STM32F412xE STM32F412xG

ARM ${ }^{\circledR}$-Cortex ${ }^{\circledR}$-M4 32b MCU+FPU, 125 DMIPS, 1MB Flash, 256KB RAM, USB OTG FS, 17 TIMs, 1 ADC, 17 comm. interfaces
 Datasheet - production data

Features

- Dynamic Efficiency Line with BAM (Batch Acquisition Mode)
- Core: ARM ${ }^{\circledR}$ 32-bit Cortex ${ }^{\circledR}$-M4 CPU with FPU, Adaptive real-time accelerator (ART Accelerator ${ }^{\text {TM }}$) allowing 0 -wait state execution from Flash memory, frequency up to 100 MHz , memory protection unit,
125 DMIPS/1.25 DMIPS/MHz (Dhrystone 2.1), and DSP instructions
- Memories
- Up to 1 Mbyte of Flash memory
- 256 Kbyte of SRAM
- Flexible external static memory controller with up to 16-bit data bus: SRAM, PSRAM, NOR Flash memory
- Dual mode Quad-SPI interface
- LCD parallel interface, 8080/6800 modes
- Clock, reset and supply management
- 1.7 V to 3.6 V application supply and I/Os
- POR, PDR, PVD and BOR
- 4-to-26 MHz crystal oscillator
- Internal 16 MHz factory-trimmed RC
- 32 kHz oscillator for RTC with calibration
- Internal 32 kHz RC with calibration
- Power consumption
- Run: $112 \mu \mathrm{~A} / \mathrm{MHz}$ (peripheral off)
- Stop (Flash in Stop mode, fast wakeup time): $50 \mu \mathrm{~A}$ Typ @ $25^{\circ} \mathrm{C} ; 75 \mu \mathrm{~A}$ max @ $25^{\circ} \mathrm{C}$
- Stop (Flash in Deep power down mode, slow wakeup time): down to $18 \mu \mathrm{~A}$ @ $25^{\circ} \mathrm{C}$; $40 \mu \mathrm{~A}$ max @ $25^{\circ} \mathrm{C}$
- Standby: $2.4 \mu \mathrm{~A} @ 25^{\circ} \mathrm{C} / 1.7 \mathrm{~V}$ without RTC; $12 \mu \mathrm{~A}$ @85 º C @1.7 V
- V ${ }_{\text {BAT }}$ supply for RTC: $1 \mu \mathrm{~A} @ 25^{\circ} \mathrm{C}$
- 1×12-bit, 2.4 MSPS ADC: up to 16 channels
- $2 x$ digital filters for sigma delta modulator, 4x PDM interfaces, stereo microphone support
- General-purpose DMA: 16-stream DMA

- Up to 17 timers: up to twelve 16-bit timers, two 32-bit timers up to 100 MHz each with up to four IC/OC/PWM or pulse counter and quadrature (incremental) encoder input, two watchdog timers (independent and window), one SysTick timer
- Debug mode
- Serial wire debug (SWD) \& JTAG
- Cortex ${ }^{\circledR}$-M4 Embedded Trace Macrocell ${ }^{\text {TM }}$
- Up to 114 I/O ports with interrupt capability
- Up to 109 fast I/Os up to 100 MHz
- Up to 114 five V-tolerant I/Os
- Up to 17 communication interfaces
- Up to $4 x \mathrm{I}^{2} \mathrm{C}$ interfaces (SMBus/PMBus)
- Up to 4 USARTs ($2 \times 12.5 \mathrm{Mbit} / \mathrm{s}$, $2 \times 6.25 \mathrm{Mbit} / \mathrm{s}$), ISO 7816 interface, LIN, IrDA, modem control)
- Up to 5 SPI/I2Ss (up to $50 \mathrm{Mbit} / \mathrm{s}$, SPI or I2S audio protocol), out of which 2 muxed full-duplex I2S interfaces
- SDIO interface (SD/MMC/eMMC)
- Advanced connectivity: USB 2.0 full-speed device/host/OTG controller with PHY
- $2 x$ CAN (2.0B Active)
- True random number generator
- CRC calculation unit
- 96-bit unique ID
- RTC: subsecond accuracy, hardware calendar
- All packages are ECOPACK ${ }^{\circledR}{ }_{2}$

Table 1. Device summary

Reference	Part number
STM32F412xE	STM32F412CE, STM32F412RE, STM32F412VE, STM32F412ZE
STM32F412xG	STM32F412CG, STM32F412RG, STM32F412VG, STM32F412ZG

Contents

1 Introduction 12
2 Description 13
2.1 Compatibility with STM32F4 series 16
3 Functional overview 19
3.1 ARM ${ }^{\circledR}$ Cortex ${ }^{\circledR}-\mathrm{M} 4$ with FPU core with embedded Flash and SRAM 19
3.2 Adaptive real-time memory accelerator (ART Accelerator ${ }^{T M}$) 19
3.3 Batch Acquisition mode (BAM) 19
3.4 Memory protection unit 20
3.5 Embedded Flash memory 20
3.6 One-time programmable bytes 20
3.7 CRC (cyclic redundancy check) calculation unit 20
3.8 Embedded SRAM 21
3.9 Multi-AHB bus matrix 21
3.10 DMA controller (DMA) 21
3.11 Flexible static memory controller (FSMC) 22
3.12 Quad-SPI memory interface (QUAD-SPI) 22
3.13 Nested vectored interrupt controller (NVIC) 23
3.14 External interrupt/event controller (EXTI) 23
3.15 Clocks and startup 23
3.16 Boot modes 24
3.17 Power supply schemes 24
3.18 Power supply supervisor 26
3.18.1 Internal reset ON 26
3.18.2 Internal reset OFF 26
3.19 Voltage regulator 27
3.19.1 Regulator ON 27
3.19.2 Regulator OFF 28
3.19.3 Regulator ON/OFF and internal reset ON/OFF availability 31
3.20 Real-time clock (RTC) and backup registers 31
3.21 Low-power modes 32
$3.22 \mathrm{~V}_{\text {BAT }}$ operation 32
3.23 Timers and watchdogs 33
3.23.1 Advanced-control timers (TIM1, TIM8) 35
3.23.2 General-purpose timers (TIMx) 35
3.23.3 Basic timer (TIM6, TIM7) 35
3.23.4 Independent watchdog 36
3.23.5 Window watchdog 36
3.23.6 SysTick timer 36
3.24 Inter-integrated circuit interface (I2C) 36
3.25 Universal synchronous/asynchronous receiver transmitters (USART) 37
3.26 Serial peripheral interface (SPI) 37
3.27 Inter-integrated sound (${ }^{2} \mathrm{~S}$) 38
3.28 Audio PLL (PLLI2S) 38
3.29 Digital filter for sigma-delta modulators (DFSDM) 38
3.30 Secure digital input/output interface (SDIO) 40
3.31 Controller area network (bxCAN) 40
3.32 Universal serial bus on-the-go full-speed (USB_OTG_FS) 40
3.33 Random number generator (RNG) 41
3.34 General-purpose input/outputs (GPIOs) 41
3.35 Analog-to-digital converter (ADC) 41
3.36 Temperature sensor 41
3.37 Serial wire JTAG debug port (SWJ-DP) 41
3.38 Embedded Trace Macrocell ${ }^{\text {TM }}$ 42
4 Pinouts and pin description 43
5 Memory mapping 68
6 Electrical characteristics 72
6.1 Parameter conditions 72
6.1.1 Minimum and maximum values 72
6.1.2 Typical values 72
6.1.3 Typical curves 72
6.1.4 Loading capacitor 72
6.1.5 Pin input voltage 72
6.1.6 Power supply scheme 73
6.1.7 Current consumption measurement 74
6.2 Absolute maximum ratings 74
6.3 Operating conditions 76
6.3.1 General operating conditions 76
6.3.2 VCAP_1/VCAP_2 external capacitors 79
6.3.3 Operating conditions at power-up/power-down (regulator ON) 79
6.3.4 Operating conditions at power-up / power-down (regulator OFF) 80
6.3.5 Embedded reset and power control block characteristics 80
6.3.6 Supply current characteristics 81
6.3.7 Wakeup time from low-power modes 99
6.3.8 External clock source characteristics 101
6.3.9 Internal clock source characteristics 106
6.3.10 PLL characteristics 108
6.3.11 PLL spread spectrum clock generation (SSCG) characteristics 110
6.3.12 Memory characteristics 111
6.3.13 EMC characteristics 113
6.3.14 Absolute maximum ratings (electrical sensitivity) 115
6.3.15 I/O current injection characteristics 116
6.3.16 I/O port characteristics 117
6.3.17 NRST pin characteristics 122
6.3.18 TIM timer characteristics 123
6.3.19 Communications interfaces 124
6.3.20 12-bit ADC characteristics 136
6.3.21 Temperature sensor characteristics 142
6.3.22 $V_{\text {BAT }}$ monitoring characteristics 143
6.3.23 Embedded reference voltage 143
6.3.24 DFSDM characteristics 144
6.3.25 FSMC characteristics 145
6.3.26 SD/SDIO MMC/eMMC card host interface (SDIO) characteristics 159
6.3.27 RTC characteristics 161
7 Package information 162
7.1 WLCSP64 package information 162
7.2 UFQFPN48 package information 165
7.3 LQFP64 package information 168
7.4 LQFP100 package information 171
7.5 LQFP144 package information 174
7.6 UFBGA100 package information 178
7.7 UFBGA144 package information 181
7.8 Thermal characteristics 184
7.8.1 Reference document 184
8 Part numbering 185
Appendix A Recommendations when using the internal reset OFF 186
Appendix B Application block diagrams 187
B. 1 USB OTG full speed (FS) interface solutions 187
B. 2 Sensor Hub application example 189
B. 3 Display application example 190
Revision history 191

