
# **Netac P500 Series Memory Cards**

**Specification** 

V1.0





|          |             |       |            |               |             | HD Bench(@            | 91000MB)             |
|----------|-------------|-------|------------|---------------|-------------|-----------------------|----------------------|
| Capacity | Speed class | UHS-I | Controller | Flash         | SLC/MLC/TLC | Write (MB/s)<br>up to | Read (MB/s)<br>up to |
| 2GB      | C6          | -     | SMI/AS     | Micron/HY     | MLC         | 6                     | 15                   |
| 4GB      | C6          | -     | SMI/AS     | Micron/HY     | MLC         | 6                     | 15                   |
| 8GB      | C10         | -     | SMI/AS     | Micron/HY     | MLC         | 10                    | 20                   |
| 16GB     | C10         | U1    | SMI/AS     | Micron/HY     | MLC         | 30                    | 60                   |
| 32GB     | C10         | U1    | SMI/AS/NT  | Micron/HY/SDK | MLC         | 20                    | 90                   |
| 64GB     | C10         | U1    | SMI/AS     | Micron/HY     | TLC         | 20                    | 80                   |
| 128GB    | C10         | U1    | SMI/AS     | Micron/HY     | TLC         | 20                    | 80                   |
| 256GB    | C10         | U1    | SMI/AS     | Micron/HY     | TLC         | 30                    | 90                   |

## Performance

**Note1**: The speed class specification classifies card performance by speed class number and offers a method to calculate performance. For more information, please refer to the SDS Physical Layer Specification, V3.00.

**Note2**: **Measurement based on HD Bench V3.40 software(@1000MB)**, 1 gigabyte (GB) = 1 billion bytes. Some capacity is not available for data storage.

**Note3:** The above performance test based on platform: Intel(R) Core(TM) i7-5820 CPU @3.30GHz.; RAM 8GB; OS: windows 10 64bit. Performance may differ according to flash type, test software,OS. platform and capacity.



### Content

| 1.Introduction                         | 1  |
|----------------------------------------|----|
| 1.1 Error Correction Code (ECC)        | 1  |
| 1.2 Wear Leveling                      | 1  |
| 1.3 Bad Block Management               | 1  |
| 2. Product Specifications              | 2  |
| 3. Environmental Specification         | 3  |
| 4.Memory Cards Comparison              | 6  |
| 5.Electrical Characteristics           | 7  |
| 5.1 General DC Characteristics         | 7  |
| 5.2 Flash Interface AC Characteristics | 8  |
| 5.3 Power Consumption                  | 10 |
| 6.Interface                            | 11 |
| 6.1 Pad Assignment and Descriptions    | 11 |
| 7.Physical Dimension                   | 12 |



## **1.Introduction**

Netac P500 series memory cards are highly integrated flash memories with serial and random access capability. It is accessible via a dedicated serial interface optimized for fast and reliable data transmission. This interface allows several cards to be staked by through connection their peripheral contacts. Netac P500 series memory cards are fully compatible to a new consumer standard, called SD cards system standard define in the micro SD card system specification.

The micro SD cards system is a new mass-storage system based on innovations in semiconductor technology. It has been developed to provide an inexpensive mechanically robust storage medium in card form for multimedia consumer applications. Netac P500 series memory cards allow the design of inexpensive players and drivers without moving parts. A low power consumption and a wide supply voltage range favors mobile, battery-powered application such as audio players, organizers, palmtops, electronic books, encyclopedia and dictionaries. Using very effective data compression schemes such as MPEG, Netac P500 series memory cards will deliver enough capacity for all kinds of multimedia data.

## **1.1 Error Correction Code (ECC)**

Flash memory cells will deteriorate with use, which might generate random bit errors in the stored data. Thus, Netac P500 series memory cards apply the BCH ECC Algorithm, which can detect and correct errors occur during Read process, ensure data been read correctly, as well as protect data from corruption.

