JSN, Unencapsulated Stacked Chip with Flat Terminations, KE 63 – 250 VDC, for DC Link (Automotive Grade)

Overview

JSN is a jumbo stacked, naked metallized polyester film capacitor with flat terminations, which meets the demanding Automotive Electronics Council's AEC-Q200 qualification requirements.

Applications

JSN (Jumbo Stacked Naked) film capacitor is designed for applications requiring high reliability, long life, and severe working conditions, with high frequency SMPS, DC/DC and AC/DC converters, input/output filter in power supplies, DC-Link, industrial and automotive SMPS and inverters.

Benefits

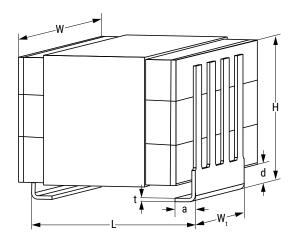
Rated voltage: 63 - 250 VDC
Rated voltage: 40 - 160 VAC
Capacitance range: 5.6 - 82 µF
Capacitance tolerance: ±10%, ±20%
Climatic category: 55/125/56

RoHS compliant and lead-free terminations

- Operating temperature range of -55°C to +125°C
- · Automotive (AEC-Q200) grades available
- Low ESR and ESL (high frequency applications)
- · No piezoelectric effect
- · No DC bias effect in capacitance drop and aging
- Nonpolarized construction (low self-heating in AC filtering applications)
- · Inherent self-healing and elasticity properties

Part Number System

JSN	Е	K	5100	M	В	6	M	0
Series	Rated Voltage (VDC)	Size Code	Capacitance Code (pF)	Capacitance Tolerance	Dielectric	Wt Terminal Width (mm)	Packaging	Internal Use
JSN = Jumbo Stacked Naked	D = 63 E = 100 I = 250	K = 6080 J = 60115	Digits 2-4 indicate the first three digits of the capacitance value. First digit indicates the number of zeros to be added.	K = ±10% M = ±20%	B = Metallized PET	6 = 20	See Ordering Options Table	0 (Standard)



Ordering Options Table

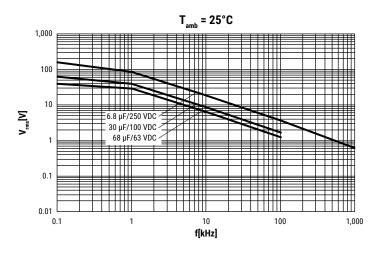
Packaging Type	Packaging Code
Standard Packaging Options	
Bulk (Bag)	М
Bulk (Tray)	L
Tape & Reel (Standard Reel)*	N

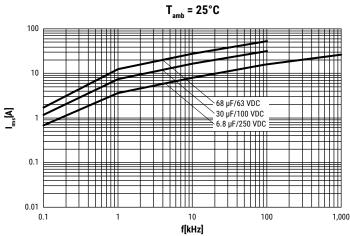
^{*}Available ony for size 60.80

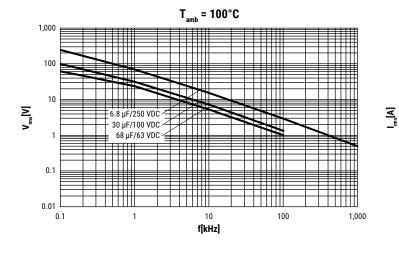
Dimensions - Millimeters

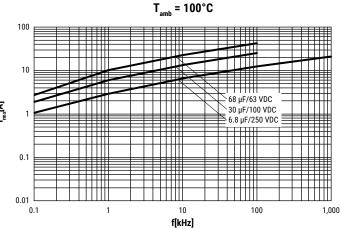
Size	W W _t		N _t	Н	L		d		a		t		
Code	Nominal	Tolerance	Nominal	Tolerance		Nominal	Tolerance	Nominal	Tolerance	Nominal	Tolerance	Nominal	Tolerance
K	21.5	Maximum	20	Maximum	See Part	17.3	Maximum	2	±1.0	2	±1.0	0.3	±0.1
J	30.0	Maximum	20	Maximum	Number Table	17.3	Maximum	2	±1.0	2	±1.0	0.3	±0.1