List of tables

Table 1. Device summary 1
Table 2. STM32F412xE/G features and peripheral counts 15
Table 3. Embedded bootloader interfaces 24
Table 4. Regulator ON/OFF and internal power supply supervisor availability. 31
Table 5. Timer feature comparison. 34
Table 6. Comparison of I2C analog and digital filters 36
Table 7. USART feature comparison 37
Table 8. Legend/abbreviations used in the pinout table 48
Table 9. STM32F412xE/G pin definition. 49
Table 10. STM32F412xE/G alternate functions 61
Table 11. STM32F412xE/G register boundary addresses 69
Table 12. Voltage characteristics 74
Table 13. Current characteristics 75
Table 14. Thermal characteristics. 75
Table 15. General operating conditions 76
Table 16. Features depending on the operating power supply range 78
Table 17. VCAP_1/VCAP_2 operating conditions 79
Table 18. Operating conditions at power-up / power-down (regulator ON) 79
Table 19. Operating conditions at power-up / power-down (regulator OFF) 80
Table 20. Embedded reset and power control block characteristics. 80
Table 21. Typical and maximum current consumption, code with data processing (ART accelerator disabled) running from $\mathrm{SRAM}-\mathrm{V}_{\mathrm{DD}}=1.7 \mathrm{~V}$ 82
Table 22. Typical and maximum current consumption, code with data processing (ART accelerator disabled) running from SRAM - $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$ 83
Table 23. Typical and maximum current consumption in run mode, code with data processing (ART accelerator enabled except prefetch) running from Flash memory- $\mathrm{V}_{\mathrm{DD}}=1.7 \mathrm{~V}$. 84
Table 24. Typical and maximum current consumption in run mode, code with data processing (ART accelerator enabled except prefetch) running from Flash memory - $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$ 85
Table 25. Typical and maximum current consumption in run mode, code with data processing (ART accelerator disabled) running from Flash memory - $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$. 86
Table 26. Typical and maximum current consumption in run mode, code with data processing (ART accelerator disabled) running from Flash memory - $\mathrm{V}_{\mathrm{DD}}=1.7 \mathrm{~V}$. 87
Table 27. Typical and maximum current consumption in run mode, code with data processing (ART accelerator enabled with prefetch) running from Flash memory - $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$. 88
Table 28. Typical and maximum current consumption in Sleep mode - $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$ 89
Table 29. Typical and maximum current consumption in Sleep mode - $\mathrm{V}_{\mathrm{DD}}=1.7 \mathrm{~V}$. 90
Table 30. Typical and maximum current consumptions in Stop mode - $\mathrm{V}_{\mathrm{DD}}=1.7 \mathrm{~V}$ 91
Table 31. Typical and maximum current consumption in Stop mode - $V_{D D}=3.6 \mathrm{~V}$ 92
Table 32. Typical and maximum current consumption in Standby mode - $\mathrm{V}_{\mathrm{DD}}=1.7 \mathrm{~V}$ 92
Table 33. Typical and maximum current consumption in Standby mode - $V_{D D}=3.6 \mathrm{~V}$ 92
Table 34. Typical and maximum current consumptions in $\mathrm{V}_{\mathrm{BAT}}$ mode. 93
Table 35. Switching output I/O current consumption 96
Table 36. Peripheral current consumption 97
Table 37. Low-power mode wakeup timings ${ }^{(1)}$ 100
Table 38. High-speed external user clock characteristics. 102
Table 39. Low-speed external user clock characteristics 102
Table 40. HSE 4-26 MHz oscillator characteristics 104
Table 41. LSE oscillator characteristics ($\mathrm{f}_{\mathrm{LSE}}=32.768 \mathrm{kHz}$) 105
Table 42. HSI oscillator characteristics 106
Table 43. LSI oscillator characteristics 107
Table 44. Main PLL characteristics. 108
Table 45. PLLI2S (audio PLL) characteristics 109
Table 46. SSCG parameter constraints 110
Table 47. Flash memory characteristics 111
Table 48. Flash memory programming 112
Table 49. Flash memory programming with V_{PP} voltage 113
Table 50. Flash memory endurance and data retention 113
Table 51. EMS characteristics for LQFP144 package 114
Table 52. EMI characteristics for LQFP144 115
Table 53. ESD absolute maximum ratings 115
Table 54. Electrical sensitivities 116
Table 55. I/O current injection susceptibility 117
Table 56. I/O static characteristics 117
Table 57. Output voltage characteristics 120
Table 58. I/O AC characteristics 120
Table 59. NRST pin characteristics 122
Table 60. TIMx characteristics 123
Table 61. $\quad \mathrm{I}^{2} \mathrm{C}$ characteristics. 124
Table 62. $\quad \mathrm{SCL}$ frequency ($\mathrm{f}_{\mathrm{PCLK} 1}=50 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DD}{ }_{12 \mathrm{C}}}=3.3 \mathrm{~V}$) 125
Table 63. $\mathrm{FMPI}^{2} \mathrm{C}$ characteristics 126
Table 64. SPI dynamic characteristics 128
Table 65. $I^{2} \mathrm{~S}$ dynamic characteristics 131
Table 66. QSPI dynamic characteristics in SDR mode 133
Table 67. QSPI dynamic characteristics in DDR mode 133
Table 68. USB OTG FS startup time 134
Table 69. USB OTG FS DC electrical characteristics. 134
Table 70. USB OTG FS electrical characteristics 135
Table 71. ADC characteristics 136
Table 72. ADC accuracy at $\mathrm{f}_{\mathrm{ADC}}=18 \mathrm{MHz}$ 137
Table 73. \quad ADC accuracy at $\mathrm{f}_{\mathrm{ADC}}=30 \mathrm{MHz}$ 138
Table 74. ADC accuracy at $\mathrm{f}_{\mathrm{ADC}}=36 \mathrm{MHz}$ 138
Table 75. ADC dynamic accuracy at $\mathrm{f}_{\mathrm{ADC}}=18 \mathrm{MHz}$ - limited test conditions 138
Table 76. ADC dynamic accuracy at $\mathrm{f}_{\mathrm{ADC}}=36 \mathrm{MHz}$ - limited test conditions 138
Table 77. Temperature sensor characteristics 142
Table 78. Temperature sensor calibration values 142
Table 79. $V_{B A T}$ monitoring characteristics 143
Table 80. Embedded internal reference voltage 143
Table 81. Internal reference voltage calibration values 143
Table 82. DFSDM characteristics 144
Table 83. Asynchronous non-multiplexed SRAM/PSRAM/NOR - read timings 147
Table 84. Asynchronous non-multiplexed SRAM/PSRAM/NOR read - NWAIT timings 147
Table 85. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings 148
Table 86. Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings 149
Table 87. Asynchronous multiplexed PSRAM/NOR read timings. 150
Table 88. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings 150
Table 89. Asynchronous multiplexed PSRAM/NOR write timings 152
Table 90. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings 152
Table 91. Synchronous multiplexed NOR/PSRAM read timings 154
Table 92. Synchronous multiplexed PSRAM write timings 156
Table 93. Synchronous non-multiplexed NOR/PSRAM read timings 157
Table 94. Synchronous non-multiplexed PSRAM write timings 159
Table 95. Dynamic characteristics: SD / MMC characteristics 160
Table 96. Dynamic characteristics: eMMC characteristics VDD $=1.7 \mathrm{~V}$ to 1.9 V 161
Table 97. RTC characteristics 161
Table 98. WLCSP64-64-pin, $3.658 \times 3.686 \mathrm{~mm}, 0.4 \mathrm{~mm}$ pitch wafer level chip scale package mechanical data 163
Table 99. WLCSP64 recommended PCB design rules (0.4 mm pitch) 163
Table 100. UFQFPN48-48-lead, $7 \times 7 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch, ultra thin fine pitch quad flat package mechanical data 165
Table 101. LQFP64-64-pin, $10 \times 10 \mathrm{~mm}$ low-profile quad flat package mechanical data 169
Table 102. LQPF100-100-pin, $14 \times 14 \mathrm{~mm}$ low-profile quad flat package mechanical data 171
Table 103. LQFP144-144-pin, $20 \times 20 \mathrm{~mm}$ low-profile quad flat package mechanical data 175
Table 104. UFBGA100-100-pin, $7 \times 7 \mathrm{~mm}, 0.50 \mathrm{~mm}$ pitch, ultra fine pitch ball grid array package mechanical data 178
Table 105. UFBGA100 recommended PCB design rules (0.5 mm pitch BGA) 179
Table 106. UFBGA144-144-pin, $10 \times 10 \mathrm{~mm}, 0.80 \mathrm{~mm}$ pitch, ultra fine pitch ball grid array package mechanical data 181
Table 107. UFBGA144 recommended PCB design rules (0.80 mm pitch BGA) 182
Table 108. Package thermal characteristics 184
Table 109. Ordering information scheme 185
Table 110. Document revision history 191

List of figures

Figure 1. Compatible board design for LQFP100 package 16
Figure 2. Compatible board design for LQFP64 package 17
Figure 3. Compatible board design for LQFP144 package 17
Figure 4. STM32F412xE/G block diagram. 18
Figure 5. Multi-AHB matrix 21
Figure 6. VDDUSB connected to an external independent power supply 25
Figure 7. Power supply supervisor interconnection with internal reset OFF 27
Figure 8. Regulator OFF 29
Figure 9. Startup in regulator OFF: slow $V_{D D}$ slope power-down reset risen after $\mathrm{V}_{\mathrm{CAP}} 1 / \mathrm{V}_{\mathrm{CAP}}$ 2 stabilization 30
Figure 10. Startup in regulator OFF mode: fast V_{DD} slope power-down reset risen before $\mathrm{V}_{\mathrm{CAP}} 11 \mathrm{~V}_{\mathrm{CAP}}$ 2 stabilization 30
Figure 11. STM32F412xE/G WLCSP64 pinout 43
Figure 12. STM32F412xE/G UFQFPN48 pinout 43
Figure 13. STM32F412xE/G LQFP64 pinout 44
Figure 14. STM32F412xE/G LQFP100 pinout 45
Figure 15. STM32F412xE/G LQFP144 pinout. 46
Figure 16. STM32F412xE/G UFBGA100 pinout 47
Figure 17. STM32F412xE/G UFBGA144 pinout 48
Figure 18. Memory map 68
Figure 19. Pin loading conditions. 72
Figure 20. Input voltage measurement 72
Figure 21. Power supply scheme 73
Figure 22. Current consumption measurement scheme 74
Figure 23. External capacitor $\mathrm{C}_{\mathrm{EXT}}$ 79
Figure 24. Typical $\mathrm{V}_{\mathrm{BAT}}$ current consumption (LSE and RTC ON/LSE oscillator "low power" mode selection) 93
Figure 25. Typical $\mathrm{V}_{\text {BAT }}$ current consumption (LSE and RTC ON/LSE oscillator "high drive" mode selection) 94
Figure 26. Low-power mode wakeup 100
Figure 27. High-speed external clock source AC timing diagram 103
Figure 28. Low-speed external clock source AC timing diagram 103
Figure 29. Typical application with an 8 MHz crystal 104
Figure 30. Typical application with a 32.768 kHz crystal 105
Figure 31. $\quad \mathrm{ACC}_{\mathrm{HSI}}$ versus temperature 106
Figure 32. $\quad A C C_{\text {Lsı }}$ versus temperature 107
Figure 33. PLL output clock waveforms in center spread mode 111
Figure 34. PLL output clock waveforms in down spread mode 111
Figure 35. FT/TC I/O input characteristics 119
Figure 36. I/O AC characteristics definition 122
Figure 37. Recommended NRST pin protection 123
Figure 38. $I^{2} C$ bus $A C$ waveforms and measurement circuit. 125
Figure 39. $\mathrm{FMPI}^{2} \mathrm{C}$ timing diagram and measurement circuit 127
Figure 40. SPI timing diagram - slave mode and CPHA $=0$ 129
Figure 41. SPI timing diagram - slave mode and CPHA $=1^{(1)}$ 130
Figure 42. SPI timing diagram - master mode ${ }^{(1)}$ 130
Figure 43. $\mathrm{I}^{2} \mathrm{~S}$ slave timing diagram (Philips protocol) ${ }^{(1)}$ 132
Figure 44. $I^{2} S$ master timing diagram (Philips protocol) ${ }^{(1)}$ 132
Figure 45. USB OTG FS timings: definition of data signal rise and fall time 135
Figure 46. ADC accuracy characteristics 139
Figure 47. Typical connection diagram using the ADC 140
Figure 48. Power supply and reference decoupling ($\mathrm{V}_{\text {REF+ }}$ not connected to $\mathrm{V}_{\mathrm{DDA}}$). 141
Figure 49. Power supply and reference decoupling ($\mathrm{V}_{\text {REF+ }}$ connected to $\mathrm{V}_{\text {DDA }}$). 142
Figure 50. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms 146
Figure 51. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms 148
Figure 52. Asynchronous multiplexed PSRAM/NOR read waveforms. 149
Figure 53. Asynchronous multiplexed PSRAM/NOR write waveforms 151
Figure 54. Synchronous multiplexed NOR/PSRAM read timings 153
Figure 55. Synchronous multiplexed PSRAM write timings 155
Figure 56. Synchronous non-multiplexed NOR/PSRAM read timings 157
Figure 57. Synchronous non-multiplexed PSRAM write timings 158
Figure 58. SDIO high-speed mode 160
Figure 59. SD default mode. 160
Figure 60. WLCSP64-64-pin, $3.658 \times 3.686 \mathrm{~mm}, 0.4 \mathrm{~mm}$ pitch wafer level chip scale package outline. 162
Figure 61. WLCSP64-64-pin, $3.658 \times 3.686 \mathrm{~mm}, 0.4 \mathrm{~mm}$ pitch wafer level chip scale recommended footprint. 163
Figure 62. WLCSP64 marking example (package top view) 164
Figure 63. UFQFPN48-48-lead, $7 \times 7 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch, ultra thin fine pitch quad flat package outline 165
Figure 64. UFQFPN48 recommended footprint 166
Figure 65. UFQFPN48 marking example (package top view) 167
Figure 66. LQFP64-64-pin, $10 \times 10 \mathrm{~mm}$ low-profile quad flat package outline 168
Figure 67. LQFP64 recommended footprint 170
Figure 68. LQFP64 marking example (package top view) 170
Figure 69. LQFP100-100-pin, $14 \times 14 \mathrm{~mm}$ low-profile quad flat package outline 171
Figure 70. LQFP100-100-pin, $14 \times 14 \mathrm{~mm}$ low-profile quad flat recommended footprint 172
Figure 71. LQFP100 marking example (package top view) 173
Figure 72. LQFP144-144-pin, $20 \times 20 \mathrm{~mm}$ low-profile quad flat package outline 174
Figure 73. LQFP144-144-pin,20 x 20 mm low-profile quad flat package recommended footprint. 176
Figure 74. LQFP144 marking example (package top view) 177
Figure 75. UFBGA100-100-pin, $7 \times 7 \mathrm{~mm}, 0.50 \mathrm{~mm}$ pitch, ultra fine pitch ball grid array package outline 178
Figure 76. UFBGA100-100-pin, $7 \times 7 \mathrm{~mm}, 0.50 \mathrm{~mm}$ pitch, ultra fine pitch ball grid array package recommended footprint 179
Figure 77. UFBGA100 marking example (package top view) 180
Figure 78. UFBGA144-144-pin, $10 \times 10 \mathrm{~mm}, 0.80 \mathrm{~mm}$ pitch, ultra fine pitch ball grid array package outline 181
Figure 79. UFBGA144-144-pin, $10 \times 10 \mathrm{~mm}, 0.80 \mathrm{~mm}$ pitch, ultra fine pitch ball grid array recommended footprint. 182
Figure 80. UFBGA144 marking example (package top view) 183
Figure 81. USB controller configured as peripheral-only and used in Full speed mode 187
Figure 82. USB peripheral-only Full speed mode with direct connection for VBUS sense 187
Figure 83. USB peripheral-only Full speed mode, VBUS detection using GPIO 188
Figure 84. USB controller configured as host-only and used in full speed mode. 188
Figure 85. USB controller configured in dual mode and used in full speed mode 189
Figure 86. Sensor Hub application example 189

Figure 87. Display application example . 190

1 Introduction

This datasheet provides the description of the STM32F412xE/G microcontrollers.
For information on the Cortex ${ }^{\circledR}-\mathrm{M} 4$ core, refer to the Cortex ${ }^{\circledR}-\mathrm{M} 4$ programming manual (PM0214) available from www.st.com.

