PRK3C autocollimation
Retro-reflective photoel. sensor with polarization filter
en 02-2017/02 50130058

$0 \ldots 5 \mathrm{~m}$

- Polarized retro-reflective photoelectric sensor with autocollimation optics and visible red light
- For precise positioning of objects and reflector marks, also at short range
- Small and compact construction with robust plastic housing, degrees of protection IP 67 and IP 69K, tested in accordance with Ecolab for industrial application
- Short response time and low jitter for the detection of fast events
- NEW: Variant with a second switching output in place of the teach input
- NEW: Housing variant with two integrated M3 metal threaded sleeves
- NEW: Housing variant with integrated slot-ted-hole mounting sleeve made of metal

Accessories:

(available separately)

- Mounting systems (BT ...)
- Cables with M8 or M12 connector (KD ...)
- Reflectors
- Reflective tapes
- IO-Link master set

SET MD12-US2-IL1.1 + accessories diagnostics set (part no. 50121098)

Dimensioned drawing

A Green indicator diode
B Yellow indicator diode
C Optical axis
D Teach button
E Mounting sleeve (standard)
F Threaded sleeve (PRK3C.B...)

Electrical connection

Connector, 3-pin

$\begin{array}{r} \hline 10-30 \mathrm{DC}+-1 \rightarrow) \frac{\mathrm{BR} / \mathrm{BN}}{\mathrm{BL} / \mathrm{BU}} \\ \mathrm{GND}-3 \backsim) \frac{\mathrm{SW} / \mathrm{BK}}{2} \end{array}$	

PRK3C autocollimation

Technical data

Optical data

Typ. operating range limit (TK(S) $100 \times \quad 0 \ldots 5 \mathrm{~m}$
100) ${ }^{1)}$

Operating range ${ }^{2}$
Light source ${ }^{3}$)
Wavelength

Sensor operating modes

IO-Link
SIO
Configuration

Timing

Switching frequency
Response time
Response jitter
Readiness delay
Electrical data
Operating voltage $\mathrm{U}_{\mathrm{B}}{ }^{5}$)
Residual ripple
Open-circuit current
Switching output
Function
Signal voltage high/low
Output current
Operating range

Indicators

Green LED
Yellow LED
Yellow LED, flashing
Mechanical data
Housing

Optics cover Weight

Connection type

Environmental data

Ambient temp. (operation/storage)
Protective circuit ${ }^{8}$
VDE safety class
Degree of protection
Light source
Standards applied
Certifications

Additional functions

Teach-in input/activation input
Transmitter active/not active
Activation/disable delay
Input resistance
see tables
LED (modulated light)
635 nm (visible red light, polarized)

COM2 (38.1 kBaud, Frame 2.5, Vers. 1.1 min . cycle time 2.3 ms) is supported
direct configuration / system commands; attention: data storage is not supported!
$1,500 \mathrm{~Hz}$
$0.33 \mathrm{~ms}{ }^{4}$
$110 \mu \mathrm{~s}$
$\leq 300 \mathrm{~ms}$
10... 30VDC (incl. residual ripple)
$\leq 15 \%$ of U_{B}
$\leq 15 \mathrm{~mA}$
see part number code on page 3
light/dark switching, adjustable
$\geq\left(\mathrm{U}_{\mathrm{B}}-2 \mathrm{~V}\right) / \leq 2 \mathrm{~V}$
max. $100 \mathrm{~mA}{ }^{6}$
setting via teach-in

ready

light path free
light path free, no function reserve
plastic (high-strength PC-ABS);
$2 x$ diecast zinc mounting sleeves or $2 \times \mathrm{M} 3$ brass threaded sleeves
plastic (PMMA)
with connector: 10 g
with 200 mm cable and connector: 20 g
with 2 m cable: 50 g
cable 2 m (cross section $4 \times 0.20 \mathrm{~mm}^{2}$), connector M8, metal, cable 0.2 m with connector M8 or M12
$\left.-40^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C} 7\right) /-40^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
2, 3
III
IP 67 and IP 69K
exempt group (in acc. with EN 62471)
EC 60947-5-2
UL 508, CSA C22.2 No.14-13 5) 9)

$$
\begin{aligned}
& \geq 0.65 * \mathrm{U}_{\mathrm{B}} / \leq 0.35 * \mathrm{U}_{\mathrm{B}} \\
& \leq 1 \mathrm{~ms} \\
& 20 \mathrm{k} \Omega
\end{aligned}
$$

