I _D , I _S (ON)	±0.1			nA typ	$V_S = V_D = 1 \text{ V or } 2.6 \text{ V; Figure } 20$
	±2			nA max	15
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current I _{INL} or I _{INH}	0.005		0.0	μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
input current line of line	0.003		±0.1	μA max	VIN — VINE OF VINH
C _{IN} , Digital Input Capacitance	4			pF typ	
DYNAMIC CHARACTERISTICS ²				p. 1)p	
transistion	24			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
CITAIVOIDIIOIV	30	32	35	ns max	$V_s = 1.5 \text{ V/O V}$; Figure 21
t _{on} ENABLE	23	32	33	ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
CON EL WIDEE	29	30	31	ns max	$V_s = 1.5 \text{ V/O V}$; Figure 23
t _{OFF} ENABLE	5	30	31	ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
COFF LINABLE	6	7	8	ns max	$V_S = 1.5 \text{ V}$; Figure 23
Break-Before-Make Time Delay (t _{BBM})	20	,	O	ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
bleak-before-Make Time belay (tasm)	20		5	ns min	$V_{51} = V_{52} = 1.5 \text{ V}$; Figure 22
Charge Injection	28		3	pC typ	$V_{S} = 1.5 \text{ V}, R_{S} = 0 \Omega, C_{I} = 1 \text{ nF; Figure 24}$
Off Isolation	-67			dB typ	$R_L = 50 \Omega$, $C_L = 5 \text{ pF,f} = 100 \text{ kHz; Figure 25}$
Channel-to-Channel Crosstalk	-75			dB typ	$R_L = 50 \Omega$, $C_L = 5 \text{ pF}$, $f = 100 \text{ kHz}$; Figure 27
Total Harmonic Distortion (THD+N)	0.02			%	$R_L = 30 \Omega$, $f = 20 \text{ Hz}$ to 20 kHz , $V_S = 2 \text{ V p-p}$
Insertion Loss	0.02			dB typ	$R_L = 50 \Omega$, $C_L = 5 \text{ pF}$, $f = 100 \text{ kHz}$
–3 dB Bandwidth	33			MHz typ	$R_L = 50 \Omega$, $C_L = 5 \text{ pF}$; Figure 26
C _s (OFF)	24			pF typ	11 - 30 12, CL - 3 pr , 1 iguie 20
C _D (OFF)	105			pF typ	
C _D (OFF) C _D , C _S (ON)	125			pF typ	
POWER REQUIREMENTS	143			pi typ	V _{DD} = 3.6 V
I _{DD}	0.003			μA typ	$V_{DD} = 3.6 \text{ V}$ Digital inputs = 0 V or 3.6 V
טטו	0.003	1.0	4	μΑ typ μΑ max	Digital iliputs – 0 v of 5.0 v
		1.0	4	µл пах	

 $^{^1}$ Temperature range, Y version: -40°C to $+125^\circ\text{C}.$ 2 Guaranteed by design, not subject to production test.

 $V_{\rm DD}$ = 2.5 V \pm 0.2 V, GND = 0 V, unless otherwise noted.

Table 2.

