PX series

$105^{\circ} \mathrm{C}$ Standard

FEATURES

- RoHS compliance.

SPECIFICATIONS

Iterns	Characteristics																
Category Temperature Range	$-55 \sim+105^{\circ} \mathrm{C}$					$-40 \sim+105^{\circ} \mathrm{C}$							$-25 \sim+105^{\circ} \mathrm{C}$				
Rated Voltage Range	$6.3 \sim 100 \mathrm{~V} . \mathrm{DC}$					160~400V.DC							450V.DC				
Capacitance Tderance	$\pm 20 \%\left(20^{\circ} \mathrm{C}, 12 \mathrm{OHz}\right)$																
Leakage Current(MAX)	6.3~100V.DC								160~450V.DC								
	$\mathrm{I}=0.01 \mathrm{CV}$ or $3 \mu \mathrm{~A}$ whichever is greater. (After 2 minutes application of rated voltage)								$C V \leqq 1000$						$C V>1000$		
									$\begin{aligned} & \mathrm{I}=0.1 \mathrm{CV}+40 \mu \mathrm{~A} \text { (} 1 \text { minute) } \\ & \mathrm{I}=0.03 \mathrm{CV}+15 \mu \mathrm{~A} \text { (5minutes) } \end{aligned}$						$\begin{aligned} & \mathrm{I}=0.04 \mathrm{CV}+100 \mu \mathrm{~A} \text { (1 minute) } \\ & \mathrm{I}=0.02 \mathrm{CV}+25 \mu \mathrm{~A} \text { (} 5 \text { minutes) } \end{aligned}$		
	$\mathrm{I}=(\mu \mathrm{A})$ $\mathrm{C}=(\mu \mathrm{F})$ $\mathrm{V}=(\mathrm{V})$ Leakage Curent Rated Capacitance Rated Voltage																
$\begin{aligned} & (\tan \delta) \\ & \text { Dissipation Factor(MAX) } \end{aligned}$	Rated Voltage	6.3	10	16	25	35	50	63	100	160	200	250	350	0400	-450	$\left(20^{\circ} \mathrm{C}, 120 \mathrm{~Hz}\right)$	
	$\tan \delta$	0.28	0.24	0.20	0.16	0.14	0.12	0.10	0.08	0.20	0.20	0.20	0.25	550.25	50.25		
	When rated capacitance is over $1000 \mu \mathrm{~F}$, tan δ shall be added 0.02 to the listed value with increase of every $1000 \mu \mathrm{~F}$.																
Endurance	After life test with rated ripple current at conditions stated in the table below, the capacitors shall meet the following requirements.																
	Capacitance Change				Within $\pm 25 \%$ of the initial value.									$\begin{aligned} & \text { Case } \\ & \text { Size } \end{aligned}$			(hrs) Life Time
	Dissipation Factor				Not more than 200% of the specified value.									$\phi \mathrm{D} \leqq 8$			1000
	Leakage Current				Not more than the specified value.									$\phi \mathrm{D} \geq 10$			2000
Low Temperature Stability Impedance Ratio(MAX)	Rated Voltage		6.3	10	16	25	35	50	63	100	160	200	250	350	400	450	$(120 H z)$
	Z $\left(-25^{\circ} \mathrm{C}\right) / \mathrm{Z}\left(20^{\circ} \mathrm{C}\right)$		5	4	3	2	2	2	2	2	3	3	4	6	6	7	
	Z $\left(-40^{\circ} \mathrm{C}\right) / \mathrm{Z}\left(20^{\circ} \mathrm{C}\right)$		10	8	6	4	3	3	3	3	4	4	8	8	10	-	

MULTIPLIER FOR RIPPLE CURRENT
Frequency Coefficient

$\begin{gathered} (\mathrm{Hz}) \\ \text { Frequency } \end{gathered}$		6050)	120	500	1k	10k
Coelficient	$0.47 \sim 1 \mu \mathrm{~F}$	0.50	1.00	1.20	1.3	1.50
	$2.2 \sim 4.7 \mu \mathrm{~F}$	0.65	1.00	1.20	1.30	1.50
	10~47 $\mu \mathrm{F}$	0.80	1.00	1.20	1.30	1.50
	100~1000 $\mathrm{\mu}$	0.80	1.00	1.10	1.15	1.20
	2200~33000 HF	0.80	1.0	1.05	1.10	

-OPTION

	Code
PET Sleeve	EFC

(mm)