2 Description

The STM32F412xE/G devices are based on the high-performance ARM ${ }^{\circledR}$ Cortex ${ }^{\circledR}$-M4 32bit RISC core operating at a frequency of up to 100 MHz . Their Cortex ${ }^{\circledR}-\mathrm{M} 4$ core features a Floating point unit (FPU) single precision which supports all ARM single-precision dataprocessing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security.

The STM32F412xE/G belong to the STM32 Dynamic Efficiency ${ }^{\text {TM }}$ product line (with products combining power efficiency, performance and integration) while adding a new innovative feature called Batch Acquisition Mode (BAM) allowing to save even more power consumption during data batching.

The STM32F412xE/G incorporate high-speed embedded memories (up to 1 Mbyte of Flash memory, 256 Kbyte of SRAM), and an extensive range of enhanced I/Os and peripherals connected to two APB buses, three AHB buses and a 32 -bit multi-AHB bus matrix.

All devices offer one 12-bit ADC, a low-power RTC, twelve general-purpose 16-bit timers, two PWM timer for motor control and two general-purpose 32-bit timers.

They also feature standard and advanced communication interfaces.

- Up to four $I^{2} \mathrm{Cs}$, including one $\mathrm{I}^{2} \mathrm{C}$ supporting Fast-Mode Plus
- Five SPIs
- Five I^{2} Ss out of which two are full duplex. To achieve audio class accuracy, the $\mathrm{I}^{2} \mathrm{~S}$ peripherals can be clocked via a dedicate internal audio PLL or via an external clock to allow synchronization.
- Four USARTs
- An SDIO/MMC interface
- An USB 2.0 OTG full-speed interface
- Two CANs.

In addition, the STM32F412xE/G embed advanced peripherals:

- A flexible static memory control interface (FSMC)
- A Quad-SPI memory interface
- A digital filter for sigma modulator (DFSDM), two filters, up to four inputs, and support of microphone MEMs.

The STM32F412xE/G are offered in 7 packages ranging from 48 to 144 pins. The set of available peripherals depends on the selected package. Refer to Table 2: STM32F412xE/G features and peripheral counts for the peripherals available for each part number.

The STM32F412xE/G operates in the -40 to $+105^{\circ} \mathrm{C}$ temperature range from a 1.7 (PDR OFF) to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power applications.

These features make the STM32F412xE/G microcontrollers suitable for a wide range of applications:

- Motor drive and application control
- Medical equipment
- Industrial applications: PLC, inverters, circuit breakers
- Printers, and scanners
- Alarm systems, video intercom, and HVAC
- Home audio appliances
- Mobile phone sensor hub
- Wearable devices
- Connected objects
- Wifi modules

Figure 4 shows the general block diagram of the devices.

Table 2. STM32F412xE/G features and peripheral counts

Peripherals		STM32F412xE				STM32F412xG			
Flash memory (Kbyte)		512				1024			
SRAM (Kbyte)	System	256							
FSMC memory controller			-	1			-	1	
Quad-SPI memory interface		-	1			-	1		
Timers	Generalpurpose	10							
	Advancedcontrol	2							
	Basic	2							
Random number generator		1							
Comm. interfaces	SPI/ $\mathrm{I}^{2} \mathrm{~S}$	5/5 (2 full duplex)							
	$1^{2} \mathrm{C}$	3							
	1^{2} CFMP	1							
	USART	3	4			3	4		
	SDIO/MMC	1							
	USB/OTG FS Dual power rail	$\begin{gathered} 1 \\ \text { No } \end{gathered}$			$\begin{gathered} 1 \\ \mathrm{Yes} \end{gathered}$	$\begin{gathered} 1 \\ \text { No } \end{gathered}$			$\begin{gathered} 1 \\ \mathrm{Yes} \end{gathered}$
	CAN	2							
Number of digital Filters for Sigma-delta modulator Number of channels		$\begin{aligned} & 2 \\ & 3 \end{aligned}$	2			$\begin{aligned} & 2 \\ & 3 \end{aligned}$	2		
LCD parallel interface Data bus size		-	8	16		-	8	16	
GPIOs		36	50	81	114	36	50	81	114
12-bit ADC Number of channels		1							
		10	16			10	16		
Maximum CPU frequency		100 MHz							
Operating voltage		1.7 to 3.6 V							
Operating temperatures		Ambient temperatures: -40 to $+85{ }^{\circ} \mathrm{C} /-40$ to $+105^{\circ} \mathrm{C}$							
		Junction temperature: -40 to $+125^{\circ} \mathrm{C}$							
Package		$\begin{gathered} \text { UFQ } \\ \text { FPN48 } \end{gathered}$	LQFP64 WLCSP64	$\begin{aligned} & \text { UFBGA } \\ & 100 \\ & \text { LQFP100 } \end{aligned}$	$\begin{gathered} \text { UFBGA } \\ 144 \\ \text { LQFP144 } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { UFQ } \\ \text { FPN48 } \end{array}$	LQFP64 WLCSP 64	$\begin{gathered} \text { UFBGA } \\ 100 \\ \text { LQFP100 } \end{gathered}$	$\begin{aligned} & \text { UFBGA } \\ & 144 \\ & \text { LQFP144 } \end{aligned}$

2.1 Compatibility with STM32F4 series

The STM32F412xE/G are fully software and feature compatible with the STM32F4 series (STM32F42x, STM32F401, STM32F43x, STM32F41x, STM32F405 and STM32F407)

The STM32F412xE/G can be used as drop-in replacement of the other STM32F4 products but some slight changes have to be done on the PCB board.

Figure 1. Compatible board design for LQFP100 package

Figure 2. Compatible board design for LQFP64 package

Figure 3. Compatible board design for LQFP144 package

Figure 4. STM32F412xE/G block diagram

1. The timers connected to APB2 are clocked from TIMxCLK up to 100 MHz , while the timers connected to APB1 are clocked from TIMxCLK up to 50 MHz .

3 Functional overview

3.1 \quad ARM ${ }^{\circledR}$ Cortex $^{\circledR}$-M4 with FPU core with embedded Flash and SRAM

The ARM ${ }^{\circledR}$ Cortex ${ }^{\circledR}-\mathrm{M} 4$ with FPU processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.
The ARM ${ }^{\circledR}$ Cortex ${ }^{\circledR}$-M4 with FPU 32-bit RISC processor features exceptional codeefficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8 - and 16-bit devices.
The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution.

Its single precision FPU (floating point unit) speeds up software development by using metalanguage development tools, while avoiding saturation.
The STM32F412xE/G devices are compatible with all ARM tools and software.
Figure 4 shows the general block diagram of the STM32F412xE/G.
Note: $\quad C_{0} \quad{ }^{\circledR}-M 4$ with FPU is binary compatible with Cortex ${ }^{\circledR}-M 3$.

3.2 Adaptive real-time memory accelerator (ART Accelerator ${ }^{\text {TM }}$)

The ART Accelerator ${ }^{\text {TM }}$ is a memory accelerator which is optimized for STM32 industrystandard ARM ${ }^{\circledR}$ Cortex ${ }^{\circledR}-\mathrm{M} 4$ with FPU processors. It balances the inherent performance advantage of the ARM ${ }^{\circledR}$ Cortex ${ }^{\circledR}-\mathrm{M} 4$ with FPU over Flash memory technologies, which normally requires the processor to wait for the Flash memory at higher frequencies.

To release the processor full 125 DMIPS performance at this frequency, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART Accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 100 MHz .

3.3 Batch Acquisition mode (BAM)

The Batch acquisition mode allows enhanced power efficiency during data batching. It enables data acquisition through any communication peripherals directly to memory using the DMA in reduced power consumption as well as data processing while the rest of the system is in low-power mode (including the flash and ART). For example in an audio system, a smart combination of PDM audio sample acquisition and processing from the DFSDM directly to RAM (flash and ART ${ }^{\text {TM }}$ stopped) with the DMA using BAM followed by some very short processing from flash allows to drastically reduce the power consumption of the application. A dedicated application note (AN4515) describes how to implement the STM32F412xE/G BAM to allow the best power efficiency.

3.4 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 byte and the whole 4 Gbyte of addressable memory.

The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

3.5 Embedded Flash memory

The devices embed up to 1 Mbyte of Flash memory available for storing programs and data.
The Flash user area can be protected against reading by an entrusted code (Read Protection, RDP) with different protection levels.

The flash user sectors can also be individually protected against write operation.
Furthermore the proprietary readout protection (PCROP) can also individually protect the flash user sectors against D-bus read accesses.
(Additional information can be found in the product reference manual).
To optimize the power consumption the Flash memory can also be switched off in Run or in Sleep mode (see Section 3.21: Low-power modes).

Two modes are available: Flash in Stop mode or in DeepSleep mode (trade off between power saving and startup time.

Before disabling the Flash, the code must be executed from the internal RAM.

3.6 One-time programmable bytes

A one-time programmable area is available with16 OTP blocks of 32 bytes. Each block can be individually locked
(Additional information can be found in the product reference manual)

3.7 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a software signature during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

3.8 Embedded SRAM

All devices embed 256 Kbyte of system SRAM which can be accessed (read/write) at CPU clock speed with 0 wait states

3.9 Multi-AHB bus matrix

The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs) and the slaves (Flash memory, RAM, AHB and APB peripherals) and ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously.

Figure 5. Multi-AHB matrix

3.10 DMA controller (DMA)

The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8 streams each. They are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB).
The two DMA controllers support circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code.

Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. Configuration is made by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals:

- $\quad S P I$ and $I^{2} S$
- $\quad I^{2} C$ and $I^{2} C F M P$
- USART
- General-purpose, basic and advanced-control timers TIMx
- SD/SDIO/MMC/eMMC host interface
- Quad-SPI
- ADC
- Digital Filter for sigma-delta modulator (DFSDM) with a separate stream for each filter.

3.11 Flexible static memory controller (FSMC)

The Flexible static memory controller (FSMC) includes a NOR/PSRAM memory controller. It features four Chip Select outputs supporting the following modes: SRAM, PSRAM and NOR Flash memory.
The main functions are:

- 8-,16-bit data bus width
- Write FIFO
- Maximum FSMC_CLK frequency for synchronous accesses is 90 MHz .

LCD parallel interface

The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build costeffective graphic applications using LCD modules with embedded controllers or high performance solutions using external controllers with dedicated acceleration.

3.12 Quad-SPI memory interface (QUAD-SPI)

All devices embed a Quad-SPI memory interface, which is a specialized communication interface targeting single, dual or quad-SPI Flash memories. It can work in direct mode through registers, external Flash status register polling mode and memory mapped mode. Up to 256 Mbyte of external Flash memory are mapped. They can be accessed in 8, 16 or 32 -bit mode. Code execution is also supported. The opcode and the frame format are fully programmable. Communication can be performed either in single data rate or dual data rate.

3.13 Nested vectored interrupt controller (NVIC)

The devices embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 81 maskable interrupt channels plus the 16 interrupt lines of the Cortex ${ }^{\circledR}$-M4 with FPU.

- Closely coupled NVIC gives low-latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Allows early processing of interrupts
- Processing of late arriving, higher-priority interrupts
- Support tail chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimum interrupt latency.

3.14 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 21 edge-detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 114 GPIOs can be connected to the 16 external interrupt lines.

3.15 Clocks and startup

On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The 16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy at $25^{\circ} \mathrm{C}$. The application can then select as system clock either the RC oscillator or an external 4-26 MHz clock source. This clock can be monitored for failure. If a failure is detected, the system automatically switches back to the internal RC oscillator and a software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing to increase the frequency up to 100 MHz . Similarly, full interrupt management of the PLL clock entry is available when necessary (for example if an indirectly used external oscillator fails).

Several prescalers allow the configuration of the three AHB buses, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the three AHB buses and high-speed APB domains is 100 MHz . The maximum allowed frequency of the low-speed APB domain is 50 MHz .

The devices embed a dedicated PLL (PLLI2S) which allows to achieve audio class performance. In this case, the $\mathrm{I}^{2} \mathrm{~S}$ master clock can generate all standard sampling frequencies from 8 kHz to 192 kHz .

