PS5R-V
 Switching Power Supplies

Ultimate Downsizing

Conventional

Volume:
Approx. 50\% less ${ }^{3}$

Width:
Approx. 40% less ${ }^{-3}$

PS5R-V

Reduced installation space

- Required space between the switching power supplies reduced to half *1
- Size is reduced to the smaller output capacity (30W/90W/120W) *2

Reduced wiring \& flexible installation

- Less wiring required
- Can be installed in six directions

Improved reliability

- Five-year warranty ${ }^{* 1}$
- Operating temperature -25 to $+75^{\circ} \mathrm{C}$ *1
*1 For details on specification or operating conditions, see catalog or manual.
*2 Compared with conventional PS5R-S model.
*3 Compared with conventional PS5R-S output capacity 30W model.

Reduces installation space inside the panel

Reduced wiring \& flexible installation

Reduced wiring

Spring-up terminals accepts wiring of ring terminals.
No need to worry about loosing screws .

Six mounting directions

Suitable for global and semiconductor applications

Compliant with International
Safety Standards

(100V to 240V AC input)

Meets SEMI F47 Sag Immunity (208V AC input)

Voltage sag ride-through capabilities for semiconductor process equipment, metering equipment and automatic test equipment.
(208V AC input)

PS5R-V Switching Power Supplies

Space-saving DIN-rail switching power supplies

- Spring-up terminal accepts wiring of ring terminals.
- Slim size

Width: 22.5 mm (10W/15W/30W), 36 mm (60W/90W), 46 mm (120W), 60 mm (240W)

- Can be installed in six mounting directions.
- Optional mounting bracket is available for panel mounting.
- CE marked (LVD, EMCD, RoHS)
- UL (UL508, UL1310 Class 2*1, ANSI/ISA 12.12.01)
c-UL (CSA C22.2 No. 107.1, 213, 223*1)
TÜV SÜD (EN60950-1, EN50178)
- SELV (UL60950-1 [*1], EN60950-1)
- EN61204-3 (Electromagnetic compatibility Class B)
- Meets SEMI F47 Sag Immunity (208V AC input)
- RoHS compliant
- Five-year warranty

Applicable Standards	Mark	File No. or Organization
UL508, UL1310*1 ANSI/ISA 12.12.01 CSA C22.2 No.107.1 CSA C22.2 No. 213 CSA C22.2 No.223*1	$\underbrace{\text { UL }}_{\text {LISTED }}$	UL/c-UL Listed File No. E177168 File No. E467154
EN60950-1	(iv)	TÜV SÜD*2
EN61204-3 EN50581	$C E$	EU Low Voltage Directive EMC Directive RoHS Directive
SEMI F47	-	EPRI

*1: PS5R-VB/VC/VDNE only
*2: EN60950-1, EN50178 only

PS5R-V

Output Capacity	Part No.	Input Voltage	Output Voltage	Output Current
10W	PS5R-VB05	100 to 240 V AC (Voltage range: 85 to 264V AC / 100 to 370 V DC)	5 V	2.0 A
15W	PS5R-VB12		12 V	1.3A
	PS5R-VB24		24 V	0.65 A
30W	PS5R-VC12		12 V	2.5 A
	PS5R-VC24		24 V	1.3A
60W	PS5R-VD24		24 V	2.5 A
90W	PS5R-VE24		24 V	3.75A
120W	PS5R-VF24		24 V	5.0A
240W	PS5R-VG24		24 V	10.0A

DIN Rail (35mm-wide)

Length	Part No.	Material	Weight	Package Quantity
1000 mm	BAA1000PN10	Aluminum	200 g	10
	BAP1000PN10	Steel	320 g	

End Clip

Part No.	Package Quantity
BNL6PN10	10

Panel Mounting Bracket*3

Applicable Switching Power Supply	Ordering No.	Remarks
PS5R-VB PS5R-VC	PS9Z-5R1B	-
	PS9Z-5R2B	For side mounting
PS5R-VD PS5R-VE	PS9Z-5R1C	-
PS5R-VF	PS9Z-5R1E	-
PS5R-VG	PS9Z-6R1F	-
	PS9Z-6R2F	For side mounting