PART NUMBER

STANDARD SIZE

WV $(V . D C)$	$\begin{aligned} & \hline 6.3 \\ & \text { (0J) } \end{aligned}$		$\begin{array}{r} 10 \\ (1 \mathrm{~A}) \\ \hline \end{array}$		$\begin{gathered} 16 \\ (1 \mathrm{C}) \\ \hline \end{gathered}$		$\begin{gathered} 25 \\ (1 \mathrm{E}) \end{gathered}$		$\begin{gathered} 35 \\ \text { (1V) } \\ \hline \end{gathered}$		$\begin{gathered} 50 \\ (1 \mathrm{H}) \end{gathered}$		$\begin{gathered} 63 \\ (1 \mathrm{~J}) \end{gathered}$	
$C a p(\mu \mathrm{~F})$	Size	Ripple												
0.47											5×11	7		
1											5×11	13		
2.2											5×11	20		
3.3											5×11	25		
4.7											5×11	32		
10											5×11	47	5×11	48
22									5×11	64	5×11	70	5×11	80
33							5×11	69	5×11	77	5×11	94	6.3×11	100
47					5×11	80	5×11	84	5×11	100	6.3×11	115	6.3×11	140
100	5×11	96	5×11	105	5×11	130	5×11	135	6.3×11	170	8×11.5	200	8×11.5	230
220	5×11	160	5×11	165	6.3×11	220	6.3×11	240	8×11.5	300	10×12.5	360	10×16	390
330	6.3×11	210	6.3×11	235	6.3×11	270	8×11.5	335	10×12.5	400	10×16	470	10×20	540
470	6.3×11	275	6.3×11	295	8×11.5	375	8×11.5	440	10×12.5	525	10×20	600	12.5×20	700
680	6.3×11	285	8×11.5	430	8×11.5	480	10×12.5	630	10×16	760	12.5×20	980	12.5×25	800
1000	8×11.5	460	8×11.5	500	10×12.5	640	10×16	740	10×20	865	12.5×25	1060	16×25	1200
2200	10×16	775	10×16	860	10×20	1050	12.5×20	1090	16×25	1370	16×31.5	1600	18×31.5	1400
3300	10×20	985	10×20	11100	12.5×20	1300	16×25	11500	16×25	11680	18×35.5	1780		
4700	12.5×20	1150	12.5×20	1350	12.5×25	1650	16×25	1800	16×35.5	1870				
6800	12.5×25	1480	16×25	1700	16×25	1900	16×35.5	1910	18×35.5	1920				
10000	16×25	1700	16×25	1950	16×31.5	1950	18×35.5	2050						
15000	16×31.5	2090	16×35.5	:2090	18×35.5	2070								
22000	18×31.5	2280	18×35.5	\|2180										
33000	18×40	2350												

	$\begin{aligned} & 100 \\ & (2 \mathrm{~A}) \\ & \hline \end{aligned}$		$\begin{array}{r} 160 \\ (2 \mathrm{C}) \\ \hline \end{array}$		$\begin{array}{r} 200 \\ (2 \mathrm{D}) \\ \hline \end{array}$		$\begin{aligned} & 250 \\ & (2 \mathrm{E}) \end{aligned}$		$\begin{aligned} & 350 \\ & (2 \mathrm{~V}) \end{aligned}$		$\begin{aligned} & 400 \\ & (2 \mathrm{G}) \end{aligned}$		$\begin{aligned} & 450 \\ & (2 W) \end{aligned}$	
	Size	Ripple												
0.47	5×11	8					6.3×11	8	6.3×11	8				
1	5×11	15					6.3×11	16	6.3×11	16	6.3×11	16	6.3×11	15
2.2	5×11	21					6.3×11	30	6.3×11	25	8×11.5	31	8×11.5	20
3.3	5×11	30			6.3×11	36	6.3×11	30	8×11.5	30	8×11.5	34	10×12.5	33
4.7	5×11	35	6.3×11	43	6.3×11	40	8×11.5	45	8×11.5	45	10×12.5	42	10×12.5	35
10	5×11	60	8×11.5	77	8×11.5	57	10×12.5	90	10×16	95	10×16	64	10×20	37
22	6.3×11	98	10×12.5	92	10×16	105	10×16	105	12.5×20	175	12.5×20	140	12.5×25	100
33	8×11.5	140	10×16	125	10×20	140	10×20	140	12.5×25	220	16×25	170	16×25	125
47	8×11.5	185	10×20	150	10×20	195	12.5×20	190	16×25	260	16×25	200	16×31.5	155
100	10×16	290	12.5×25	320	16×25	340	16×25	310	18×31.5	370	18×35.5	310	18×40	200
220	12.5×20	560	16×31.5	410	16×35.5	580	18×35.5	485						
330	12.5×25	690	18×31.5	570	18×40	675								
470	16×25	880	18×40	855										
680	16×31.5	900												
1000	18×35.5	985												