3.16 Boot modes

At startup, boot pins are used to select one out of three boot options:

- Boot from user Flash memory
- Boot from system memory
- Boot from embedded SRAM

The boot loader is located in system memory. It is used to reprogram the Flash memory by using one of the interface listed in the Table 3 or the USB OTG FS in device mode through DFU (device firmware upgrade).

Table 3. Embedded bootloader interfaces

Package	$\begin{aligned} & \text { USART1 } \\ & \text { PA9/ } \\ & \text { PA10 } \end{aligned}$	USART2 PD6/ PD5	USART3 PB11/ PB10	$\begin{aligned} & \text { I2C1 } \\ & \text { PB6/ } \\ & \text { PB7 } \end{aligned}$	$\begin{aligned} & \text { I2C2 } \\ & \text { PF0/ } \\ & \text { PF1 } \end{aligned}$	$\begin{aligned} & \text { I2C3 } \\ & \text { PA8/ } \\ & \text { PB4 } \end{aligned}$	I2C FMP1 PB14/ PB15	SPI1 PA4/ PA5/ PA6/ PA7	SPI3 PA15/ PC10/ PC11/ PC12	SPI4 PE11/ PE12/ PE13/ PE14	$\begin{gathered} \text { CAN2 } \\ \text { PB5/ } \\ \text { PB13 } \end{gathered}$	$\begin{aligned} & \text { USB } \\ & \text { PA11 } \\ & \text { /P12 } \end{aligned}$
UFQFPN48	Y	-	-	Y	-	Y	Y	Y	-	-	Y	Y
WLCSP64	Y	-	-	Y	-	Y	Y	Y	Y	-	Y	Y
LQFP64	Y	-	-	Y	-	Y	Y	Y	Y	-	Y	Y
LQFP100	Y	Y	-	Y	-	Y	Y	Y	Y	Y	Y	Y
LQFP144	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
UFBGA100	Y	Y	Y	Y	-	Y	Y	Y	Y	Y	Y	Y
UFBGA144	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y

For more detailed information on the bootloader, refer to Application Note: AN2606, STM32 ${ }^{\text {TM }}$ microcontroller system memory boot mode.

3.17 Power supply schemes

- $\quad V_{D D}=1.7$ to 3.6 V : external power supply for I/Os with the internal supervisor (POR/PDR) disabled, provided externally through $V_{D D}$ pins. Requires the use of an external power supply supervisor connected to the $V_{D D}$ and NRST pins.
- $\quad \mathrm{V}_{\mathrm{SSA}}, \mathrm{V}_{\mathrm{DDA}}=1.7$ to 3.6 V : external analog power supplies for ADC, Reset blocks, RCs and PLL. $\mathrm{V}_{\text {DDA }}$ and $\mathrm{V}_{\mathrm{SSA}}$ must be connected to V_{DD} and V_{SS}, respectively, with decoupling technique.
Note: \quad The $V_{D D} / V_{D D A}$ minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.18.2: Internal reset OFF). Refer to Table 4: Regulator ON/OFF and internal power supply supervisor availability to identify the packages supporting this option.
- $\quad \mathrm{V}_{\mathrm{BAT}}=1.65$ to 3.6 V : power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.
- $\quad V_{\text {DDUSB }}$ can be connected either to VDD or an external independent power supply (3.0 to 3.6 V) for USB transceivers.
For example, when device is powered at 1.8 V , an independent power supply 3.3 V can be connected to $\mathrm{V}_{\text {DDUSB }}$. When the $\mathrm{V}_{\text {DDUSB }}$ is connected to a separated power supply,
it is independent from $V_{D D}$ or $V_{D D A}$ but it must be the last supply to be provided and the first to disappear.

The following conditions VDDUSB must be respected:

- During power-on phase ($\left.\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\mathrm{DD} _\mathrm{MIN}}\right), \mathrm{V}_{\mathrm{DDUSB}}$ should be always lower than $V_{D D}$
- During power-down phase ($\left.\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\mathrm{DD} _\mathrm{MIN}}\right), \mathrm{V}_{\mathrm{DDUSB}}$ should be always lower than $V_{D D}$
- $\quad V_{\text {DDUSB }}$ rising and falling time rate specifications must be respected.
- In operating mode phase, $\mathrm{V}_{\text {DDUSB }}$ could be lower or higher than VDD:
- If USB is used, the associated GPIOs powered by $V_{\text {DDUSB }}$ are operating between $V_{\text {DDUSB_MIN }}$ and $V_{\text {DDUSB_MAX }}$
- If USB is not used, the associated GPIOs powered by $V_{\text {DDUSB }}$ are operating between $\mathrm{V}_{\text {DD_MIN }}$ and $\mathrm{V}_{\text {DD_MAX }}$.

Figure 6. $\mathrm{V}_{\text {DDUSB }}$ connected to an external independent power supply

3.18 Power supply supervisor

3.18.1 Internal reset ON

This feature is available for V_{DD} operating voltage range 1.8 V to 3.6 V .
On packages embedding the PDR_ON pin, the power supply supervisor is enabled by holding PDR_ON high. On the other package, the power supply supervisor is always enabled.

The device has an integrated power-on reset (POR) / power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, POR is always active, and ensures proper operation starting from 1.8 V . After the 1.8 V POR threshold level is reached, the option byte loading process starts, either to confirm or modify default thresholds, or to disable BOR permanently. Three BOR thresholds are available through option bytes.
The device remains in reset mode when $V_{D D}$ is below a specified threshold, $V_{P O R / P D R}$ or $V_{B O R}$, without the need for an external reset circuit.

The device also features an embedded programmable voltage detector (PVD) that monitors the $V_{D D} / V_{D D A}$ power supply and compares it to the $V_{P V D}$ threshold. An interrupt can be generated when $\mathrm{V}_{D D} / V_{D D A}$ drops below the $\mathrm{V}_{P V D}$ threshold and/or when $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{DDA}}$ is higher than the $V_{\text {PVD }}$ threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.18.2 Internal reset OFF

This feature is available only on packages featuring the PDR_ON pin. The internal power-on reset (POR) / power-down reset (PDR) circuitry is disabled by setting the PDR_ON pin to low.

An external power supply supervisor should monitor V_{DD} and should set the device in reset mode when V_{DD} is below 1.7 V . NRST should be connected to this external power supply supervisor. Refer to Figure 7: Power supply supervisor interconnection with internal reset OFF.

Figure 7. Power supply supervisor interconnection with internal reset OFF ${ }^{(1)}$

1. The PRD_ON pin is available only on WLCSP64, UFBGA100, UFBGA144 and LQFP144 packages.

A comprehensive set of power-saving mode allows to design low-power applications.
When the internal reset is OFF, the following integrated features are no longer supported:

- The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled.
- The brownout reset (BOR) circuitry must be disabled.
- \quad The embedded programmable voltage detector (PVD) is disabled.
- $\quad V_{B A T}$ functionality is no more available and VBAT pin should be connected to $V_{D D}$.

3.19 Voltage regulator

The regulator has three operating modes:

- Main regulator mode (MR)
- Low power regulator (LPR)
- Power-down

3.19.1 Regulator ON

On packages embedding the BYPASS_REG pin, the regulator is enabled by holding BYPASS_REG low. On all other packages, the regulator is always enabled.

There are three power modes configured by software when the regulator is ON:

- MR is used in the nominal regulation mode (With different voltage scaling in Run mode) In Main regulator mode (MR mode), different voltage scaling are provided to reach the best compromise between maximum frequency and dynamic power consumption.
- LPR is used in the Stop mode

The LP regulator mode is configured by software when entering Stop mode.

- Power-down is used in Standby mode.

The Power-down mode is activated only when entering in Standby mode. The regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption. The contents of the registers and SRAM are lost.

Depending on the package, one or two external ceramic capacitors should be connected on the VCAP_1 and VCAP_2 pins. The VCAP_2 pin is only available for the 100 pins and 144 pins packages.

All packages have the regulator ON feature.

3.19.2 Regulator OFF

This feature is available only on UFBGA100 and UFBGA144 packages, which feature the BYPASS_REG pin. The regulator is disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply externally a V_{12} voltage source through $\mathrm{V}_{\mathrm{CAP}_{-} 1}$ and $\mathrm{V}_{\text {CAP_2 }}$ pins.
Since the internal voltage scaling is not managed internally, the external voltage value must be aligned with the targeted maximum frequency.

The two $2.2 \mu \mathrm{~F}$ ceramic capacitors should be replaced by two 100 nF decoupling capacitors.
When the regulator is OFF, there is no more internal monitoring on V_{12}. An external power supply supervisor should be used to monitor the V_{12} of the logic power domain. PA0 pin should be used for this purpose, and act as power-on reset on V_{12} power domain.

In regulator OFF mode, the following features are no more supported:

- PAO cannot be used as a GPIO pin since it allows to reset a part of the V_{12} logic power domain which is not reset by the NRST pin.
- As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As a consequence, PA0 and NRST pins must be managed separately if the debug connection under reset or pre-reset is required.

Figure 8. Regulator OFF

The following conditions must be respected:

- $V_{D D}$ should always be higher than $\mathrm{V}_{\text {CAP_1 }}$ and $\mathrm{V}_{\mathrm{CAP} \text { _ } 2}$ to avoid current injection between power domains.
- If the time for $\mathrm{V}_{\text {CAP_1 }}$ and $\mathrm{V}_{\text {CAP_2 }}$ to reach V_{12} minimum value is faster than the time for V_{DD} to reach $1.7 \mathrm{~V}^{-}$then PA0 should be kept low to cover both conditions: until $\mathrm{V}_{\mathrm{CAP}} 1$ and $\mathrm{V}_{\mathrm{CAP} \text { _ } 2}$ reach V_{12} minimum value and until V_{DD} reaches 1.7 V (see Figure 9).
- Otherwise, if the time for $\mathrm{V}_{\text {CAP }_{-1} 1}$ and $\mathrm{V}_{\text {CAP }_{-}}$to reach V_{12} minimum value is slower than the time for V_{DD} to reach $\overline{1} .7 \mathrm{~V}$, then PAO could be asserted low externally (see Figure 10).
- If $V_{C A P _1}$ and $V_{C A P _2}$ go below V_{12} minimum value and $V_{D D}$ is higher than 1.7 V , then a reset must be asserted on PA0 pin.
Note: \quad The minimum value of V_{12} depends on the maximum frequency targeted in the application.

Figure 9. Startup in regulator OFF: slow V_{DD} slope power-down reset risen after $\mathrm{V}_{\mathrm{CAP} 1} / \mathrm{V}_{\mathrm{CAP} \text { _ }}$ stabilization

MSv31179V2

1. This figure is valid whatever the internal reset mode (ON or OFF).

Figure 10. Startup in regulator OFF mode: fast V_{DD} slope power-down reset risen before $\mathrm{V}_{\mathrm{CAP}}{ }_{1} / \mathrm{V}_{\text {CAP } 2}$ stabilization

1. This figure is valid whatever the internal reset mode (ON or OFF).

3.19.3 Regulator ON/OFF and internal reset ON/OFF availability

Table 4. Regulator ON/OFF and internal power supply supervisor availability

Package	Regulator ON	Regulator OFF	Power supply supervisor ON	Power supply supervisor OFF
UFQFPN48	Yes	No	Yes	No
WLCSP64	Yes	No	$\begin{gathered} \text { Yes } \\ \text { PDR_ON set to } V_{D D} \end{gathered}$	$\begin{gathered} \text { Yes } \\ \text { PDR_ON set to } V_{S S} \end{gathered}$
LQFP64	Yes	No	Yes	No
LQFP100	Yes	No	Yes	No
LQFP144	Yes	No	Yes PDR_ON set to VDD	$\begin{gathered} \text { Yes } \\ \text { PDR_ON set to } V_{S S} \end{gathered}$
UFBGA100	Yes BYPASS_REG set to VSS	Yes BYPASS_REG set to VDD		
UFBGA144	Yes BYPASS_REG set to VSS	Yes BYPASS_REG set to VDD		

3.20 Real-time clock (RTC) and backup registers

The backup domain includes:

- The real-time clock (RTC)
- 20 backup registers

The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binarycoded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are performed automatically. The RTC features a reference clock detection, a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision. The RTC provides a programmable alarm and programmable periodic interrupts with wakeup from Stop and Standby modes. The sub-seconds value is also available in binary format.

It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC has a typical frequency of 32 kHz . The RTC can be calibrated using an external 512 Hz output to compensate for any natural quartz deviation.

Two alarm registers are used to generate an alarm at a specific time and calendar fields can be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit programmable binary auto-reload downcounter with programmable resolution is available and allows automatic wakeup and periodic alarms from every $120 \mu \mathrm{~s}$ to every 36 hours.