Part No. Development

$\underline{\text { PS5R - V } \square \square}$	
Switching Power \quad	L_ Output Voltage Code
Supply	05: $5 \mathrm{~V} \times 4$
Slim Line	$\begin{aligned} & \text { 12: } 12 \mathrm{~V} * 5 \\ & \text { 24: } 24 \mathrm{~V} \end{aligned}$
	Output Capacity Code
	B: $10 \mathrm{~W} / 15 \mathrm{~W}$ C: 30W
	D: 60W
Use for interpreting part numbers.	E: 90W
	F: 120W
	G: 240 W
	*4: PS5R-VB only
	*5: PS5R-VB/NC only

[^0]Specifications

Part No.			(10W/15W) PS5R-VB05 PS5R-VB12 PS5R-VB24	(30W) PS5R-VC12 PS5R-VC24	$\begin{gathered} (60 \mathrm{~W}) \\ \text { PS5R-VD24 } \end{gathered}$	$\begin{gathered} \text { (90W) } \\ \text { PS5R-VE24 } \end{gathered}$	$\begin{gathered} (120 W) \\ \text { PS5R-VF24 } \end{gathered}$	$\begin{gathered} (240 \mathrm{~W}) \\ \text { PS5R-VG24 } \end{gathered}$
Rated Input Voltage(Single-phase two-wire)*1			100 to 240 V AC (Voltage range: 85 to 264 V AC/100 to 370 V DC) (Load $\leq 80 \%$ at $100-105 \mathrm{~V}$ DC)					
Frequency			$50 / 60 \mathrm{~Hz}$					
Input Current (Typ.)		100 VAC	$\begin{array}{cc} \hline 5 \mathrm{~V}: & 0.25 \mathrm{~A} \\ \text { 12V, } 24 \mathrm{~V}: & 0.35 \mathrm{~A} \\ \hline \end{array}$	0.7A	1.3A	1.1A	1.4A	2.7A
		230 VAC	$\begin{array}{\|cc} \hline 5 \mathrm{~V}: & 0.14 \mathrm{~A} \\ 12 \mathrm{~V}, 24 \mathrm{~V}: & 0.19 \mathrm{~A} \\ \hline \end{array}$	0.3A	0.8A	0.6A	0.7A	1.2A
	Inrush Current (Typ.)	100V AC	$18 \mathrm{~A}\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right.$, cold start)					14A max. ($\mathrm{Ta}=25^{\circ} \mathrm{C}$, cold start)
产		230 VAC	45 A ($\mathrm{Ta}=25^{\circ} \mathrm{C}$, cold start)					30A max. ($\mathrm{Ta}=25^{\circ} \mathrm{C}$, cold start)
Leakage Current		120 VAC	0.5 mA max.					
		230 VAC	1.0 mA max.					
Efficiency (Typ.) (at rated output) ${ }^{*}$ 2		100 VAC	5V: 77\%, 12V: 82\%, 24V: 84\%	12V: $83 \%, 24 \mathrm{~V}$: 85%	86\%	88\%		89\%
		230 VAC	5V: 73\%, 12V: 80\%, 24V: 81\%	12V: 85\%, 24V: 87\%	86\%	89\%		90\%
Power Factor (Typ.)		100V AC	-	-	-	0.99		
		230 VAC	-	-	-	0.86	0.92	0.96
Rated Voltage/Current						24V/3.75A	24V/5A	24V/10A
Adjustable Voltage Range						$\pm 5 \%$	$\pm 10 \%$	
Output Holding Time (Typ.) (at rated output)		100V AC	$\begin{array}{\|r\|} \hline 5 \mathrm{~V}: 53 \mathrm{~ms} \\ 12 \mathrm{~V}: 34 \mathrm{~ms} \\ 24 \mathrm{~V}: 36 \mathrm{~ms} \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 12 \mathrm{~V}: ~ 13 \mathrm{~ms} \\ 24 \mathrm{~V}: 15 \mathrm{~ms} \end{array}$	13 ms	20 ms	30 ms	30 ms