### **1.2 Wear Leveling**

NAND Flash devices can only undergo a limited number of program/erase cycles, and in most cases, the flash media are not used evenly. If some area get updated more frequently than others, the lifetime of the device would be reduced significantly. Thus, Wear Leveling technique is applied to extend the lifespan of NAND Flash by evenly distributing write and erase cycles across the media.

Wear Leveling algorithm can efficiently spread out the flash usage through the whole flash media area. Moreover, by implementing both dynamic and static Wear Leveling algorithms, the life expectancy of the NAND Flash is greatly improved.

### **1.3 Bad Block Management**

Bad blocks are blocks that include one or more invalid bits, and their reliability is not guaranteed. Blocks that are identified and marked as bad by the manufacturer are referred to as "Initial Bad Blocks". Bad blocks that are developed during the lifespan of the flash are named "Later Bad Blocks". Netac implements an efficient bad block management algorithm to detect the factory-produced bad blocks and manages any bad blocks that are appear with use. This practice further prevents data being stored into bad blocks and improves the data reliability.



## 2. Product Specifications

- Card capacity of non-secure area and secure area support Specifications
- Support SD SPI mode
- Designed for read-only and read/write cards
- Bus Speed Mode (use 4 parallel data lines)
  - Non-UHS Mode
    - » Default speed mode: 3.3V signaling, frequency up to 25MHz, up to 12.5 MB/sec
    - » High speed mode: 3.3V signaling, frequency up to 50MHz, up to 25 MB/sec
  - UHS Mode
    - » SDR12: SDR up to 25MHz, 1.8V signaling
    - » SDR25: SDR up to 50MHz, 1.8V signaling
    - » SDR50: 1.8V signaling, frequency up to 100MHz, up to 50 MB/sec
    - » SDR104: 1.8V signaling, frequency up to 208MHz, up to 104MB/sec
    - » DDR50: 1.8V signaling, frequency up to 50MHz, sampled on both clock edges, up to

#### 50 MB/sec

**Note:** 1. Timing in 1.8V signaling is different from that of 3.3V signaling.

- 2. To properly run the UHS mode, please ensure the device supports UHS-I mode.
- The command list supports [Part 1 Physical Layer Specification Ver3.1 Final] definitions
- Copyrights Protection Mechanism
  - Compliant with the highest security of CPRM standard
- Support CPRM (Content Protection for Recordable Media) of SD Card
- Card removal during read operation will never harm the content
- Password Protection of cards (optional)
- Write Protect feature using mechanical switch



- Built-in write protection features (permanent and temporary)
- +4KV/-4KV ESD protection in contact pads
- Operation voltage range: 2.7 ~ 3.6V
- Support Dynamic and Static Wear Leveling
- Dimension: 15mm (L) x 11mm (W) x 1mm (H)

## **3. Environmental Specification**

#### **Temperature and Humidity**

- Temperature Range
  - Operational: -25°C ~ 85°C
  - Storage: -40°C ~ 85°C

Note: We suggest that customer uses SD/micro SD card during the temperature range for better

reliability.

- Humidity
  - Operational: RH = 95% under 25°C
  - Diamond grade: RH = 93% under 40°C

#### Table 3-1 High Temperature Test Condition

|           | Temperature | Humidity | Test Time | Result                         |
|-----------|-------------|----------|-----------|--------------------------------|
| Operation | 85°C        | 0% RH    | 96 hours  | No any abnormality is detected |
| Storage   | 85°C        | 0% RH    | 500 hours |                                |



#### Table 3-2 LowTemperature Test Condition

|           | Temperature | Humidity | Test Time | Result                         |
|-----------|-------------|----------|-----------|--------------------------------|
| Operation | -25°C       | 0% RH    | 96 hours  | No any abnormality is detected |
| Storage   | -40°C       | 0% RH    | 168 hours |                                |