A 20-bit prescaler is used for the time base clock. It is by default configured to generate a time base of 1 second from a clock at 32.768 kHz .

The backup registers are 32-bit registers used to store 80 byte of user application data when V_{DD} power is not present. Backup registers are not reset by a system, a power reset, or when the device wakes up from the Standby mode (see Section 3.21: Low-power modes).

Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes, hours, day, and date.

The RTC and backup registers are supplied through a switch that is powered either from the V_{DD} supply when present or from the $\mathrm{V}_{\mathrm{BAT}}$ pin.

3.21 Low-power modes

The devices support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

- \quad Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.
To further reduce the power consumption, the Flash memory can be switched off before entering in Sleep mode. Note that this requires a code execution from the RAM.

- Stop mode

The Stop mode achieves the lowest power consumption while retaining the contents of SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode.
The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm/ wakeup/ tamper/ time stamp events).

- Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.2 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, the SRAM and register contents are lost except for registers in the backup domain when selected.
The device exits the Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on one of the WKUP pins, or an RTC alarm/ wakeup/ tamper/time stamp event occurs.
Standby mode is not supported when the embedded voltage regulator is bypassed and the 1.2 V domain is controlled by an external power.

$3.22 \quad \mathrm{~V}_{\text {BAT }}$ operation

The VBAT pin allows to power the device $\mathrm{V}_{\text {BAT }}$ domain from an external battery, an external super-capacitor, or from $V_{D D}$ when no external battery and an external super-capacitor are present.
$V_{\text {BAT }}$ operation is activated when $V_{D D}$ is not present.
The VBAT pin supplies the RTC and the backup registers.
Note: \quad When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events do not exit it from $V_{B A T}$ operation. When PDR_ON pin is not connected to $V_{D D}$ (internal Reset OFF), the $V_{B A T}$ functionality is no more available and VBAT pin should be connected to $V_{D D}$.

3.23 Timers and watchdogs

The devices embed two advanced-control timer, ten general-purpose timers, two basic timers, two watchdog timers and one SysTick timer.

All timer counters can be frozen in debug mode.
Table 5 compares the features of the advanced-control and general-purpose timers.

Table 5. Timer feature comparison

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complementary output	Max. interface clock (MHz)	Max. timer clock (MHz)
Advance d-control	TIM1, TIM8	16-bit		Any integer between 1 and 65536	Yes	4	Yes	100	100
General purpose	TIM2, TIM5	32-bit		$\begin{gathered} \text { Any } \\ \text { integer } \\ \text { between } 1 \\ \text { and } \\ 65536 \end{gathered}$	Yes	4	No	50	100
	TIM3, TIM4	16-bit		$\begin{gathered} \text { Any } \\ \text { integer } \\ \text { between } 1 \\ \text { and } \\ 65536 \end{gathered}$	Yes	4	No	50	100
	TIM9	16-bit	Up	$\begin{gathered} \text { Any } \\ \text { integer } \\ \text { between } 1 \\ \text { and } \\ 65536 \end{gathered}$	No	2	No	100	100
	TIM10, TIM11	16-bit	Up	Any integer between 1 and 65536	No	1	No	100	100
	TIM12	16-bit	Up	$\begin{gathered} \text { Any } \\ \text { integer } \\ \text { between } 1 \\ \text { and } \\ 65536 \end{gathered}$	No	2	No	50	100
	TIM13, TIM14	16-bit	Up	Any integer between 1 and 65536	No	1	No	50	100
Basic timers	TIM6, TIM7	16-bit	Up	$\begin{gathered} \text { Any } \\ \text { integer } \\ \text { between } 1 \\ \text { and } \\ 65536 \end{gathered}$	Yes	0	No	50	100

3.23.1 Advanced-control timers (TIM1, TIM8)

The advanced-control timers (TIM1/8) can be seen as three-phase PWM generator multiplexed on 4 independent channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete generalpurpose timers. Their 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge- or center-aligned modes)
- One-pulse mode output

If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If configured as a 16-bit PWM generator, they have full modulation capability (0-100\%).

The advanced-control timers can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining.

TIM1 and TIM8 support independent DMA request generation.

3.23.2 General-purpose timers (TIMx)

There are ten synchronizable general-purpose timers embedded in the STM32F412xE/G (see Table 5 for differences).

- TIM2, TIM3, TIM4, TIM5

The STM32F412xE/G devices include 4 full-featured general-purpose timers: TIM2. TIM3, TIM4 and TIM5. TIM2 and TIM5 timers are based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler while TIM3 and TIM4 timers are based on a 16bit auto-reload up/downcounter plus a 16-bit prescaler. They all features four independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 15 input capture/output compare/PWMs
TIM2. TIM3, TIM4 and TIM5 general-purpose timers can operate together or in conjunction with the other general-purpose timers and TIM1 advanced-control timer via the Timer Link feature for synchronization or event chaining.
Any of these general-purpose timers can be used to generate PWM output.
TIM2. TIM3, TIM4 and TIM5 channels have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors.

- TIM9, TIM10, TIM11, TIM12, TIM13 and TIM14

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10, TIM11, TIM13 and TIM14 feature one independent channel, whereas TIM9 and TIM12 have two independent channels for input capture/output compare, PWM or onepulse mode output. They can be synchronized with TIM2. TIM3, TIM4 and TIM5 fullfeatured general-purpose timers or used as simple time bases.

3.23.3 Basic timer (TIM6, TIM7)

TIM6 and TIM7 timers are basic 16-bit timers. They support independent DMA request generation.

3.23.4 Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes.

3.23.5 Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.23.6 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard downcounter. It features:

- A 24-bit downcounter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source.

3.24 Inter-integrated circuit interface $\left(I^{2} C\right)$

The devices feature up to four $I^{2} \mathrm{C}$ bus interfaces which can operate in multimaster and slave modes:

- One $\mathrm{I}^{2} \mathrm{C}$ interface supports the Standard mode (up to 100 kHz), Fast-mode (up to 400 kHz) modes and Fast-mode plus (up to 1 MHz).
- Three $\mathrm{I}^{2} \mathrm{C}$ interfaces support the Standard mode (up to 100 KHz) and the Fast mode (up to 400 KHz). Their frequency can be increased up to 1 MHz . For more details on the complete solution, refer to the nearest STMicroelectronics sales office.
All ${ }^{2}$ C interfaces features $7 / 10$-bit addressing mode and 7 -bit addressing mode (as slave) and embed a hardware CRC generation/verification.

They can be served by DMA and they support SMBus 2.0/PMBus.
The devices also include programmable analog and digital noise filters (see Table 6).
Table 6. Comparison of I2C analog and digital filters

	Analog filter	Digital filter
Pulse width of suppressed spikes	$\geq 50 \mathrm{~ns}$	Programmable length from 1 to 15 I2C peripheral clocks

3.25 Universal synchronous/asynchronous receiver transmitters (USART)

The devices embed four universal synchronous/asynchronous receiver transmitters (USART1, USART2, USART3 and USART6).

These four interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. USART1 and USART6 interfaces are able to communicate at speeds of up to $12.5 \mathrm{Mbit} / \mathrm{s}$. USART2 and USART3 interfaces communicate at up to $6.25 \mathrm{bit} / \mathrm{s}$.

All USART interfaces provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller.

Table 7. USART feature comparison

USART name	Standard features	Modem (RTS/CTS)	LIN	SPI master	irDA	Smartcard (ISO 7816)	Max. baud rate in Mbit/s (oversampling by 16)	Max. baud rate in Mbit/s (oversampling by 8)	APB mapping
USART1	X	X	X	X	X	X	6.25	12.5	APB2 (max. $100 \mathrm{MHz})$
USART2	X	X	X	X	X	X	3.12	6.25	APB1 (max. $50 \mathrm{MHz})$
USART3	X	X	X	X	X	X	3.12	6.25	APB1 (max. $50 \mathrm{MHz})$
USART6	X	X	X	X	X	X	6.25	12.5	$\mathrm{APB2}$ $(\mathrm{max}$. $100 \mathrm{MHz})$

3.26 Serial peripheral interface (SPI)

The devices feature five SPIs in slave and master modes in full-duplex and simplex communication modes. SPI1, SPI4 and SPI5 can communicate at up to $50 \mathrm{Mbit} / \mathrm{s}, \mathrm{SPI} 2$ and SPI3 can communicate at up to $25 \mathrm{Mbit} / \mathrm{s}$. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller.

The SPI interfaces can be configured to operate in TI mode for communications in master mode and slave mode.

3.27 Inter-integrated sound ($I^{2} S$)

Five standard I^{2} S interfaces (multiplexed with SPI1 to SPI5) are available. They can be operated in master or slave mode, in simplex communication mode, and full duplex mode for I2S2 and I2S3. All I ${ }^{2}$ S interfaces can be configured to operate with a 16-/32-bit resolution as an input or output channel. I2Sx audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the $I^{2} S$ interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.
All ${ }^{2}$ Sx interfaces can be served by the DMA controller.

3.28 Audio PLL (PLLI2S)

The devices feature an additional dedicated PLL for audio $I^{2} S$ applications. It allows to achieve error-free I^{2} S sampling clock accuracy without compromising on the CPU performance, while using USB peripherals.
Different sources can be selected for the I2S master clock of the APB1 and the I2S master clock of the APB2. This gives the flexibility to work with two different audio sampling frequencies. The different possible sources are the main PLL, the PLLI2S, HSE or HSI clocks or an external clock provided through a pin (external PLL or Codec output)
The PLLI2S configuration can be modified to manage an I^{2} S sample rate change without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.

The audio PLL can be programmed with very low error to obtain sampling rates ranging from 8 KHz to 192 KHz .

3.29 Digital filter for sigma-delta modulators (DFSDM)

The device embeds one DFSDM with 2 digital filters modules and 4 external input serial channels (transceivers) or alternately 2 internal parallel inputs support.
The DFSDM peripheral is dedicated to interface the external $\Sigma \Delta$ modulators to microcontroller and then to perform digital filtering of the received data streams (which represent analog value on $\Sigma \Delta$ modulators inputs). DFSDM can also interface PDM (Pulse Density Modulation) microphones and perform PDM to PCM conversion and filtering in hardware. DFSDM features optional parallel data stream inputs from microcontrollers memory (through DMA/CPU transfers into DFSDM).

DFSDM transceivers support several serial interface formats (to support various $\Sigma \Delta$ modulators). DFSDM digital filter modules perform digital processing according user selected filter parameters with up to 24-bit final ADC resolution.

The DFSDM peripheral supports:

- 4 multiplexed input digital serial channels:
- configurable SPI interface to connect various SD modulator(s)
- configurable Manchester coded 1 wire interface support
- PDM (Pulse Density Modulation) microphone input support
- maximum input clock frequency up to 20 MHz (10 MHz for Manchester coding)
- clock output for SD modulator(s): $0 . . .20 \mathrm{MHz}$
- alternative inputs from 4 internal digital parallel channels (up to 16 bit input resolution):
- internal sources: device memory data streams (DMA)
- 2 digital filter modules with adjustable digital signal processing:
- Sinc x filter: filter order/type (1...5), oversampling ratio (up to 1...1024)
- integrator: oversampling ratio (1...256)
- up to 24-bit output data resolution, signed output data format
- automatic data offset correction (offset stored in register by user)
- continuous or single conversion
- start-of-conversion triggered by
- software trigger
- internal timers
- external events
- start-of-conversion synchronously with first digital filter module (DFSDM1FLTO)
- analog watchdog feature:
- low value and high value data threshold registers
- dedicated configurable Sinc x digital filter (order $=1 \ldots 3$, oversampling ratio $=1$... 32
- input from digital output data or from selected input digital serial channels
- continuous monitoring independently from standard conversion
- short circuit detector to detect saturated analog input values (bottom and top range):
- up to 8-bit counter to detect $1 . .256$ consecutive 0 's or 1's on serial data stream
- monitoring continuously each input serial channel
- break signal generation on analog watchdog event or on short circuit detector event
- extremes detector:
- storage of minimum and maximum values of final conversion data
- refreshed by software
- DMA capability to read the final conversion data
- interrupts: end of conversion, overrun, analog watchdog, short circuit input serial channel clock absence
- "regulator" or injected" conversions:
_ "regular" conversions can be requested at any time or even in continuous mode without having any impact on the timing of "injected" conversions
- "injected" conversions for precise timing and with high conversion priority.

3.30 Secure digital input/output interface (SDIO)

An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.

The interface allows data transfer at up to 50 MHz , and is compliant with the SD Memory Card Specification Version 2.0.

The SDIO Card Specification Version 2.0 is also supported with two different databus modes: 1-bit (default) and 4-bit.

The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack of MMC4.1 or previous.

In addition to SD/SDIO/MMC/eMMC, this interface is fully compliant with the CE-ATA digital protocol Rev1.1.