		230 VAC	$5 \mathrm{~V}: 330 \mathrm{~ms}$ 12V: 215 ms 24V: 230ms	$\begin{aligned} & \text { 12V: } 110 \mathrm{~ms} \\ & \text { 24V: } 110 \mathrm{~ms} \end{aligned}$	105ms	30 ms	33 ms	40ms
	Start Time (at rated input and output)		500 ms max.	600 ms max .	800 ms max.		700 ms max .	800 ms max.
	Rise Time (at rated input and output)		5V, 12V: 200ms max. 24V: 250 ms max.	200ms max.				
를	Input Fluctuation		0.4\% max.					
	Load Fluctuation		$\begin{array}{lr} \hline 5 \mathrm{~V}: \quad 2.5 \% \text { max. } \\ \text { 12V, 24V: } 1.0 \% \text { max. } \end{array}$	1.0\% max.				
	Temperature Change		$\begin{aligned} & 0.05 \% / /^{\circ} \mathrm{Cmax} . \\ & \left(-10 \text { to }+65^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 12V: } 0.05 \% /{ }^{\circ} \mathrm{C} \text { max. }\left(-10 \text { to }+50^{\circ} \mathrm{C}\right) \\ & \text { 24V: } 0.05 \% /{ }^{\circ} \mathrm{C} \text { max. }\left(-10 \text { to }+55^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	$0.05 \% /{ }^{\circ} \mathrm{C}$ max. (-10 to $+55^{\circ} \mathrm{C}$)		0.05\%/ ${ }^{\circ} \mathrm{C}$ max. (-25 to $\left.+55^{\circ} \mathrm{C}\right)$	
	Ripple (including noise)		5V: 8\% p-p max. (-25 to $-10^{\circ} \mathrm{C}$) 12V: 6% p-p max. $\left(-25\right.$ to $\left.-10^{\circ} \mathrm{C}\right)$ 24V: 4\% p-p max. (-25 to $-10^{\circ} \mathrm{C}$)	12V: 6% p-p max. $\left(-25\right.$ to $\left.-10^{\circ} \mathrm{C}\right)$ 24V: 4% p-p max. (-25 to $-10^{\circ} \mathrm{C}$)	$4 \% \mathrm{p}$ p max. (-25 to $-10^{\circ} \mathrm{C}$)		4\% p-p max. (-25 to - $10^{\circ} \mathrm{C}$)	
			5V: 5\% pppmax. (-10 to $+0^{\circ} \mathrm{C}$) 12V: 2.5% p-p max. $\left(-10\right.$ to $\left.+0^{\circ} \mathrm{C}\right)$ 24V: 1.5% p-p max. $\left(-10\right.$ to $\left.+0^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { 12V: } 2.5 \% \text { ppp max. }\left(-10 \text { to }+0^{\circ} \mathrm{C}\right) \\ & 24 \mathrm{~V}: 1.5 \% \text { p-p } \max .\left(-10 \text { to }+0^{\circ} \mathrm{C}\right) \end{aligned}$	1.5\% p-p max. (-10 to $+0^{\circ} \mathrm{C}$)		1.5\% p-p max. (-10 to $+0^{\circ} \mathrm{C}$)	
			5V: 2.5\% p-p max. (0to $\left.+65^{\circ} \mathrm{C}\right)$ 12V: $1.5 \% \mathrm{p}$-p max. $\left(0\right.$ to $\left.+65^{\circ} \mathrm{C}\right)$ 24:: 1\% p-p max. (0to $+65^{\circ} \mathrm{C}$)	12V: 1.5\% p-p max. $\left(0\right.$ to $\left.+50^{\circ} \mathrm{C}\right)$ 24V: 1\% p-p max. (0 to $+55^{\circ} \mathrm{C}$)	1\% p-p max. (0 to $+55^{\circ} \mathrm{C}$)		1\% p-p max. (0 to $+55^{\circ} \mathrm{C}$)	