#### Table 3-3 High Humidity Test Condition

|           | Temperature | Humidity | Test Time |        |     | Result               |
|-----------|-------------|----------|-----------|--------|-----|----------------------|
| Operation | 25°C        | 95% RH   | 1hours    | No any | abn | ormality is detected |
| Storage   | 40°C        | 93% RH   | 500 hours |        |     |                      |

#### Table 3-4 Temperature Cycle Test

|           | Temperature | Test Time | Cycle     | Result                         |
|-----------|-------------|-----------|-----------|--------------------------------|
| Operation | -25°C       | 30 min    | 10 Cycles | No any abnormality is detected |
|           | 85°C        | 30 min    |           |                                |
| Storage   | -40°C       | 30 min    | 10 Cycles | No any abnormality is detected |
|           | 85°C        | 30 min    |           | ,                              |

### <u>Shock</u>

#### **Table 3-5 Shock Specification**

|             | Acceleration<br>Force | Half Sin Pulse<br>Duration | Result                                          |
|-------------|-----------------------|----------------------------|-------------------------------------------------|
| P500 Series | 1500G                 | 0.5ms                      | No any abnormality is detected when power<br>on |



### **Vibration**

#### **Table 3-6 Vibration Specification**

|             | Condi                  | tion                   | Vibration                             | Result                                             |
|-------------|------------------------|------------------------|---------------------------------------|----------------------------------------------------|
|             | Frequency/Displacement | Frequency/Acceleration | Orientation                           | hesure                                             |
| P500 Series | 20Hz~80Hz/1.52mm       | 80Hz~2000Hz/20G        | X, Y, Z<br>axis/30<br>min for<br>each | No any abnormality<br>is detected when<br>power on |

### <u>Drop</u>

#### **Table 3-7 Vibration Specification**

|             | Height of Drop  | Number of Drop      | Result                                       |
|-------------|-----------------|---------------------|----------------------------------------------|
| P500 Series | 150cm free fall | 6 face of each unit | No any abnormality is detected when power on |

## Bending

#### **Table 3-8 Bending Specification**

|             | Force | Action            | Result                                       |
|-------------|-------|-------------------|----------------------------------------------|
| P500 Series | ≥ 10N | Hold 1min/5 times | No any abnormality is detected when power on |

### <u>Torque</u>

#### Table 3-9 Torque Specification

|             | Force                | Action                     | Result                                       |
|-------------|----------------------|----------------------------|----------------------------------------------|
| P500 Series | 0.1N-m or +/-2.5 deg | Hold 30 seconds/5<br>times | No any abnormality is detected when power on |



### Electrostatic Discharge(ESD)

#### Table 3-10 ESD Specification

|             | Condition                              | Result |
|-------------|----------------------------------------|--------|
| DEOO Corios | Contact: +/- 4KV each item 5 times/Pin | DACC   |
| P500 Series | Air: +/- 8KV 5 times/ Pin              | PASS   |

### EMI Compliance

- FCC:CISPR22
- CE:EN55022
- BSMI:13438

# 4. Memory Cards Comparison

#### Table 4-1 Comparing UHS Speed Grade Symbols

|                | U1(UHS Speed Grade 1)                                                                       | U3(UHS Speed Grade 3)             |  |  |  |  |
|----------------|---------------------------------------------------------------------------------------------|-----------------------------------|--|--|--|--|
| Operable Under | UHS-I Bus I/F, UHS-II Bu                                                                    | s I/F                             |  |  |  |  |
| SD Memory Card | SDHC UHS-I and UHS-II, SDXC UHS-I and UHS-II                                                |                                   |  |  |  |  |
| Mark           | Mark U                                                                                      |                                   |  |  |  |  |
| Performance    | 10 MB/s minimum write speed                                                                 | 30 MB/s minimum write<br>speed    |  |  |  |  |
| Applications   | Full higher potential of recording real-time broadcasts and capturing large-size HD videos. | Capable of recording 4K/2K video. |  |  |  |  |



**Note:** UHS (Ultra High Speed), the fastest performance category available today, defines bus-interface speeds up to 312 Megabytes per second for greater device performance. It is available on SDXC and SDHC memory cards and devices.