3.31 Controller area network (bxCAN)

The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1 Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one CAN is used). 256 byte of SRAM are allocated for each CAN.

3.32 Universal serial bus on-the-go full-speed (USB_OTG_FS)

The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The Battery Charging Detection (BCD) can detect and identify the type of port, it is connected to (standard USB or charger). The type of charging is also detected: Dedicated Charging Port (DCP), Charging Downstream Port (CDP) and Standard Downstream Port (SDP). Some packages provide a dedicated USB power rail allowing a different supply for the USB and for the rest of the chip. For instance the chip can be powered with the minimum specified supply and the USB running at the level defined by the standard. The major features are:

- Combined Rx and Tx FIFO size of 320×35 bits with dynamic FIFO sizing
- Supports the session request protocol (SRP) and host negotiation protocol (HNP)
- 6 bidirectional endpoints
- 12 host channels with periodic OUT support
- HNP/SNP/IP inside (no need for any external resistor)
- For OTG/Host modes, a power switch is needed in case bus-powered devices are connected
- Link Power Management (LPM)
- Battery Charging Detection (BCD) supporting DCP, CDP and SDP

3.33 Random number generator (RNG)

All devices embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit.

3.34 General-purpose input/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-capable and have speed selection to better manage internal noise, power consumption and electromagnetic emission.

The I/O configuration can be locked if needed by following a specific sequence in order to avoid spurious writing to the I/Os registers.

Fast I/O handling allowing maximum I/O toggling up to 100 MHz .

3.35 Analog-to-digital converter (ADC)

One 12-bit analog-to-digital converter is embedded and shares up to 16 external channels, performing conversions in the single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1, TIM2, TIM3, TIM4 or TIM5 timer.

3.36 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 1.7 V and 3.6 V . The temperature sensor is internally connected to the ADC_IN18 input channel which is used to convert the sensor output voltage into a digital value. Refer to the reference manual for additional information.

As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used.

3.37 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.
Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

3.38 Embedded Trace Macrocell ${ }^{\text {TM }}$

The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F412xE/G through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using any high-speed channel available. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors.

The Embedded Trace Macrocell operates with third party debugger software tools.

4 Pinouts and pin description

Figure 11. STM32F412xE/G WLCSP64 pinout

A	8	7	6	5	4	3	2	1	
	VDD	vss	PB7	PB3	PD2	PC12	PA15	VDD	
BC	PC13	vBat	PB9	PB6	PB4	PC11	PA14	vss	
	$\begin{array}{\|c\|} \hline \text { PC14- } \\ \text { OSC32_IN } \end{array}$	$\left\lvert\, \begin{gathered} \mathrm{PC} 15- \\ \mathrm{OSC} 32 _0 U T \end{gathered}\right.$	PDR_ON	PB8	PB5	PC10	PA13	PA12	
D	$\begin{aligned} & \text { PHO - } \\ & \text { OSC_IN } \end{aligned}$	NRST	PC3	PC0	BOOT0	PA11	PA10	PA9	
E	PH1OSC_OUT	PC2	PA0	PA7	PC4	PA8	PC9	PC7	
F	PC1	VDDA/ VREF+	PA3	PA5	PB1	PC8	PB15	PC6	
G	vssal VREF-	PA1	PA4	PC5	PB2	PB12	PB13	PB14	
H	PA2	VDD	PA6	PB0	PB10	VCAP_1	vSS	VDD	
									MSv37280V2

1. The above figure shows the package bump side.

Figure 12. STM32F412xE/G UFQFPN48 pinout

1. The above figure shows the package top view.

Figure 13. STM32F412xE/G LQFP64 pinout

1. The above figure shows the package top view.

Figure 14. STM32F412xE/G LQFP100 pinout

1. The above figure shows the package top view.

Figure 15. STM32F412xE/G LQFP144 pinout

1. The above figure shows the package top view.

Figure 16. STM32F412xE/G UFBGA100 pinout

	1	2	3	4	5	6	7	8	9	10	11	12
A	(PE3	(PE1	(PB8)	OOT0	(PD7)	PD	(PB4)	(PB3)	(PA15)	(PA14)	(PA13)	(PA12)
B	(PE4)	(PE2	PB9	(PB7)	PB6	PD6	PD4	(PD3)	(PD1)	(PC12)	(P10)	(PA11)
C	PC13	PE5	PEO	VD	PB5			PD2	PDO	(-C11)	$\left(\begin{array}{c}\text { CAP } \\ 2\end{array}\right.$	(PA10)
D	$\begin{aligned} & \mathrm{ec} 14- \\ & \mathbf{c c c} 3)^{2} \\ & -14 \end{aligned}$	PE6	vss							(PA9	(PA8)	(PC9)
E	$\begin{aligned} & \text { Pets } \\ & \text { Scc } \\ & \text { Sut } \end{aligned}$	(VBAT)	$\begin{aligned} & \text { BASS } \\ & \text { PES } \end{aligned}$							(PC8)	(PC7)	(PC6)
F	$\binom{\mathrm{HHO}}{(\mathrm{OSC}}$	vss									vss	vss
G	$\frac{\mathrm{CHz}}{\text { (Ss) }}$	(VD)									(VD)	(VDD)
H	PCO	NRS	PR ON							(PD15)	(PD14)	(D13)
J	vssea	PC1	(PC2)							PD1	(PD11)	PD10
K	(VRE)	PC3	PA2	PA5	PC4			(PD)	(PB1)	(PB15)	(PB14)	(PB13)
L	REF	PAO	PA3	(PA6)	(PC5)	PB2	PE8	PE1d	PE12	PB10	$\binom{C A P}{1}$	(PB12)
M	(VDA)	PA1	PA4	(PA7)	PBO	PB1	PE7	(PE9	PE1)	PE13		
												MSv3

1. The above figure shows the package top view.

Figure 17. STM32F412xE/G UFBGA144 pinout

A	1	2	3	4	5	6	7	8	9	10	11	12
	PC13	PE3	PE2	PE1	PEO	PB4	PB3	PD6	PD7	PA15	PA14	PA13
BC	$\begin{gathered} \text { PC14- } \\ \text { OSC32_IN } \end{gathered}$	PE4	PE5	PE6	PB9	PB5	PG15	PG12	PD5	PC11	PC10	PA12
	$\begin{array}{\|c\|} \hline \text { PC15- } \\ \text { OSC32_OUT } \end{array}$	VBAT	PF0	PF1	PB8	PB6	PG14	PG11	PD4	PC12	VDDUSB	PA11
D	$\begin{aligned} & \text { PHO - } \\ & \text { OSC_IN } \end{aligned}$	vSS	VDD	PF2	BOOT0	PB7	PG13	PG10	PD3	PD1	PA10	PA9
E	PH1OSC_OUT	PF3	PF4	PF5	PDR_ON	VSS	VSS	PG9	PD2	PDO	PC9	PA8
F	NRST	PF7	PF6	VDD	PC8	PC7						
G	PF10	PF9	PF8	vss	VDD	VDD	VDD	vss	VCAP_2	vss	PG8	PC6
H	PC0	PC1	PC2	PC3	$\begin{gathered} \text { BYPASS_- } \\ \text { REG } \end{gathered}$	VSS	VCAP_1	PE11	PD11	PG7	PG6	PG5
J	vSSA	PAO	PA4	PC4	PB2	PG1	PE10	PE12	PD10	PG4	PG3	PG2
K	VREF-	PA1	PA5	PC5	PF13	PG0	PE9	PE13	PD9	PD13	PD14	PD15
L	VREF+	PA2	PA6	PB0	PF12	PF15	PE8	PE14	PD8	PD12	PB14	PB15
M	VDDA	PA3	PA7	PB1	PF11	PF14	PE7	PE15	PB10	PB11	PB12	PB13
												MSv3

1. The above figure shows the package top view.

Table 8. Legend/abbreviations used in the pinout table

Name	Abbreviation	Definition
Pin name	Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name	
Pin type	S	Supply pin
	1	Input only pin
	1/O	Input/ output pin
I/O structure	FT	5 V tolerant I/O
	TC	Standard 3.3 V I/O
	B	Dedicated BOOT0 pin
	NRST	Bidirectional reset pin with embedded weak pull-up resistor
Notes	Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset	
Alternate functions	Functions selected through GPIOx_AFR registers	
Additional functions	Functions directly selected/enabled through peripheral registers	

Table 9. STM32F412xE/G pin definition

Pin Number							Pin name (function after reset) ${ }^{(1)}$	Pin type	I/O structure	Notes	Alternate functions	Additional functions
		$\begin{aligned} & \mathbf{~} \\ & 0 \\ & 0 \\ & 0 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { 은 } \\ & \text { 민 } \\ & \hline 1 \end{aligned}$									
-	-	-	1	B2	A3	1	PE2	I/O	FT	-	TRACECLK, SPI4_SCK/I2S4_CK, SPI5_SCK/I2S5_CK, QUADSPI_BK1_IO2, FSMC A23, EVENTOUT	-
-	-	-	2	A1	A2	2	PE3	I/O	FT	-	TRACED0, FSMC_A19, EVENTOUT	-
-	-	-	3	B1	B2	3	PE4	I/O	FT	-	TRACED1, SPI4_NSS/I2S4_WS, SPI5_NSS/I2S5_WS, DFSDM1_DATIN3, FSMC A20, EVENTOUT	-
-	-	-	4	C2	B3	4	PE5	I/O	FT	-	TRACED2, TIM9_CH1, SPI4_MISO, SPI5_MISO, DFSDM1_CKIN3, FSMC_A21, EVENTOUT	-
-	-	-	5	D2	B4	5	PE6	I/O	FT	-	TRACED3, TIM9_CH2, SPI4_MOSI/I2S4_SD, SPI5_MOSI/I2S5_SD, FSMC_A22, EVENTOUT	-
1	1	B7	6	E2	C2	6	VBAT	S	-	-	-	VBAT
2	2	B8	7	C1	A1	7	PC13	1/O	FT	(2)(3)	EVENTOUT	TAMP_1
3	3	C8	8	D1	B1	8	$\begin{gathered} \text { PC14- } \\ \text { OSC32_IN } \end{gathered}$	I/O	FT	(2)(3) (4)	EVENTOUT	OSC32_IN
4	4	C7	9	E1	C1	9	$\begin{gathered} \text { PC15- } \\ \text { OSC32 } \\ \text { OUT } \end{gathered}$	I/O	FT	(2)(4)	EVENTOUT	$\begin{gathered} \text { OSC32_ } \\ \text { OUT } \end{gathered}$
-	-	-	-	-	C3	10	PF0	I/O	FT	-	I2C2_SDA, FSMC_A0, EVENTOUT	-
-	-	-	-	-	C4	11	PF1	I/O	FT	-	I2C2_SCL, FSMC_A1, EVENTOUT	-
-	-	-	-	-	D4	12	PF2	I/O	FT	-	I2C2_SMBA, FSMC_A2, EVENTOUT	-
-	-	-	-	-	E2	13	PF3	I/O	FT	-	TIM5_CH1, FSMC_A3, EVENTOUT	-
-	-	-	-	-	E3	14	PF4	I/O	FT	-	TIM5_CH2, FSMC_A4, EVENTOUT	-

Table 9. STM32F412xE/G pin definition (continued)

Pin Number							Pin name (function after reset) ${ }^{(1)}$	$\begin{array}{\|c} \text { Pin } \\ \text { type } \end{array}$	I/O structure	Notes	Alternate functions	Additional functions
	$\begin{aligned} & \pm \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { す } \\ & \text { O} \\ & \text { O} \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { 음 } \\ & \text { O} \\ & \hline 1 \end{aligned}$									
-	-	-	-	-	E4	15	PF5	I/O	FT	-	TIM5_CH3, FSMC_A5, EVENTOUT	-
-	-	-	10	F2	D2	16	VSS	S	-	-	-	-
-	-	-	11	G2	D3	17	VDD	S	-	-	-	-
-	-	-	-	-	F3	18	PF6	I/O	FT	-	TRACED0, TIM10_CH1, QUADSPI_BK1_IO3, EVENTOUT	-
-	-	-	-	-	F2	19	PF7	I/O	FT	-	TRACED1, TIM11_CH1, QUADSPI_BK1_IO2, EVENTOUT	-
-	-	-	-	-	G3	20	PF8	I/O	FT	-	TIM13_CH1, QUADSPI_BK1_IO0, EVENTOUT	-
-	-	-	-	-	G2	21	PF9	I/O	FT	-	TIM14_CH1, QUADSPI_BK1_IO1, EVENTOUT	-
-	-	-	-	-	G1	22	PF10	I/O	FT	-	TIM1_ETR, TIM5_CH4, EVENTOUT	-
5	5	D8	12	F1	D1	23	$\begin{aligned} & \text { PHO - } \\ & \text { OSC_IN } \end{aligned}$	I/O	FT	(4)	EVENTOUT	OSC_IN
6	6	E8	13	G1	E1	24	$\begin{gathered} \text { PH1- } \\ \text { OSC_OUT } \end{gathered}$	I/O	FT	(4)	EVENTOUT	OSC_OUT
7	7	D7	14	H2	F1	25	NRST	I/O	RST	-	-	NRST
-	8	D5	15	H1	H1	26	PC0	I/O	FT	-	EVENTOUT	$\begin{aligned} & \text { ADC1_10, } \\ & \text { WKUP2 } \end{aligned}$
-	9	F8	16	J2	H2	27	PC1	I/O	FT	-	EVENTOUT	ADC1_11, WKUP3
-	10	E7	17	J3	H3	28	PC2	I/O	FT	-	$\begin{array}{\|l} \hline \text { SPI2_MISO, I2S2ext_SD, } \\ \text { DFSDM1_CKOUT, } \\ \text { FSMC_NWE, EVENTOUT } \end{array}$	ADC1_12
-	11	D6	18	K2	H4	29	PC3	I/O	FT	-	SPI2_MOSI/I2S2_SD, FSMC_A0, EVENTOUT	ADC1_13
-	-	-	19	-	-	30	VDD	S	-	-	-	-
8	12	G8	20	-	-	31	VSSA/ VREF	S	-	-	-	-
-	-	-	-	J1	J1	-	VSSA	S	-	-	-	-