Performance Characteristics


Voltage Range (VDC)	63	100	250			
Voltage Range (VAC)	40	63	160			
Capacitance Range (μF)	47 - 82	25 - 43	5.6 - 10			
Capacitance Tolerance	±10%, ±20%					
Category Temperature Range	-55°C to +125°C					
Rated Temperature	+105°C					
Voltage Derating	The rated voltage is decreased by 1.25%/°C from +105°C to +125°C					
Climatic Category	55/125/56 IEC 60068-1					
Test Voltage	1.4 x V _R applied for 2 seconds at +25°C, ±5					
	Measured at +25°C, ±5°C					
	V _R (VDC)	Between Terminals				
Insulation Resistance	63	≥ 100 MΩ • µF				
	100	≥ 250 MΩ • µF				
	250 ≥ 800 MΩ • μF					
Dissination Factor	Maximum Values at 25°C, ±5°C					
Dissipation Factor	1 kHz	1.0%				


Qualification


Automotive grade products meet or exceed the requirements outlined by the Automotive Electronics Council. Details regarding test methods and conditions that are referenced in the document AEC-Q200, Stress Test Qualification for Passive Components. For additional information regarding the Automotive Electronics Council and AEC-Q200, please visit their website at www.aecouncil.com.



Maximum Voltage & Current vs. Frequency

Environmental Test Data

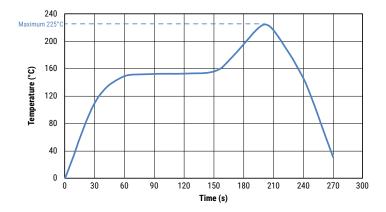
Damp Heat, Steady State							
Test Co	nditions						
Temperature	+40°C ±2°C						
Relative Humidity (RH)	93% ±2%						
Test Duration	56 days						
Perfor	mance						
Capacitance Change Δ C/C	≤ 7%						
DF Change (Δtgδ)	≤ 50 x 10 ⁻⁴ at 1 kHz						
Insulation Resistance	≥ 50% of limit value						
Endurance							
Test Conditions							
Temperature	125°C ±2°C						
Test Duration	2,000 hours						
Voltage Applied	1.25 x V _c						
Perfor	mance						
Capacitance Change ∆ C/C	≤ 5%						
DF Change (Δtgδ)	≤ 50 x 10 ⁻⁴ at 1 kHz						
Insulation Resistance	≥ 50% of limit value						
Rapid Change	of Temperature						
Test Co	nditions						
Temperature	1 hour at -55°C, 1 hour at +125°C						
Number of Cycles	1,000						
Perfor	mance						
Capacitance Change ∆ C/C	≤ 5%						
DF Change (Δtgδ)	≤ 50 x 10 ⁻⁴ at 1 kHz						
Insulation Resistance	≥ limit value						
No Mechanical Damage							

Reflow							
Test Conditions	See Solder Process						
Performance							
Capacitance Change ∆ C/C	≤ 3%						
DF Change (Δtgδ)	≤ 50 x 10 ⁻⁴ at 1 kHz						
Insulation Resistance	≥ limit value						
No Mechani	No Mechanical Damage						
Bending							
Test Co	nditions						
Deflection	1 – 6 mm						
Perfor	Performance						
Capacitance Change Δ C/C	≤ 1%						
	No visible damage on the terminations (peeling) neither on the body (cracking)						

Environmental Compliance

All KEMET surface mount capacitors are RoHS compliant.