# **5.Electrical Characteristics**

## **5.1 General DC Characteristics**

| Parameter                 | Symbol            | Min | Typical | Max | Unit |
|---------------------------|-------------------|-----|---------|-----|------|
| Power Supply Votage       | V <sub>CCAH</sub> | 2.7 | 3.3     | 3.6 | V    |
| Operating Temperture      | —                 | 0   |         | 70  | °C   |
| Storage Temperture        |                   | -25 | -       | 85  | °C   |
| All Input Leakage Current | -                 | -10 | —       | 10  | uA   |
| All Out Leakage Current   | -                 | -10 |         | 10  | UA   |

#### Table 5-1 General DC Characteristics

#### Table 5-2 Bus Operating Conditions-Signal Line's Load

| Parameter                                  | Symbol            | Min | Typical | Max | Unit | Remark                         |
|--------------------------------------------|-------------------|-----|---------|-----|------|--------------------------------|
| Pull-up Resistance for CMD signal          | R <sub>CMD</sub>  | 10  | -       | 100 | Κ'Ω  | To prevent bus floating        |
| Pull-Up Resistance for<br>DAT{3:0} Signals | R <sub>dat</sub>  | 10  | _       | 100 | Κ'Ω  | To prevent bus floating        |
| Card Capacitance for<br>Eash Signal Pin    | CCARD             | -   | -       | 10  | Pf   | _                              |
| Pull-Up Resistance<br>Inside Card {DAT(3)} | R <sub>DAT3</sub> | 10  | _       | 90  | Κ'Ω  | May be used for card detection |

#### Table 5-3 Open-Drain Mode Bus Signal Level

| Parameter           | Symbol          | Min | Max | Unit | Condition               |
|---------------------|-----------------|-----|-----|------|-------------------------|
| Output High Voltage | V <sub>OH</sub> | -   | -   | V    | I <sub>ОН</sub> =-100иА |



| Output Low Voltage | V <sub>OL</sub> | _ | 0.3 | V | I <sub>OL</sub> =2 mA |
|--------------------|-----------------|---|-----|---|-----------------------|
|--------------------|-----------------|---|-----|---|-----------------------|

#### Table 5-4 Push-Pull Mode Bus Signal Level- High Voltage 3.3V Signaling Mode

| Parameter           | Symbol          | Min  | Max | Unit | Condition                   |
|---------------------|-----------------|------|-----|------|-----------------------------|
| Output High Voltage | V <sub>он</sub> | 2.4  |     | v    | V <sub>cc</sub> I/ O = 3.3V |
| Output Low Voltage  | V <sub>OL</sub> |      | 0.4 | V    | V <sub>cc</sub> I/ O = 3.3V |
| Input High Voltage  | VIH             | 2    | 3.6 | V    | V <sub>cc</sub> I/ O = 3.3V |
| Input Low Voltage   | V <sub>IL</sub> | -3.0 | 0.8 | V    | V <sub>cc</sub> I/ O = 3.3V |

The input levels are identical with the push-pull mode bus signal levels. **Note:** VCC I/O =I /O buffer power.

#### Table 5-5 Push-Pull Mode Bus Signal Level- High Voltage 1.8V Signaling Mode

| Parameter           | Symbol          | Min  | Max | Unit | Condition                   |
|---------------------|-----------------|------|-----|------|-----------------------------|
| Output High Voltage | V <sub>он</sub> | 1.4  |     | V    | V <sub>cc</sub> I/ O = 1.8V |
| Output Low Voltage  | V <sub>OL</sub> | -    | 0.4 | V    | V <sub>cc</sub> I/ O = 1.8V |
| Input High Voltage  | V <sub>IH</sub> | 1.2  | 2.1 | V    | V <sub>cc</sub> I/ O = 1.8V |
| Input Low Voltage   | V <sub>IL</sub> | -0.3 | 0.6 | V    | V <sub>cc</sub> I/ O = 1.8V |