Table 9. STM32F412xE/G pin definition (continued)

Pin Number							Pin name (function after reset) ${ }^{(1)}$	$\begin{gathered} \text { Pin } \\ \text { type } \end{gathered}$	I/O structure	Notes	Alternate functions	Additional functions
		$\begin{aligned} & \text { O } \\ & 0 \\ & 0 \\ & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { 음 } \\ & \text { íd } \\ & \text { O} \end{aligned}$			$\begin{aligned} & \mathbb{Z} \\ & \stackrel{i}{1} \\ & \text { O} \end{aligned}$						
-	-	-	-	K1	K1	-	VREF-	S	-	-	-	-
9	13	F7	-	-	-	-	VDDA/ VREF+	S	-	-	-	-
-	-	-	21	L1	L1	32	VREF+	S	-	-	-	-
-	-	-	22	M1	M1	33	VDDA	S	-	-	-	-
10	14	E6	23	L2	J2	34	PAO	I/O	FT	-	TIM2_CH1/TIM2_ETR, TIM5_CH1, TIM8_ETR, USART2_CTS, EVENTOUT	ADC1_0, WKUP1
11	15	G7	24	M2	K2	35	PA1	I/O	FT	-	```TIM2_CH2, TIM5_CH2, SPI4_MOSI/I2S4_SD, USART2_RTS, QUADSPI_BK1_IO3, EVENTOUT```	ADC1_1
12	16	H8	25	K3	L2	36	PA2	I/O	FT	-	TIM2_CH3, TIM5_CH3, TIM9_CH1, I2S2_CKIN, USART2_TX, FSMC_D4, EVENTOUT	ADC1_2
13	17	F6	26	L3	M2	37	PA3	I/O	FT	-	TIM2_CH4, TIM5_CH4, TIM9_CH2, I2S2_MCK, USART2_RX, FSMC_D5, EVENTOUT	ADC1_3
-	18	-	27	-	G4	38	VSS	S	-	-	-	-
-	-	-	-	E3	H5	-	$\begin{gathered} \hline \text { BYPASS_ } \\ \text { REG } \end{gathered}$	I	FT	-	-	-
-	19	H7	28	-	F4	39	VDD	S	-	-	-	-
14	20	G6	29	M3	J3	40	PA4	I/O	FT	-	SPI1_NSS/I2S1_WS, SPI3_NSS/I2S3_WS, USART2_CK, DFSDM1_DATIN1, FSMC_D6, EVENTOUT	ADC1_4
15	21	F5	30	K4	K3	41	PA5	I/O	FT	-	TIM2_CH1/TIM2_ETR, TIM8_CH1N, SPI1_SCK/I2S1_CK, DFSDM1_CKIN1, FSMC_D7, EVENTOUT	ADC1_5

Table 9. STM32F412xE/G pin definition (continued)

Pin Number							Pin name (function after reset) ${ }^{(1)}$	$\begin{aligned} & \text { Pin } \\ & \text { type } \end{aligned}$	I/O structure	Notes	Alternate functions	Additional functions
	$\begin{aligned} & \text { U } \\ & 0 \\ & \text { OU } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \text { す } \\ & 0 \\ & 0 \\ & 0 \\ & 3 \end{aligned}$		$\begin{aligned} & \text { O} \\ & \frac{1}{4} \\ & \text { O} \\ & \stackrel{1}{J} \end{aligned}$								
16	22	H6	31	L4	L3	42	PA6	I/O	FT	-	TIM1_BKIN, TIM3_CH1, TIM8_BKIN, SPI1_MISO, I2S2_MCK, TIM13_CH1, QUADSPI_BK2_IO0, SDIO_CMD, EVENTOUT	ADC1_6
17	23	E5	32	M4	M3	43	PA7	I/O	FT	-	TIM1_CH1N, TIM3_CH2, TIM8_CH1N, SPI1_MOSI/I2S1_SD, TIM14_CH1, QUADSPI_BK2_IO1, EVENTOUT	ADC1_7
-	24	E4	33	K5	J4	44	PC4	I/O	FT	-	$\begin{gathered} \text { I2S1_MCK, } \\ \text { QUADSPI_BK2_IO2, } \\ \text { FSMC_NE4,_EVENTOUT } \end{gathered}$	ADC1_14
-	25	G5	34	L5	K4	45	PC5	I/O	FT	-	I2CFMP1_SMBA, USART3_RX, QUADSPI_BK2_IO3, FSMC_NOE, EVENTOUT	ADC1_15
18	26	H5	35	M5	L4	46	PB0	I/O	FT	-	```TIM1_CH2N, TIM3_CH3, TIM8_CH2N, SPI5_SCK/I2S5_CK, EVENTOUT```	ADC1_8
19	27	F4	36	M6	M4	47	PB1	I/O	FT	-	TIM1_CH3N, TIM3_CH4, TIM8_CH3N, SPI5_NSSI/I2S5_WS, DFSDM1_DATIN0, QUADSPI_CLK, EVENTOUT	ADC1_9
20	28	G4	37	L6	J5	48	PB2	I/O	FT	-	DFSDM1_CKIN0, QUADSPI_CLK, EVENTOUT	BOOT1
-	-	-	-	-	M5	49	PF11	I/O	FT	-	TIM8_ETR, EVENTOUT	-
-	-	-	-	-	L5	50	PF12	I/O	FT	-	TIM8_BKIN, FSMC_A6, EVENTOUT	-
-	-	-	-	-	-	51	VSS	S	-	-	-	-
-	-	-	-	-	G5	52	VDD	S	-	-	-	-
-	-	-	-	-	K5	53	PF13	I/O	FT	-	I2CFMP1_SMBA, FSMC_A7, EVENTOUT	-

Table 9. STM32F412xE/G pin definition (continued)

Pin Number							Pin name (function after reset) ${ }^{(1)}$	$\begin{aligned} & \text { Pin } \\ & \text { type } \end{aligned}$	I/O structure	Notes	Alternate functions	Additional functions
	$\begin{aligned} & \mathbb{O} \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { J } \\ & 0 \\ & 00 \\ & 0 \\ & 3 \end{aligned}$	음 민 1	$\begin{aligned} & \text { O} \\ & \frac{0}{4} \\ & 00 \\ & \frac{0}{J} \end{aligned}$	\ddagger $\underset{4}{4}$ 0 $\stackrel{1}{J}$	$\begin{aligned} & \mathbb{Z} \\ & \stackrel{i}{1} \\ & \text { O} \end{aligned}$						
-	-	-	-	-	M6	54	PF14	I/O	FT	-	I2CFMP1_SCL, FSMC_A8, EVENTOUT	-
-	-	-	-	-	L6	55	PF15	I/O	FT	-	I2CFMP1_SDA, FSMC_A9, EVENTOUT	-
-	-	-	-	-	K6	56	PG0	I/O	FT	-	CAN1_RX, FSMC_A10, EVENTOUT	-
-	-	-	-	-	J6	57	PG1	I/O	FT	-	CAN1_TX, FSMC_A11, EVENTOUT	-
-	-	-	38	M7	M7	58	PE7	I/O	FT	-	TIM1_ETR, DFSDM1_DATIN2, QUADSPI_BK2_IO0, FSMC_D4/FSMC_DA4, EVENTOUT	-
-	-	-	39	L7	L7	59	PE8	I/O	FT	-	TIM1_CH1N, DFSDM1_CKIN2, QUADSPI_BK2_IO1, FSMC_D5/FSMC_DA5, EVENTOUT	-
-	-	-	40	M8	K7	60	PE9	I/O	FT	-	TIM1_CH1, DFSDM1_CKOUT, QUADSPI_BK2_IO2, FSMC_D6/FSMC_DA6, EVENTOUT	-
-	-	-	-	-	-	61	VSS	S	-	-	-	-
-	-	-	-	-	G6	62	VDD	S	-	-	-	-
-	-	-	41	L8	J7	63	PE10	I/O	FT	-	```TIM1_CH2N, QUADSPI_BK2_IO3, FSMC_D7/FSMC_DA7, EVENTOUT```	-
-	-	-	42	M9	H8	64	PE11	I/O	FT	-	TIM1_CH2, SPI4_NSS/I2S4_WS, SPI5_NSS/I2S5_WS, FSMC_D8/FSMC_DA8, EVENTOUT	-
-	-	-	43	L9	J8	65	PE12	I/O	FT	-	TIM1_CH3N, SPI4_SCK/I2S4_CK, SPI5_SCK/I2S5_CK, FSMC_D9/FSMC_DA9, EVENTOUT	-

Table 9. STM32F412xE/G pin definition (continued)

Pin Number							Pin name (function after reset) ${ }^{(1)}$	$\begin{gathered} \text { Pin } \\ \text { type } \end{gathered}$	I/O structure	Notes	Alternate functions	Additional functions
	$\begin{aligned} & \text { U } \\ & 0.1 \\ & \text { O} \\ & \hline \mathbf{U} \end{aligned}$	$\begin{aligned} & \text { む } \\ & 0 \\ & 0 \\ & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { 음 } \\ & \text { íd } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \frac{\Gamma}{4} \\ & \text { O} \\ & \stackrel{1}{J} \end{aligned}$								
-	-	-	44	$\begin{gathered} \text { M1 } \\ 0 \end{gathered}$	K8	66	PE13	I/O	FT	-		-
-	-	-	45	M11	L8	67	PE14	I/O	FT	-	TIM1_CH4, SPI4_MOSI/I2S4_SD, SPI5_MOSI/I2S5_SD, FSMC_D11/FSMC_DA11, EVENTOUT	-
-	-	-	46	$\begin{gathered} \text { M1 } \\ 2 \end{gathered}$	M8	68	PE15	I/O	FT	-	TIM1_BKIN, FSMC_D12/FSMC_DA12, EVENTOUT	-
21	29	H4	47	L10	M9	69	PB10	I/O	FT	-	TIM2_CH3, I2C2_SCL, SPI2_SCK/I2S2_CK, I2S3_MCK, USART3_TX, I2CFMP1_SCL, SDIO_D7, EVENTOUT	-
-	-	-	-	K9	$\begin{gathered} \text { M1 } \\ 0 \end{gathered}$	70	PB11	I/O	FT	-	TIM2_CH4, I2C2_SDA, I2S2_CKIN, USART3_RX, EVENTOUT	-
22	30	H3	48	L11	H7	71	VCAP_1	S	-	-	-	-
23	31	H2	49	F12	H6	-	VSS	S	-	-	-	-
24	32	H1	50	G1	G7	72	VDD	S	-	-	-	-
25	33	G3	51	L12	M11	73	PB12	I/O	FT	-	TIM1_BKIN, I2C2_SMBA, SPI2_NSS/I2S2_WS, SPI4_NSS/I2S4_WS, SPI3_SCK/I2S3_CK, USART3_CK, CAN2_RX, DFSDM1_DATIN1, FSMC_D13/FSMC_DA13, EVENTOUT	-
26	34	G2	52	K12	$\begin{array}{\|c} \text { M1 } \\ 2 \end{array}$	74	PB13	I/O	FT	-	TIM1_CH1N, I2CFMP1_SMBA, SPI2_SCK/I2S2_CK, SPI4_SCK/I2S4_CK, USART3_CTS, CAN2_TX, DFSDM1_CKIN1, EVENTOUT	-

Table 9. STM32F412xE/G pin definition (continued)