Table 1 - Ratings & Part Number Reference


VDC	DC VAC Capacitance		Size	Chip	Dimensions in mm		dV/dt	New KEMET	Legacy	
VDC	VAC	Value (µF)	Code	Size	W _{MAX}	H _{MAX}	L	(V/µs)	Part Number	Part Number
63	40	47	K	6080	21.5	15.4	17.3	25	SNDK5470(1)B6(2)0	JSNDK5470(1)B6(2)0
63	40	56	K	6080	21.5	17.8	17.3	25	SNDK5560(1)B6(2)0	JSNDK5560(1)B6(2)0
63	40	68	J	60115	30	15.7	17.3	25	SNDJ5680(1)B6(2)0	JSNDJ5680(1)B6(2)0
63	40	82	J	60115	30	17.8	17.3	25	SNDJ5820(1)B6(2)0	JSNDJ5820(1)B6(2)0
100	63	25	K	6080	21.5	15.4	17.3	27	SNEK5250(1)B6(2)0	JSNEK5250(1)B6(2)0
100	63	30	K	6080	21.5	17.8	17.3	27	SNEK5300(1)B6(2)0	JSNEK5300(1)B6(2)0
100	63	35	J	60115	30	15.4	17.3	27	SNEJ5350(1)B6(2)0	JSNEJ5350(1)B6(2)0
100	63	43	J	60115	30	17.8	17.3	27	SNEJ5430(1)B6(2)0	JSNEJ5430(1)B6(2)0
250	160	5.6	K	6080	21.5	15.3	17.3	40	SNIK4560(1)B6(2)0	JSNIK4560(1)B6(2)0
250	160	6.8	K	6080	21.5	17.8	17.3	40	SNIK4680(1)B6(2)0	JSNIK4680(1)B6(2)0
250	160	8.2	J	60115	30	16	17.3	40	SNIJ4820(1)B6(2)0	JSNIJ4820(1)B6(2)0
250	160	10	J	60115	30	18.3	17.3	40	SNIJ5100(1)B6(2)0	JSNIJ5100(1)B6(2)0
VDC	VAC	Capacitance Value (µF)	Size Code	Chip Size	W _{MAX}	H _{MAX}	L _{MAX}	dV/dt (V/μs)	New KEMET Part Number	Legacy Part Number

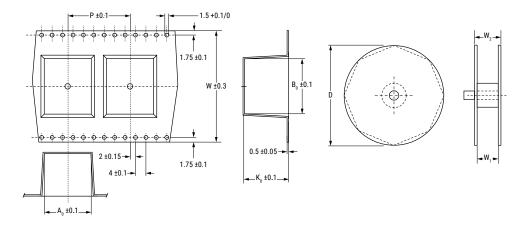
⁽¹⁾ $K = \pm 10\%$, $M = \pm 20\%$.

Soldering Process

JSN Series capacitors are to be mounted with reflow process (see thermal profile) or gluing.

Reflow soldering temperature measured on the top body surface of the component: Preheating temperature should be less than 160°C. The peak temperature must not exceed 225°C.

⁽²⁾ Insert packaging code. See Ordering Options Table for available options.


Storage and Moisture Recommendations

KEMET SMD film capacitors are supplied in a mpoisture barrier bag (MBB) Class 1. We can guarantee a 24 month shelf life (temperature $\le 40^{\circ}$ C/relative humidity $\le 90\%$). After the MBB has been opened, components may stay in areas with controlled temperature and humidity (temperature $\le 30^{\circ}$ C/relative humidity $\le 60\%$) for 72 hours (MSL 4). For longer periods of time and/or higher temperature and/or higher relative humidity values, it is absolutely necessary to protect the components against humidity. If the reel inside the MBB is partially used, KEMET recommends to re-use the same MBB or to avoid areas without controlled temperature and humidity (see above). If the above conditions are not respected, components require baking (minimum time: 24 hours at 70 $\pm 5^{\circ}$ C) before the reflow.

Packaging Quantities

Chip Size (EIA)	Height (mm)	Tray	Reel
6080	All	308	120
60115	All	252	-

Carrier Taping & Packaging (IEC 60286-2)

Chip Size (EIA)			1	Taping Sp	ecification	1		
Horizontal	W	P	\mathbf{A}_{0}	B _o	K _o	D	W ₁	W ₂
Mounting	±0.3	±0.1	Nominal	Nominal	Nominal	±2.0	-0/+2	Maximum
6080	44	24	18	22	17	330	44.5	49.5

KEMET Electronics Corporation Sales Offices

For a complete list of our global sales offices, please visit www.kemet.com/sales.

Disclaimer

All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute – and KEMET specifically disclaims – any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET's products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained.

Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.