## 5.2 Flash Interface AC Characteristics

#### Table 5-6 Flash Interface AC Timings



| Parameter                    | Symbol           | Min  | Max | Unit |
|------------------------------|------------------|------|-----|------|
| CLE Setup Time               | t <sub>cLs</sub> | 10.0 |     | ns   |
| CLE Hold Time                | t <sub>clH</sub> | 5.0  |     | ns   |
| ALE Setup Time               | t <sub>ALS</sub> | 10.0 |     | ns   |
| ALE Hold Time                | t <sub>ALH</sub> | 5.0  | -   | ns   |
| ALE Cycle Time               | twc              | 20.0 | -   | ns   |
| WE Pulse Width               | twp              | 10.0 |     | ns   |
| WE High Hold Time            | twн              | 7.0  |     | ns   |
| Write Data Output Setup Time | t <sub>DS</sub>  | 7.0  | -   | ns   |
| Write Data Output Setup Time | t <sub>DS</sub>  | 7.0  | _   | ns   |
| Write Data Output Hold Time  | t <sub>DH</sub>  | 5.0  |     | ns   |
| Read Cycle Time              | t <sub>rc</sub>  | 20.0 | _   | ns   |
| RE Pulse Width               | t <sub>RP</sub>  | 10.0 |     | ns   |
| RE High Hold Time            | t <sub>ren</sub> | 7.0  | _   | ns   |



### 5.3 **Power Consumption**

| Bus Speed Mode     |             | Max. Power Up<br>Current(uA) | Max.Standby<br>Currnet(uA) | Max.Read<br>Currnet(uA) | Max.Write<br>Currnet(uA) |
|--------------------|-------------|------------------------------|----------------------------|-------------------------|--------------------------|
| Default Speed Mode |             | 250                          | 1000                       | 150@3.6V                | 150@3.6V                 |
| High S             | Speed Mode  | 250                          | 1000                       | 200@3.6V                | 200@3.6V                 |
| UHS-I              | UHS50/DDR50 | 250                          | 1000                       | 400@3.6V                | 400@3.6V                 |
| Mode               | UHS104      | 250                          | 1000                       | 400@3.6V                | 400@3.6V                 |

#### Table 5-7 Power Consumption of P500 Series

Note: 1. Power consumption are measured at room temperature.

2. Power consumption of Max. Standby Current is for P500 Series Memory Cards under and including 64GB only. For 128GB and 256GB, the power consumption is to be determined.

3. The table above is the power consumption of P500 Series Memory Cards with different bus speed modes. Power consumption may differ according to flash type, OS. platform and capacity.