Parameter	+25°C	−40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0 V to V_{DD}$	V	
On Resistance (R _{ON})	0.65			Ωtyp	$V_{DD} = 2.3 \text{ V}; V_S = 0 \text{ V to } V_{DD}, I_S = 10 \text{ mA}; Figure 18$
	0.77	0.8	0.88	Ω max	
On Resistance Match between	0.4			Ωtyp	$V_{DD} = 2.3 \text{ V}; V_S = 0.7 \text{ V}; I_S = 10 \text{ mA}$
Channels (ΔR _{ON})		0.08	0.085	Ω max	
On Resistance Flatness (R _{FLAT(ON)})	0.16			Ωtyp	$V_{DD} = 2.3 \text{ V}; V_S = 0 \text{ V to } V_{DD}; I_S = 10 \text{ mA}$
		0.23	0.24	Ω max	
LEAKAGE CURRENTS					$V_{DD} = 2.7 \text{ V}$
Source Off Leakage Is (OFF)	±0.1			nA typ	$V_S = 1 \text{ V/2 V}, V_D = 2 \text{ V/1 V}; \text{ Figure 19}$
-	±2			nA max	_
Drain Off Leakage I _D (OFF)	±0.1			nA typ	$V_S = 1/2 \text{ V}, V_D = 2/1 \text{ V}; \text{ Figure 19}$
-	±2			nA max	_
Channel On Leakage ID, Is (ON)	±0.1			nA typ	$V_S = V_D = 1 \text{ V or } 2 \text{ V; Figure } 20$
_	±2			nA max	_
DIGITAL INPUTS					
Input High Voltage, V _{INH}			1.7	V min	
Input Low Voltage, VINL			0.7	V max	
Input Current I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL}$ or V_{INH}
			±0.1	μA max	
C _{IN} , Digital Input Capacitance	4			pF typ	
DYNAMIC CHARACTERISTICS ²					
T _{TRANSISTION}	25			ns typ	$R_L = 50 \Omega, C_L = 35 pF$
	31	33	35	ns max	$V_s = 1.5 \text{ V/0 V}$; Figure 21
t _{on} ENABLE	25			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
	30	32	34	ns max	$V_S = 1.5 \text{ V/0 V}$; Figure 22
t _{OFF} ENABLE	5			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
	7	8	9	ns max	$V_{s} = 1.5 \text{ V}$; Figure 22
Break-Before-Make Time Delay (t _{BBM})	20			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
			5	ns min	$V_{S1} = V_{S2} = 1.5 \text{ V}$; Figure 22
Charge Injection	20			pC typ	$V_S = 1.25 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF}; Figure 24$
Off Isolation	-67			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; Figure 25
Channel-to-Channel Crosstalk	-75			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; Figure 27
Total Harmonic Distortion (THD + N)	0.022			%	$R_L = 32 \Omega$, $f = 20 Hz$ to $20 kHz$, $V_S = 1.5 V p-p$
Insertion Loss	-0.06			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$
–3 dB Bandwidth	33			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Figure 26
C _s (OFF)	25			pF typ	
C _D (OFF)	110			pF typ	
C _D , C _S (ON)	128			pF typ	
POWER REQUIREMENTS					V _{DD} = 2.7 V
I_{DD}	0.003			μA typ	Digital inputs = 0 V or 2.7 V
		1	4	μA max	

 $^{^1}$ Temperature range, Y version: -40°C to +125°C. 2 Guaranteed by design, not subject to production test.

 V_{DD} = 1.65 V \pm 1.95 V, GND = 0 V, unless otherwise noted.

Table 3.