1) Typ. operating range limit: max. attainable range without function reserve
2) Operating range: recommended range with function reserve
3) Average life expectancy $100,000 \mathrm{~h}$ at an ambient temperature of $25^{\circ} \mathrm{C}$
4) For short decay times, an ohmic load of approx. 5 kOhm is recommended
5) For UL applications: use is permitted exclusively in Class 2 circuits according to NEC
6) Sum of the output currents for both outputs, 50 mA for ambient temperatures $>40^{\circ} \mathrm{C}$
7) Permissible operating temperature range during IO-Link operation: $-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
8) $2=$ polarity reversal protection, $3=$ short circuit protection for all transistor outputs
9) These proximity switches shall be used with UL Listed Cable assemblies rated 30V, 0.5A min, in the field installation, or equivalent (categories: CYJV/CYJV7 or PVVA/PVVA7)

Tables

Reflectors			Operating range
1	TK(S)	100×100	$0 \ldots 4.0 \mathrm{~m}$
2	TKS	40×60.1	0... 2.6 m
3	TKS	20×40.1	$0 \ldots 1.3 \mathrm{~m}$
4	REF 4-A-	50×50	$0 \ldots 0.7 \mathrm{~m}$
1	0		$4{ }^{4} 5$
2	0	2.6	3.2
3	0	1.3	1.5
4	$0 \quad 0.7$	1.0	

> Operating range [m] \square Typ. operating range limit $[\mathrm{m}]$ TK \ldots = adhesive

TKS ... = screw type

Diagrams

A TK 100×100
B TKS 40×60
C TKS 20×40
D Tape 4: 50×50

Notes

Observe intended use!

${ }^{4} \Rightarrow$ This product is not a safety sensor and is not intended as personnel protection.
$\stackrel{\wedge}{\wedge}$ The product may only be put into operation by competent persons.
${ }^{\wedge}$) Only use the product in accordance with its intended use.

PRK3C autocollimation

Retro-reflective photoel. sensor with polarization filter

Part number code

		R \mathbf{K} 3 $\mathbf{3}$ C		B	A	3	/	4	P	-	0	0	-	M	1
Operating principle															
PRK	Retro-reflective photoelectric sensors with polarization filter														
Construction/version 3C SR3C series															
Light type															
N/A	Red light														
Radiation source															
N/A	LED														
Equipment															
N/A	Standard														
B	Housing model with two M3 threaded sleeves (brass)														
A	Autocollimation principle (single lens) for positioning tasks														
Operating range adjustment															
N/A	Operating range not adjustable														
3	Teach-in via button														
6	Auto-teach														
Switching output/function IN/OUT 1: Pin 4 or black conductor															
2	NPN transistor output, light switching														
N	NPN transistor output, dark switching														
4	PNP transistor output, light switching														
P	PNP transistor output, dark switching														
L	10-Link														
X	Not connected (n. c.)														
8	Activation input (activation with high signal)														
Switching output/function IN/OUT 2: Pin 2 or white conductor															
2	NPN transistor output, light switching														
N	NPN transistor output, dark switching														
4	PNP transistor output, light switching														
P	PNP transistor output, dark switching														
W	Warning output														
X	Not connected (n. c.)														
8	Activation input (activation with high signal)														
9	Deactivation input (activation with high signal)														
T	Teach-in via cable														
Electrical connection															
N/A	Cable, PVC, standard length 2000 mm , 4-wire														
M8	M8 connector, 4-pin (plug)														
M8.3	M8 connector, 3-pin (plug)														
200-M8	Cable, PVC, length 200 mm with M8 connector, 4-pin, axial (plug)														
200-M8.3	Cable, PVC, length 200 mm with M8 connector, 3 -pin, axial (plug)														
200-M12	Cable, PVC, length 200 mm with M12 connector, 4-pin, axial (plug)														

Order guide

The sensors listed here are preferred types; current information at www.leuze.com

Sensors with through-holes	
Part no.	

1) Packaging unit: $P U=10$ pcs.

Mounting systems

PRK3C autocollimation

Retro-reflective photoel. sensor with polarization filter

IO-Link interface

Sensors in the PRK3C.../L... variant have a dual-channel architecture. The IO-Link interface in accordance with specification 1.1.1 (October 2011) is provided on pin 4 (OUT 1). This allows the devices to be configured quickly and easily and, therefore, cost-effectively. Furthermore, the sensor transmits its process data and makes diagnostic information available through it.
Parallel to the IO-Link communication, the sensor can output the continuous switching signal for object detection on OUT 2. The IO-Link communication does not interrupt this signal.
Note: In Leuze Sensor Studio, the following applies with regard to the designations: Q1 = OUT 1, Q2 = OUT 2.