# **6.Interface**

## 6.1 Pad Assignment and Descriptions

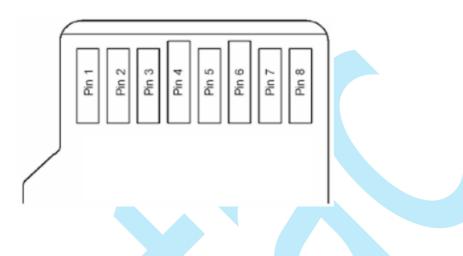
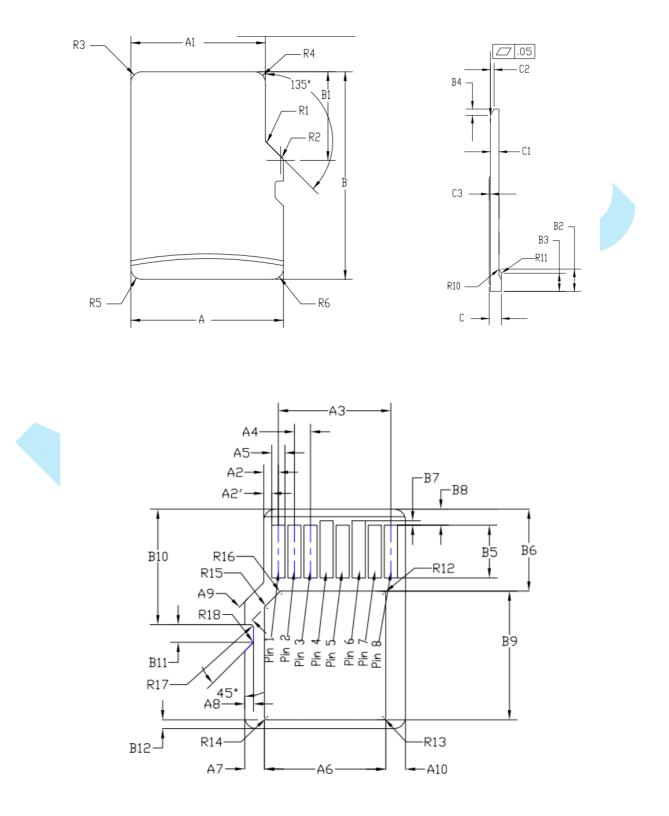



 Table 6-1 P500 Series Memory Card Pad Addignment


| Pin |                       |        | SD Mode                      | SPI Mode |      |                        |  |
|-----|-----------------------|--------|------------------------------|----------|------|------------------------|--|
|     | Name Type Description |        | Description                  | Name     | Туре | Description            |  |
| 1   | DAT2                  | I/O/PP | Data Line [bit2]             | RSV      | _    | _                      |  |
| 2   | CD/DAT3               | I/O/PP | Card Detect/Data Line [bit3] | CS       | I    | Chip Select (net true) |  |
| 3   | CMD                   | РР     | Command/Response             | DI       | I    | Data In                |  |
| 4   | VDD                   | S      | Supply voltage               | VDD      | S    | Supply voltage         |  |
| 5   | CLK                   | Ι      | Clock                        | SCLK     | I    | Clock                  |  |
| 6   | VSS                   | S      | Supply voltage ground        | VSS      | S    | Supply voltage ground  |  |
| 7   | DAT0                  | I/O/PP | Data Line [bit0]             | DO       | O/PP | Data Out               |  |
| 8   | DAT1                  | I/O/PP | Data Line [bit1]             | RSV      | _    | —                      |  |

#### Note: S: power supply, I: input; O: output using push-pull drivers; PP: I/O using push-pull drivers.



# **7.Physical Dimension**

#### Dimension: 15mm(L) x 11mm(W) x 1mm(H)



The trademark of 朗科\*& Netac \* are owned by NETAC TECHNOLOGY INC.(Shenzhen).LEAPRO TECHNOLOGY CO.,LTD. has been authorized to use the trademark above. LEAPRO reserves the right to the final explanation.