−40°C to +85°C −40°C to						
Parameter	+25°C		+125°C	Unit	Test Conditions/Comments	
ANALOG SWITCH						
Analog Signal Range			$0V$ to V_{DD}	V		
On Resistance (R _{ON})	1			Ωtyp	$V_{DD} = 1.8 \text{ V}; V_S = 0 \text{ V to } V_{DD}, I_S = 10 \text{ mA}$	
	1.4	2.2	2.2	Ωmax		
	2.2	4	4	Ω max	$V_{DD} = 1.65 \text{ V}, V_S = 0 \text{ V to } V_{DD},$ $I_S = 10 \text{ mA}; \text{ Figure } 18$	
On Resistance Match between Channels (ΔR_{ON})	0.1			Ωtyp	$V_{DD} = 1.65 \text{ V}, V_S = 0.7 \text{ V}, I_S = 10 \text{ mA}$	
LEAKAGE CURRENTS					$V_{DD} = 1.95 \text{ V}$	
Source Off Leakage I₅ (OFF)	±0.1			nA typ	$V_S = 0.6 \text{ V}/1.35 \text{ V}, V_D = 1.35 \text{ V}/0.6 \text{ V};$	
	±2			nA max	Figure 19	
Drain Off Leakage I _D (OFF)	±0.1			nA typ	$V_S = 0.6/1.35 \text{ V}, V_D = 1.35/0.6 \text{ V};$	
	±2			nA max	Figure 19	
Channel On Leakage ID, Is (ON)	±0.1			nA typ	$V_S = V_D = 0.6 \text{ V or } 1.35 \text{ V; Figure } 20$	
	±2			nA max		
DIGITAL INPUTS						
Input High Voltage, V _{INH}			$0.65~V_{\text{DD}}$	V min		
Input Low Voltage, V _{INL}			$0.35 V_{DD}$	V max		
Input Current I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL}$ or V_{INH}	
			±0.1	μA max		
C _{IN} , Digital Input Capacitance	4			pF typ		
DYNAMIC CHARACTERISTICS ²						
t transistion	32			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$	
	40	42	44	ns max	V _s = 1.5 V/0 V; Figure 21	
t _{on} ENABLE	34			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$	
	39	40	41	ns max	$V_S = 1.5 \Omega/0 V$; Figure 22	
t _{OFF} ENABLE	8			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$	
	10	11	13	ns max	V _s = 1.5 V; Figure 22	
Break-Before-Make Time Delay (t _{BBM})	22			ns typ	$R_L = 50 \Omega, C_L = 35 pF$	
			5	ns min	$V_{S1} = V_{S2} = 1 \text{ V; Figure 22}$	
Charge Injection	12			pC typ	$V_s = 1 \text{ V}, R_s = 0 \text{ V}, C_L = 1 \text{ nF}; Figure 24$	
Off Isolation	-67			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; Figure 25	
Channel-to-Channel Crosstalk	-75			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$, Figure 27	
Total Harmonic Distortion (THD + N))	0.14			%	$R_L = 32 \Omega$, $f = 20 \text{ Hz to } 20 \text{ kHz}$, $V_S = 1.2 \text{ V p-p}$	
Insertion Loss	0.08			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$	
-3 dB Bandwidth	30			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Figure 26	
C _s (OFF)	26			pF typ		
C _D (OFF)	115			pF typ		
C_D , C_S (ON)	130			pF typ		
POWER REQUIREMENTS				. /	V _{DD} = 1.95 V	
I _{DD}	0.003			μA typ	Digital inputs = 0 V or 1.95 V	
י טעד						

 $^{^1}$ Temperature range, Y version: -40°C to +125°C. 2 Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 4.

Tubic 1.	
Parameter	Rating
V _{DD} to GND	−0.3 V to +4.6 V
Analog Inputs ¹	$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$
Digital Inputs ¹	−0.3 V to +4.6 V or 10 mA, whichever occurs first
Peak Current, S or D	(Pulsed at 1 ms, 10% Duty Cycle Max)
3.3 V Operation	500 mA
2.5 V Operation	460 mA
1.8 V Operation	420 mA
Continuous Current, S or D	
3.3 V Operation	300 mA
2.5 V Operation	275 mA
1.8 V Operation	250 mA
Operating Temperature Range	
Automotive (Y Version)	−40°C to +125°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature	150°C
MSOP Package	
θ_{JA} Thermal Impedance	206°C/W
θ_{JC} Thermal Impedance	44°C/W
Lead Temperature, Soldering	As per JEDEC J-STD-020

¹ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

Table 5. ADG804 Truth Table

A1	A0	EN	ON Switch
х	х	0	None
0	0	1	S1
0	1	1	S2
1	0	1	S3
1	1	1	S4

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION

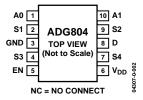


Figure 2. 10-Lead MSOP (RM-10)