Supple- mentary Overcurrent Protection Oun			105\% min. (auto reset)			101\% min. (auto reset)	105\% min. (auto reset)	
Functions Operation Indicator			LED (green)					
Dielectric Strength			Between input and output terminals: $3,000 \mathrm{VAC}, 1$ minute Between input and ground terminals: $2,000 \mathrm{VAC}, 1$ minute Between output and ground terminal: 500 V AC, 1 minute					
Insulation Resistance			Between input and output terminals: $100 \mathrm{M} \Omega$ min. (500 V DC megger), Between input and ground terminal: $100 \mathrm{M} \Omega$ min. (500V DC megger)					
Operating Temperature *4			-25 to $+75^{\circ} \mathrm{C}$ (no freezing) ${ }^{\text {a }}$-25 to $+70^{\circ} \mathrm{C}$ (no freezing)			-25 to $+65^{\circ} \mathrm{C}$ (no freezing)		
Operating Humidity			20 to 90\% RH (no condensation)					
Storage Temperature			-25 to $+75^{\circ} \mathrm{C}$ (no freezing)					
Storage Humidity			20 to 90\% RH (no condensation)					
Vibration Resistance			10 to 55 Hz , amplitude 0.375 mm , 2 hours each in 3 axes (when used with part no. BNL6 mounting clips)		10 to 55 Hz , amplitude 0.33 mm , 2 hours each in 3 axes (when used with part no. BNL6 mounting clips) 10 to 55 Hz , amplitude 0.375 mm , 2 hours each in 3 axes (when used with part no. BNL8 mounting clips)		10 to 55 Hz , amplitude 0.21 mm , 2 hours each in 3 axes (when used with part no. BNL6 mounting clips) 10 to 55 Hz , amplitude $0.375 \mathrm{~mm}, 2$ hours each in 3 axes (when used with part no. BNL8 mounting clips)	10 to 55 Hz , amplitude $0.375 \mathrm{~mm}, 2$ hours each in 3 axes (when used with part no. BNL6 mounting clips)
Shock Resistance			$300 \mathrm{~m} / \mathrm{s}^{2}, 3$ times each in 6 directions					
EMC		EMI	EN61204-3 (Class B)					
		EMS	EN61204-3 (industrial)					
Safety Standards			UL508 (Listing), UL1310 Class 2, ANSI/ISA-12.12.01, CSA C22.2 No. 107.1, 213, 223 EN60950-1, EN50178, SELV (UL60950-1, EN60950-1)				UL508 (Listing), ANSI/SA-12.12.01, CSA C22.2 No. 107.1, 213, EN60950-1, EN50178, SELV (EN60950-1)	
Other Standard			SEMI F47 (at 208V AC input only)					
Degree of Protection			IP20 (EN60529)					
Dimensions (mm)			$90 \mathrm{H} \times 22.5 \mathrm{~W} \times 95 \mathrm{D}$		$95 \mathrm{H} \times 36 \mathrm{~W} \times 108 \mathrm{D}$		$115 \mathrm{H} \times 46 \mathrm{~W} \times 121 \mathrm{D}$	$125 \mathrm{H} \times 60 \mathrm{~W} \times 125 \mathrm{D}$
Weight (approx.)			140 g	150g	260g	310 g	470 g	960 g
Terminal Screw			M3.5					