# **Netac**®

#### **Netac P500 Series Memory Cards Specification**

|        | CO     | MMON DIM | ENSIONS |            |   |                     | COM        | MON DIMENS | SIONS    |            |
|--------|--------|----------|---------|------------|---|---------------------|------------|------------|----------|------------|
| SYMBOL | MIN    | NOM      | MAX     | REF. SHEET |   | SYMBOL              | MIN        | NOM        | MAX      | REF. SHEET |
| A      | 10.90  | 11.00    | 11.10   | 1          |   | R1                  | 0. 10      | 0. 20      | 0.30     | 1          |
| A1     | 9.60   | 9.70     | 9.80    | 1          |   | R2                  | 0. 10      | 0. 20      | 0.30     | 1          |
| A2     | 0.90   | 1.00     | 1.10    | 2          |   | R3                  | 0. 70      | 0.80       | 0.90     | 1          |
| A2‴    | 0. 425 | 0. 550   | 0.675   | 2          |   | R4                  | 0. 70      | 0.80       | 0.90     | 1          |
| A3     | 7.60   | 7.70     | 7.80    | 2          |   | R5                  | 0. 70      | 0.80       | 0.90     | 1          |
| A4     | 1.05   | 1.10     | 1.15    | 2          |   | R6                  | 0. 70      | 0.80       | 0.90     | 1          |
| A5     | 0.85   | 0.90     | 0.95    | 2          |   | R7                  | 29.90      | 30.00      | 30. 10   | 1          |
| A6     | 8.10   | 8.30     | 8.50    | 2          |   | R10                 | 0. 10      | 0. 20      | 0. 30    | 1          |
| A7     | -      | -        | 1.88    | 2          |   | R11                 | 0. 10      | 0. 20      | 0.30     | 1          |
| A8     | 0.50   | 0.60     | 0. 70   | 2          |   | R12                 | 0. 10      | 0. 20      | 0.40     | 1          |
| A9     | 0.80   | -        | -       | 2          |   | R13                 | 0. 10      | 0. 20      | 0.40     | 1          |
| A10    | -      | -        | 1.50    | 2          |   | R14                 | 0. 10      | 0. 20      | 0. 40    | 1          |
| В      | 14.90  | 15.00    | 15.10   | 1          |   | R15                 | 0. 10      | 0. 20      | 0. 40    | 1          |
| B1     | 6.30   | 6.40     | 6.50    | 1          |   | R16                 | 0. 10      | 0. 20      | 0. 40    | 1          |
| B2     | 1.74   | 1.84     | 1.94    | 1          |   | R17                 | 0. 10      | 0. 20      | 0. 30    | 1          |
| B3     | 1.40   | 4.50     | 1.60    | 1          |   | R18                 | 0. 10      | 0. 20      | 0. 30    | 1          |
| B4     | 0. 42  | 0. 52    | 0.62    | 1          |   |                     |            |            |          |            |
| B5     | 3. 50  | 3.60     | 3. 70   | 2          |   | Note:               |            |            |          |            |
| B6     | 5. 50  | -        | -       | 2          |   | 1, Dimensio         | ons are in | millimete  | er.      |            |
| B7     | 0. 20  | 0. 30    | 0.40    | 2          |   |                     |            |            |          |            |
| B8     | 1.00   | 1.10     | 1.10    | 2          |   | Pin NO.             | PIN NAME   | (SD MODE)  | Critica  | ıl         |
| B9     | 8.60   | 8.80     | 9.00    | 2          |   | 1                   | DA         | .T2        | Dimensi  | ions to be |
| B10    | 7.80   | 7.90     | 8.00    | 2          |   | 2                   | CE/I       | DAT3       | monitor  | red in     |
| B11    | 1.10   | 1.20     | 1.30    | 2          |   | 3                   | CI         | ۷D         | Product  | tion       |
| B12    | 1      | -        | 0. 89   | 2          |   | 4 VDD               |            | Before     | Label    |            |
| С      | 0.90   | 1.00     | 1.10    | 1          |   | 5 CLK               |            | Attach     |          |            |
| C1     | 0. 65  | 0. 70    | 0. 75   | 1          | ] |                     |            | A, A", B,  | B8, B10  |            |
| C2     | 0. 20  | 0. 30    | 0. 40   | 1          |   | 7 DATAO After Label |            | abel       |          |            |
| C3     | 0.00   | 0. 10    | 0. 20   | 1          |   | 8 DATA1 Attach:     |            |            |          |            |
|        | 0.00   | 0.10     | 0.20    | T          |   |                     | DA         |            | A10, A7, | B12, C3    |

Above technical information is based on industry standard data and attested to be reliable. However, Netac Corp. makes no warranty; either expressed or implied as to its accuracy and assumes no liability in connection with the use of these products.

Netac reserves the right to make changes in specifications at any time without prior notice.