Table 6. Terminology

V_{DD}	Most positive power supply potential.
I _{DD}	Positive supply current.
GND	Ground (0 V) reference.
S	Source terminal. May be an input or an output.
D	Drain terminal. May be an input or an output.
EN	Active high logic control input.
A0, A1	Logic control inputs. Used to select which source terminal, S1 to S4, is connected to the drain, D.
V_D, V_S	Analog voltage on terminals D, S.
Ron	Ohmic resistance between D and S.
R _{FLAT (ON)}	Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.
ΔR_{ON}	On resistance match between any two channels.
Is (OFF)	Source leakage current with the switch off.
I _D (OFF)	Drain leakage current with the switch off.
I _D , I _S (ON)	Channel leakage current with the switch on.
V_{INL}	Maximum input voltage for Logic 0.
V_{INH}	Minimum input voltage for Logic 1.
I _{INL} (I _{INH})	Input current of the digital input.
Cs (OFF)	Off switch source capacitance. Measured with reference to ground.
C _D (OFF)	Off switch drain capacitance. Measured with reference to ground.
C_D , C_S (ON)	On switch capacitance. Measured with reference to ground.
C _{IN}	Digital input capacitance.
ton (EN)	Delay time between the 50% and the 90% points of the digital input and switch on condition.
t _{OFF} (EN)	Delay time between the 50% and the 90% points of the digital input and switch off condition.
t transition	Delay time between the 50% and the 90% points of the digital input and switch on condition when switching from one address state to the other.
t _{BBM}	On or off time measured between the 80% points of both switches when switching from one to another.
Charge Injection	A measure of the glitch impulse transferred from the digital input to the analog output during on-off switching.
Off Isolation	A measure of unwanted signal coupling through an off switch.
Crosstalk	A measure of unwanted signal which is coupled through from one channel to another as a result of parasitic capacitance.
–3 dB Bandwidth	The frequency at which the output is attenuated by 3 dB.
On Response	The frequency response of the on switch.
Insertion Loss	The loss due to the on resistance of the switch.
THD + N	The ratio of the harmonic amplitudes plus noise of a signal to the fundamental.

TYPICAL PERFORMANCE CHARACTERISTICS

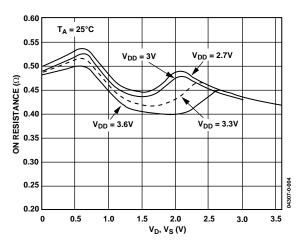


Figure 3. On Resistance vs. V_D (V_S) $V_{DD} = 2.7 \text{ V}$ to 3.6 V

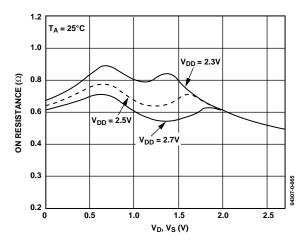


Figure 4. On Resistance vs. V_D (V_S) $V_{DD} = 2.5 V \pm 0.2 V$

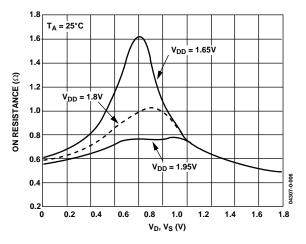


Figure 5. On Resistance vs. V_D (V_S) $V_{DD} = 1.8 \pm 0.15 \text{ V}$

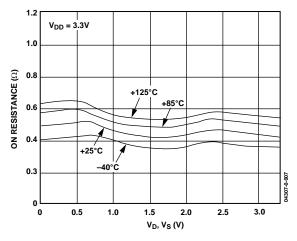


Figure 6. On Resistance vs. V_D (V_S) for Different Temperature, $V_{DD} = 3.3 \text{ V}$

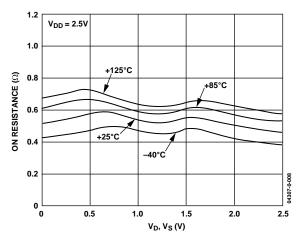


Figure 7. On Resistance vs. V_D (V_S) for Different Temperature, $V_{DD} = 2.5 \text{ V}$