At normal temperature and humidity unless otherwise specified.
1: DC input voltage is not subject to safety standards. When using on DC input, connect a fuse to the input terminal for DC input protection.
${ }^{*}$ 2: Under stable state. $\quad{ }^{*} 3$: PS5R-VB05 ($5 \mathrm{~V} \mathrm{DC} / 2.0 \mathrm{~A}$) is 10 W (Up to 3.0 A at $\mathrm{Ta}=0$ to $40^{\circ} \mathrm{C}$. Not subject to safety standards at 2.0 A and over.)
*4: See the output derating curves on page 5 .

Reference Value

Expected Life $* 5$	8 years minimum (at the rated input, 50% load, operating temperature $+40^{\circ} \mathrm{C}$, standard mounting direction)

${ }^{*} 5$: Calculation of the expected life is based on the actual life of the aluminum electrolytic capacitor. The expected life depends on operating conditions.

Block Diagrams

PS5R-VB

PS5R-VC/PS5R-VD

PS5R-VE24

PS5R-VF24

PS5R-VG24

Characteristics

Operating Temperature vs. Output Current (Derating Curves)

Conditions: Natural air cooling (Operating temperature is the temperature around the switching power supply.)

PS5R-VB05, -VB12, -VB24

PS5R-VC12

PS5R-VC24

PS5R-VD24

PS5R-VE24

PS5R-VF24

PS5R-VG24

Operating Temperature Approved by Safety Standards

| Part No. | UL508, CSA C22.2 No.107.1, ANSI/ISA12.12.01, EN60950-1, EN50178 | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |

Mounting Style

Up
1

Output Current vs. Input Voltage
(derating curves)
PS5R-VG24

Overcurrent Protection Characteristics

PS5R-VB/VC/VD/VF

PS5R-VE24

PS5R-VG24

Parts Description

Marking	Name	Description
L, N	AC Input Terminal	Voltage range: 85 to 264 V AC/100 to 370V DC
\oplus	Ground Terminal	Be sure to connect this terminal to a proper ground.
+ V, -V	DC Output Terminals	+V: Positive output terminal -V: Negative output terminal
VR.ADJ	Output Voltage Adjustment	Turning clockwise increases the output voltage. Turning counterclockwise decreases the output voltage.
DC ON	Operation Indicator (green)	Lights when the output voltage is on.

Dimensions
PS5R-VB/VC

PS5R-VD/VE

PS5R-VF

PS5R-VG

Dimensions

Panel Mounting Bracket

PS9Z-5R1B

PS9Z-5R2B Side-mount

PS9Z-5R1C

PS9Z-5R1E

PS9Z-6R1F

PS9Z-6R2F Side-mount

When installed on switching power supply

Front View

Side View

Front View

. Safety Precautions

```
Mount the PS5R-V in an enclosure. Do not use the PS5R-V alone as an Electric Facilities for General Use.
Use the PS5R-V for electric facilities for business use only.
```

- Do not use switching power supplies with electric equipment whose malfunction or inadvertent operation may damage the human body or life directly.
- Make sure that the input voltage and output current do not exceed the ratings If the input voltage and output current exceed the ratings, electric shock, fire, or malfunction may occur.
- Do not touch the terminals of the switching power supply while input voltage is applied, otherwise electric shock may occur.
- Provide the final product with protection against malfunction or damage that may be caused by malfunction of the switching power supply.
- Operating temperatures should not exceed the ratings. Be sure to note the derating characteristics. If the operating temperature exceeds the ratings, electric shock, fire, or malfunction may occur.
- Blown fuses indicate that the internal circuits are damaged. Contact IDEC for repair. Do not just replace the fuse and reoperate, otherwise electric shock, fire, or malfunction may occur.
- Do not use the switching power supplies to charge rechargeable batteries
- Do not overload or short-circuit the switching power supply for a long period of time, otherwise the internal elements may be damaged.
- Do not disassemble, repair, or modify the power supplies, otherwise the high voltage internal part may cause electric shock, fire, or malfunction.
- The fuse inside the PS5R-V switching power supply is for AC input. Use a DC fuse for DC input.