IO-Link process data

Output data device

Data bit								Assignment	Meaning
7	6	5	4	3	2	1	0		

1) Sensor operation off when detection is not possible (e.g during the teach event)

Input data device

Data bit								Assignment	Meaning
7	6	5	4	3	2	1	0		
								Deactivation	$0=$ transmitter active, 1 = transmitter inactive
								Not used	Free
								Not used	Free
								Not used	Free
								Not used	Free
								Not used	Free
								Not used	Free
								Not used	Free

Device-specific IODD

At www.leuze.com in the download area for IO-Link sensors you will find the IODD zip file with all data required for the installation.

IO-Link parameter documentation

A complete description of the IO-Link parameters is given in the *.html files. Please double-click one of the two language variants: *IODD*-de.html for German or *IODD*-en.html for English.

Functions configurable via IO-Link

PC configuration and visualization is performed comfortably with the USB-IO-Link Master SET US2-IL1.1 (part no. 50121098) and the Leuze Sensor Studio (in the download area of the sensor at www.leuze.com).

Function block	Function	Description
Configuration	Logical function of Q2	If the function Q2 = switching output is selected, the switching function corresponds to the current setting which was selected via the L/D changeover. If Q2 = inv. switching output is selected, the switching behavior of the output is inverted.
	Key Lock	On disables the teach button on the sensor.
	L/D switching	In the factory setting, outputs Q1 and Q2 are antivalent switching outputs: Light switching: Q1 = light switching, Q2 = dark switching. Dark switching: Q1 = dark switching, Q2 = light switching.
	Switching delay	On activates the internal time function.
	Function selection of the switching delay	Activation of a suitable switching delay is possible. It is not possible to combine switching delays.
	Time base of the switching delay	Possibility of selecting a time base.
	Factor for the time base of the switching delay	To adapt the time base, it is multiplied by the entered factor. Only whole-number factors from 1 to 15 are permitted.

Function block	Function	Description
Commands (The commands with a gray background cor- respond to the func- tions which can be performed at the sen- sor using the teach button or the remote teach function.)Standard teach for the detection of a partially transparent object (e.g. bottle for the detection of a transparent object (e.g. empty single bottle)	Clered glass)	Clear the light path before activation.
	Dark switching light path before activation.	
	Switch the process data display mode to analog value	Activate to display diagrams on the Process tab when using Leuze Sensor Studio.

PRK3C autocollimation

Retro-reflective photoel. sensor with polarization filter

Sensor adjustment (teach) via teach button

The sensor is factory-adjusted for maximum operating range. The teach procedure is only necessary if the sensor does not switch when an object enters the light beam.

| (1) Standard teach (low sensitivity) | | (2) Sensitive teach (increased sensitivity) | |
| :--- | :---: | :---: | :---: |$|$| Clear the light path before teaching! |
| :---: |

(3) Teach at max. operating range (factory setting)		(4) Set switching behavior (light/dark switching)	
Obstruct the light path before teaching!		When the function is activated, the switching output is always inverted relative to the previously set state (toggle function).	
			Hold down the teach button longer than 12s until only the green LED flashes.
1.	Hold down the teach button ($\mathbf{2}$ to $\mathbf{7 s}$) until the yellow and green LEDs flash simultaneously.	1.	LED ON: Switching output now light switching (Output active if light path is free) LED OFF: Switching output now dark switching (Output active if there is an object in the light path)
2.	Release teach button - ready.	2.	Release teach button - ready.
	The sensor now operates with the maximum function reserve/operating range.		Note: The yellow LED is not dependent on the switching behavior setting and always indicates light switching in normal operation.
Device settings are stored fail-safe.			

Sensor adjustment (teach) via teach input (pin 2)

The following description applies to PNP switching logic!
Signal level LOW $\leq \mathbf{2 V}$
Signal level HIGH $\geq\left(\mathrm{U}_{\mathrm{B}}-2 \mathrm{~V}\right)$
With the NPN models, the signal levels are inverted!

Standard teach (low sensitivity)

Sensitive teach (increased sensitivity)

Light switching logic

Switching outputs light switching, this means outputs active when object is detected.
In the case of complementary switching outputs, OUT1 (pin 4) light switching, OUT2 (pin 2) dark switching.

Dark switching logic

Switching outputs dark switching, this means outputs inactive when object is detected.
In the case of complementary switching outputs, OUT1 (pin 4) dark switching, OUT2 (pin 2) light switching.

Locking the teach button via the teach input

A static high signal ($\geq 20 \mathrm{~ms}$) at the teach input locks the teach button on the sensor if required, such that no manual operation is possible (e.g., protection from erroneous operation or manipulation).

If the teach input is not connected or if there is a static low signal, the button is unlocked and can be operated freely.