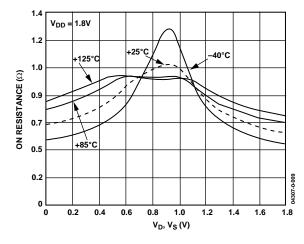


Figure 8. On Resistance vs. V_D (V_S) for Different Temperature, $V_{DD} = 1.8 \text{ V}$

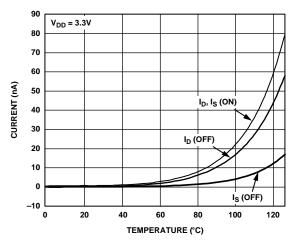


Figure 9. Leakage Current vs. Temperature, $V_{DD} = 3.3 \text{ V}$

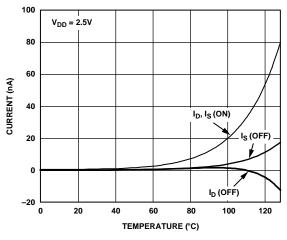


Figure 10. Leakage Current vs. Temperature, $V_{DD} = 2.5 \text{ V}$

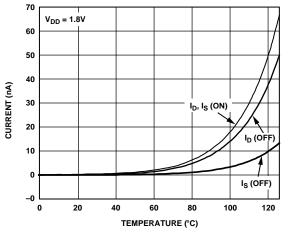


Figure 11. Leakage Current vs. Temperature, $V_{\text{DD}} = 1.8 \text{ V}$

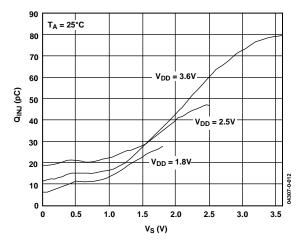


Figure 12. Charge Injection vs. Source Voltage, $V_{DD} = 1.8 \text{ V}$

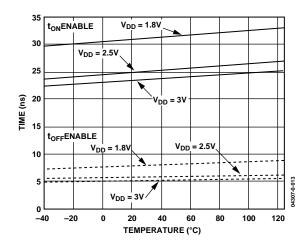


Figure 13. ton/toff Times vs. Temperature

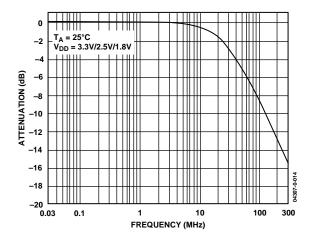


Figure 14. Bandwidth

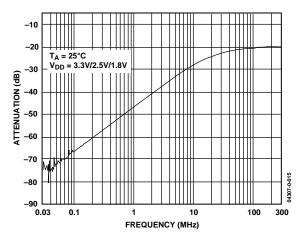


Figure 15. Off Isolation vs. Frequency

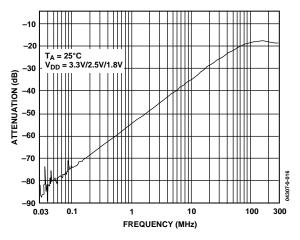


Figure 16. Crosstalk vs. Frequency

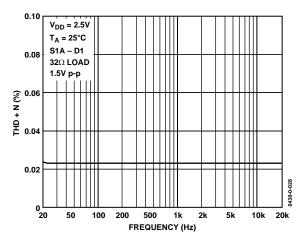


Figure 17. Total Harmonic Distortion + Noise

TEST CIRCUITS

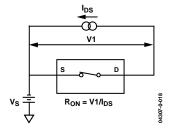


Figure 18. On Resistance

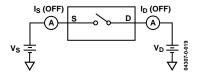


Figure 19. Off Leakage

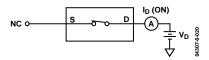


Figure 20. On Leakage

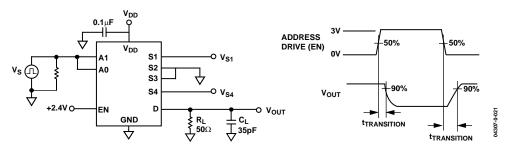


Figure 21. Switching Time of Multiplexer, ttransition

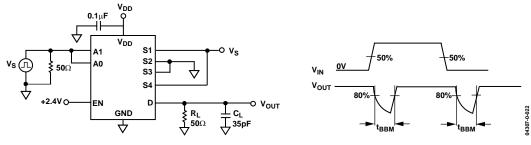


Figure 22. Break-Before-Make Time Delay, tbbm

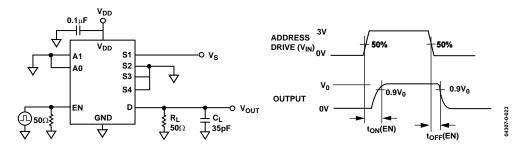