Operating Instructions

Notes for installation

- Do not close the top and bottom openings of the PS5R-V to allow for heat radiation by convection
- Maintain a minimum of 10 mm clearance around the PS5R-V, except for the top and bottom openings.
- When mounting multiple PS5R-V switching power supplies side by side, maintain a minimum of 10 mm clearance. Observe the derating curves in consideration of the ambient temperature.

- When the derating voltage may exceed the recommended value, provide forced air-cooling.
- Make sure to wire the ground terminal correctly.
- For wiring, use wires of heat resistance of $60^{\circ} \mathrm{C}$ or higher (PS5R-VB: $80^{\circ} \mathrm{C}$ or higher). Use copper wire of the following sizes, according to the rated current.

Terminal	Wire Size (allowable current)	Wire Type
Input	AWG18 to 14	Copper
Output	AWG18 to 14	Solid/Stranded

Cross-sectional area
AWG18: $0.82 \mathrm{~mm}^{2}$, AWG16: $1.31 \mathrm{~mm}^{2}$, AWG14: $2.0 \mathrm{~mm}^{2}$
Note: Wires of the above size must be used to comply with UL508, CSA
C22.2 No. 107.1.

Applicable crimp terminal (reference)

- Recommended tightening torque of the input and output terminals is 1.0 to $1.3 \mathrm{~N} \cdot \mathrm{~m}(0.8 \mathrm{~N} \cdot \mathrm{~m}$ for UL).

Mounting on DIN Rails

1. Use a 35 mm -wide DIN rail
2. Fasten the DIN rail to a mounting plate using screws.
3. Place the PS5R-V on the DIN rail as shown with input terminal side up (1), and press the PS5R-V towards the DIN rail (2). Make sure that the PS5R-V is installed firmly.
4. Use BNL6 mounting clips for fastening the PS5R-V on the DIN rail. Use of BNL8 mounting clips is recommended when excessive vibration or shock is anticipated. Do not use the PS5R-V when it is subject to vibration constantly.

Removal

- Insert a flat screwdriver into the slot in the clamp, and pull out the clamp until it clicks (3). The lock mechanism is released and the PS5R-V can be removed (4)). When mounting the PS5R-V again, push in the latch first.

Operating Instructions

Installing the Panel Mounting Bracket
<Installing PS9Z-5R1■ Panel Mounting Bracket>

(1) Push in the latch to LOCK position.

(2) Install the tab on the panel mounting bracket into the slot on the power supply.
(3) Install the brackets as shown on the left.
(4) Ensure that the panel mounting bracket is locked by the latch.
<Installing PS9Z-5R2B Panel Mounting Bracket>

Adjustment of Output Voltage

The output voltage can be adjusted within $\pm 10 \%$ of the rated output voltage (PS5R-VE: $\pm 5 \%$) by using the VR.ADJ control on the front. Turning the VR.ADJ clockwise increases the output voltage. Turning the VR.ADJ counterclockwise decreases the output voltage.

Overcurrent Protection

The output voltage drops automatically when an overcurrent flows due to an overload or short circuit. Normal voltage is automatically restored when the load returns to normal conditions.

Insulation/Dielectric Test

When performing an insulation/dielectric test, short-circuit the input (between L and N) and output (between $+V$ and $-V$). Do not apply or interrupt the voltage quickly, otherwise surge voltages may be generated and the PS5R-V may be damaged.

Notes for Operation

- Output interruption may indicate blown fuses. Contact IDEC.
- The PS5R-V switching power supply contains an internal fuse for AC input. When using with DC input, install an external fuse for DC input. To avoid blown fuses, select a fuse in consideration of the rated current of the internal fuse.
Rated Current of Internal Fuses

Part No.	Internal Fuse Rated Current
PS5R-VB/VC	2 A
PS5R-VD/VE/NF	4 A
PS5R-VG	6.3 A

- Avoid overload and short-circuit for a long period of time, otherwise the internal elements may be damaged.
- DC input operation is not subject to safety standards.

Rust and Scratches on Metal parts

Hot-dip galvanized steel and bonderized steel are used for the PS5R-V. Rust on the edge and scratches on the surfaces may be developed depending on the storage condition, but the performance of the PS5R-V is not affected.

Noise

Small acoustic noise inside the PS5R-V may be heard depending on the input voltage and load, but the performance of the PS5R-V is not affected.

Installing PS9Z-6R2F Side-mount Panel Mounting

Bracket

Install the bracket on the switching power supply using four M3 $\times 6$ countersunk screws supplied with the bracket.

Operating Instructions

Series Operation

The following series operation is allowed. In (b) series operation, connect Schottky barrier diodes. Choose (a) series operation when using the PS5R-V as positive and negative output power supply. Insert a Shottky barrier diode for loads such as operational amplifier where outputs of two power supplies may be connected in series (Load 3). Select a Schottky diode in consideration of the rated current.

Parallel Operation

Parallel operation is not possible to increase the output capacity, because the internal elements and load may be damaged.

Backup Operation

Backup operation is a connection method of two switching power supplies in parallel for emergency. Normally one switching power supply has a sufficient output. If one switching power supply fails, another one operates to continue the output. Make sure that the sum of power consumption by load and diode is not greater than the rated wattage (rated voltage \times rated current) of one switching power supply.

Select a diode in consideration of:
Diode's current must be more than double the PS5R-V's output current. Take heat dissipation into consideration.

Warranty

Warranty

IDEC warrantees the PS5R-V switching power supplies for a period of five years from the date of shipment.

Scope

IDEC agrees to repair or replace the PS5R-V switching power supply if the product has been operated under the following conditions. The maximum value of output capacity is within the range shown in "Operating Temperature vs. Output Current" on page 5.

1. Average operating temperature (ambient temperature of switching power supply) is $40^{\circ} \mathrm{C}$ maximum.
2. The load is 80% maximum.
3. Input voltage is the rated input voltage.
4. Standard mounting style

IDEC shall not be liable for other damages including consequential, contingent or incidental damages. Warranty does not apply if the PS5R-V switching power supply was subject to:

1. Inappropriate handling, or operation beyond the specifications.
2. Modification or repair by other than IDEC.
3. Failure caused by other than the PS5R-V switching power supply
4. Failure caused by natural disasters.

IDEC CORPORATION

Head Office
6-64, Nishi-Miyahara-2-Chome, Yodogawa-ku, Osaka 532-0004, Japan

USA	IDEC Corporation	Tel: $+1-408-747-0550$	opencontact@idec.com	Hong Kong	IDEC Izumi (H.K.) Co., Ltd.	Tel: $+852-2803-8989$	info@hk.idec.com
Germany	IDEC Elektrotechnik GmbH	Tel: $+49-40-253054-0$	service@eu.idec.com	China/Shanghai	IDEC (Shanghai) Corporation	Tel: $+86-21-6135-1515$	idec@cn.idec.com
Singapore	IDEC Izumi Asia Pte. Ltd.	Tel: $+65-6746-1155$	info@sg.idec.com	China/Shenzhen	IDEC (Shenzhen) Corporation	Tel: $+86-755-8356-2977$	idec@cn.idec.com
Thailand	IDEC Asia (Thailand) Co., Ltd	Tel: $+66-2-392-9765$	sales@th.idec.com	China/Beijing	IDEC (Beiiing) Corporation	Tel: $+86-10-6581-6131$	idec@cn.idec.com
Australa	IDEC Australia Pty. Ltd.	Tel: $+61-3-8523-5900$	sales@au.idec.com	Japan	IDEC Corporation	Tel: $+81-6-6398-2527$	marketing@idec.co.jp
Taiwan	IDEC Taiwan Corporation	Tel: $+886-2-2698-3929$	service@tw.idec.com				

Specifications and other descriptions in this brochure are subject to change without notice.
2017 IDEC Corporation, All Rights Reserved.

[^0]: *3: Used for direct panel mounting.