Figure 23. Enable Delay, ton(EN), toff(EN)

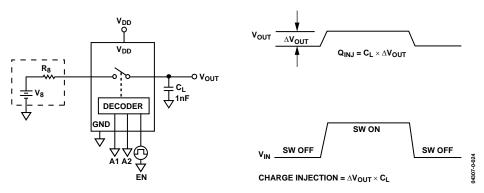


Figure 24. Charge Injection

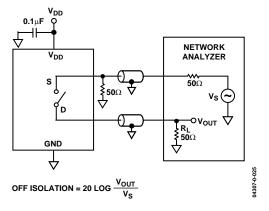


Figure 25. Off Isolation

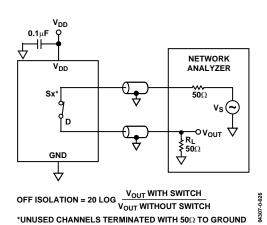


Figure 26. Bandwidth

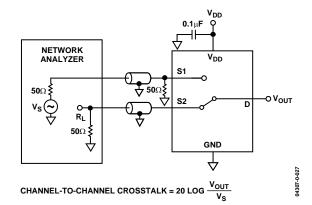


Figure 27. Channel-to-Channel Crosstalk

OUTLINE DIMENSIONS

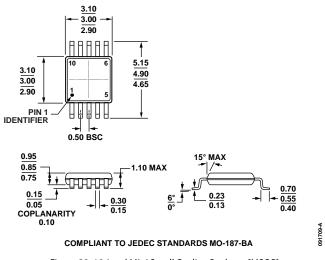


Figure 28. 10-Lead Mini Small Outline Package [MSOP] (RM-10) Dimensions shown in millimeters

ORDERING GUIDE

Temperature Range	Package Description	Package Option	Branding ^{2, 3}
−40°C to +125°C	10-Lead Mini Small Outline Package (MSOP)	RM-10	S1A
–40°C to +125°C	10-Lead Mini Small Outline Package (MSOP)	RM-10	S0N#
-40°C to +125°C	10-Lead Mini Small Outline Package (MSOP)	RM-10	S0N#
–40°C to +125°C	10-Lead Mini Small Outline Package (MSOP)	RM-10	S0N#
	-40°C to +125°C -40°C to +125°C -40°C to +125°C	-40°C to +125°C 10-Lead Mini Small Outline Package (MSOP) -40°C to +125°C 10-Lead Mini Small Outline Package (MSOP) -40°C to +125°C 10-Lead Mini Small Outline Package (MSOP)	-40°C to +125°C 10-Lead Mini Small Outline Package (MSOP) RM-10 -40°C to +125°C 10-Lead Mini Small Outline Package (MSOP) RM-10 -40°C to +125°C 10-Lead Mini Small Outline Package (MSOP) RM-10

¹ Z= RoHS compliant part.

² Branding on this package is limited to three characters due to space constraints.

³ # denotes lead-free product may be top or bottom marked

NOTES

NOTES

NOTES