Pin Number							Pin name (function after reset) ${ }^{(1)}$	$\begin{gathered} \text { Pin } \\ \text { type } \end{gathered}$	I/O structure	Notes	Alternate functions	Additional functions
	$\begin{aligned} & \mathbb{O} \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \pm \\ & 0 \\ & 0 \\ & 0 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { 음 } \\ & \text { ì } \\ & \text { OU } \end{aligned}$		\ddagger $\underset{4}{4}$ 0 $\stackrel{1}{3}$	$\begin{aligned} & \mathbb{Z} \\ & \stackrel{i}{1} \\ & \text { O} \end{aligned}$						
27	35	G1	53	K11	L11	75	PB14	I/O	FT	-	TIM1_CH2N, TIM8_CH2N, I2CFMP1_SDA, SPI2_MISO, I2S2ext_SD, USART3_RTS, DFSDM1_DATIN2, TIM12_CH1, FSMC_D0, SDIO D6, EVENTOUT	-
28	36	F2	54	K10	L12	76	PB15	I/O	FT	-	RTC_50Hz, TIM1_CH3N, TIM8_CH3N, I2CFMP1_SCL, SPI2_MOSI/I2S2_SD, DFSDM1_CKIN2, TIM12_CH2, SDIO_CK, EVENTOUT	-
-	-	-	55	-	L9	77	PD8	I/O	FT	-	USART3_TX, FSMC_D13/ FSMC_DA13, EVENTOUT	-
-	-	-	56	K8	K9	78	PD9	I/O	FT	-	USART3_RX, FSMC_D14/FSMC_DA14, EVENTOUT	-
-	-	-	57	J12	J9	79	PD10	I/O	FT	-	USART3_CK, FSMC_D15/FSMC_DA15, EVENTOUT	-
-	-	-	58	J11	H9	80	PD11	I/O	FT	-	I2CFMP1_SMBA, USART3_CTS, QUADSPI_BK1_IO0, FSMC_A16, EVENTOUT	-
-	-	-	59	J10	L10	81	PD12	I/O	FT	-	TIM4_CH1, I2CFMP1_SCL, USART3_RTS, QUADSPI_BK1_IO1, FSMC A17, EVENTOUT	-
-	-	-	60	H12	K10	82	PD13	I/O	FT	-	$\begin{gathered} \text { TIM4_CH2, } \\ \text { I2CFMP1_SDA, } \\ \text { QUADSPI_BK1_IO3, } \\ \text { FSMC_A18, EVENTOUT } \end{gathered}$	-
-	-	-	-	-	G8	83	VSS	S	-	-	-	-
-	-	-	-	-	F8	84	VDD	S	-	-	-	-

Table 9. STM32F412xE/G pin definition (continued)

Pin Number							Pin name (function after reset) ${ }^{(1)}$	$\begin{aligned} & \text { Pin } \\ & \text { type } \end{aligned}$	I/O structure	Notes	Alternate functions	Additional functions
© Z Z O O I	$\begin{aligned} & \text { U } \\ & \text { O} \\ & \text { O } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { す } \\ & 0 \\ & 0 \\ & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { 응 } \\ & \frac{1}{4} \\ & \text { O } \end{aligned}$	$\begin{aligned} & \text { O } \\ & \stackrel{0}{\mathbf{j}} \\ & \text { M } \\ & \stackrel{1}{J} \end{aligned}$		$\begin{aligned} & \underset{\sim}{J} \\ & \stackrel{1}{4} \\ & \underset{O}{4} \end{aligned}$						
-	-	-	61	H11	K11	85	PD14	I/O	FT	-	TIM4_CH3, I2CFMP1_SCL, FSMC_D0/FSMC_DA0, EVENTOUT	-
-	-	-	62	H10	K12	86	PD15	I/O	FT	-	```TIM4_CH4, I2CFMP1_SDA, FSMC_D1/FSMC_DA1, EVENTOUT```	-
-	-	-	-	-	J12	87	PG2	I/O	FT	-	FSMC_A12, EVENTOUT	-
-	-	-	-	-	J11	88	PG3	I/O	FT	-	FSMC_A13, EVENTOUT	-
-	-	-	-	-	J10	89	PG4	I/O	FT	-	FSMC_A14, EVENTOUT	-
-	-	-	-	-	H12	90	PG5	I/O	FT	-	FSMC_A15, EVENTOUT	-
-	-	-	-	-	H11	91	PG6	I/O	FT	-	QUADSPI_BK1_NCS, EVENTOUT	-
-	-	-	-	-	H10	92	PG7	I/O	FT	-	USART6_CK, EVENTOUT	-
-	-	-	-	-	G11	93	PG8	I/O	FT	-	USART6_RTS, EVENTOUT	-
-	-	-	-	-	-	94	VSS	S	-	-	-	-
-	-	-	-	-	F10	-	VDD	S	-			
-	-	-	-	-	C11	95	VDDUSB	S	-	-	-	-
-	37	F1	63	E12	G12	96	PC6	I/O	FT	-	TIM3_CH1, TIM8_CH1, I2CFMP1_SCL, I2S2 MCK, DFSDM1_CKIN3, USART6_TX, FSMC_D1, SDIO_D6, EVENTOUT	-
-	38	E1	64	E11	F12	97	PC7	I/O	FT	-	TIM3_CH2, TIM8_CH2, I2CFMP1_SDA, SPI2_SCK/I2S2_CK, I2S3_MCK, USART6_RX, DFSDM1_DATIN3, SDIO_D7, EVENTOUT	-
-	39	F3	65	E10	F11	98	PC8	I/O	FT	-	TIM3_CH3, TIM8_CH3, USART6_CK, QUADSPI_BK1_IO2, SDIO_DO, EVENTOUT	-

Table 9. STM32F412xE/G pin definition (continued)

Pin Number							Pin name (function after reset) ${ }^{(1)}$	$\begin{gathered} \text { Pin } \\ \text { type } \end{gathered}$	I/O structure	Notes	Alternate functions	Additional functions
	$\begin{aligned} & \text { U } \\ & 0 \\ & \text { OU } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \text { O } \\ & 0 \\ & 0 \\ & 0 \\ & 3 \end{aligned}$		$\begin{aligned} & \text { O} \\ & \frac{0}{4} \\ & \text { O} \\ & \text { M } \end{aligned}$								
-	40	E2	66	D12	E11	99	PC9	I/O	FT	-	MCO_2, TIM3_CH4, TIM8_CH4, I2C3_SDA, I2S2_CKIN, QUADSPI_BK1_IO0, SDIO D1, EVENTOUT	-
29	41	E3	67	D11	E12	100	PA8	I/O	FT	-	MCO_1, TIM1_CH1, I2C3_SCL, USART1_CK, USB_FS_SOF, SDIO_D1, EVENTOUT	-
30	42	D1	68	D10	D12	101	PA9	I/O	FT	-	TIM1_CH2, I2C3_SMBA, USART1_TX, USB_FS_VBUS, SDIO_D2, EVENTOUT	-
31	43	D2	69	C12	D11	102	PA10	I/O	FT	-	TIM1_CH3, SPI5_MOSI/I2S5_SD, USART1_RX, USB_FS_ID, EVENTOUT	-
32	44	D3	70	B12	C12	103	PA11	I/O	FT	-	TIM1_CH4, SPI4_MISO, USART1_CTS, USART6_TX, CAN1_RX, USB_FS_DM, EVENTOUT	-
33	45	C1	71	A12	B12	104	PA12	I/O	FT	-	TIM1_ETR, SPI5_MISO, USART1_RTS, USART6_RX, CAN1_TX, USB_FS_DP, EVENTOUT	-
34	46	C2	72	A11	A12	105	PA13	I/O	FT	-	JTMS-SWDIO, EVENTOUT	-
-	-	-	73	C11	G9	106	VCAP_2	S	-	-	-	-
35	47	B1	74	F11	G10	107	VSS	S	-	-	-	-
36	48	-	75	G11	-	-	VDD	S	-	-	-	-
-	-	A1	-	-	F9	108	VDD	S	-	-	-	-
37	49	B2	76	A10	A11	109	PA14	I/O	FT	-	JTCK-SWCLK, EVENTOUT	-
38	50	A2	77	A9	A10	110	PA15	I/O	FT	-	JTDI, TIM2_CH1/TIM2_ETR, SPI1_NSS/I2S1_WS, SPI3_NSS/I2S3_WS, USART1_TX, EVENTOUT	-

Table 9. STM32F412xE/G pin definition (continued)

Pin Number							Pin name (function after reset) ${ }^{(1)}$	$\begin{aligned} & \text { Pin } \\ & \text { type } \end{aligned}$	I/O structure	Notes	Alternate functions	Additional functions
	$\begin{aligned} & \text { U } \\ & \text { O! } \\ & \text { O } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { す } \\ & 0 \\ & 0 \\ & 0 \\ & 3 \end{aligned}$		$\begin{aligned} & \text { O} \\ & \frac{0}{4} \\ & \text { O} \\ & \stackrel{1}{J} \end{aligned}$		$\frac{Z}{J}$ $\stackrel{i}{4}$						
-	51	C3	78	B11	B11	111	PC10	I/O	FT	-	SPI3_SCK/I2S3_CK, USART3_TX, QUADSPI_BK1_IO1, SDIO D2, EVENTOUT	-
-	52	B3	79	C10	B10	112	PC11	I/O	FT	-	I2S3ext_SD, SPI3_MISO, USART3_RX, QUADSPI_BK2_NCS, FSMC_D2, SDIO_D3, EVENTOUT	-
-	53	A3	80	B10	C10	113	PC12	I/O	FT	-	SPI3_MOSI/I2S3_SD, USART3_CK, FSMC_D3, SDIO_CK, EVENTOUT	-
-	-	-	81	C9	E10	114	PDO	I/O	FT	-	$\begin{gathered} \text { CAN1_RX, } \\ \text { FSMC_D2/FSMC_DA2, } \\ \text { EVENTOUT } \end{gathered}$	-
-	-	-	82	B9	D10	115	PD1	I/O	FT	-	$\begin{gathered} \hline \text { CAN1_TX, } \\ \text { FSMC_D3/FSMC_DA3, } \\ \text { EVENTOUT } \end{gathered}$	-
-	54	A4	83	C8	E9	116	PD2	I/O	FT	-	TIM3_ETR, FSMC_NWE, SDIO_CMD, EVENTOUT	-
-	-	-	84	B8	D9	117	PD3	I/O	FT	-	TRACED1, SPI2_SCK/I2S2_CK, DFSDM1_DATIN0, USART2_CTS, QUADSPI_CLK, FSMC_CLK, EVENTOUT	-
-	-	-	85	B7	C9	118	PD4	I/O	FT	-	$\begin{gathered} \hline \text { DFSDM1_CKIN0, } \\ \text { USART2_RTS, } \\ \text { FSMC_NOE, EVENTOUT } \end{gathered}$	-
-	-	-	86	A6	B9	119	PD5	I/O	FT	-	USART2_TX, FSMC_NWE, EVENTOUT	-
-	-	-	-	-	E7	120	VSS	S	-	-	-	-
-	-	-	-	-	F7	121	VDD	S	-	-	-	-
-	-	-	87	B6	A8	122	PD6	I/O	FT	-	SPI3_MOSI/I2S3_SD, DFSDM1_DATIN1, USART2_RX, FSMC_NWAIT, EVENTOUT	-

Table 9. STM32F412xE/G pin definition (continued)

Pin Number							Pin name (function after reset) ${ }^{(1)}$	$\begin{array}{\|c} \text { Pin } \\ \text { type } \end{array}$	I/O structure	Notes	Alternate functions	Additional functions
	$\begin{aligned} & \text { U } \\ & 0 \\ & \text { OU } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \text { O } \\ & 0 \\ & 0 \\ & 0 \\ & 3 \\ & 3 \end{aligned}$		$\begin{aligned} & \text { O} \\ & \frac{0}{<} \\ & 0 \\ & \frac{1}{3} \end{aligned}$		$\frac{Z}{J}$ $\stackrel{i}{4}$						
-	-	-	88	A5	A9	123	PD7	I/O	FT	-	DFSDM1_CKIN1, USART2_CK, FSMC_NE1, EVENTOUT	-
-	-	-	-	-	E8	124	PG9	I/O	FT	-	USART6_RX, QUADSPI_BK2_IO2, FSMC NE2, EVENTOUT	-
-	-	-	-	-	D8	125	PG10	I/O	FT	-	FSMC_NE3, EVENTOUT	-
-	-	-	-	-	C8	126	PG11	I/O	FT	-	CAN2_RX, EVENTOUT	-
-	-	-	-	-	B8	127	PG12	I/O	FT	-	USART6_RTS, CAN2_TX, FSMC_NE4, EVENTOUT	-
-	-	-	-	-	D7	128	PG13	I/O	FT	-	$\begin{gathered} \text { TRACED2, } \\ \text { USART6_CTS, } \\ \text { FSMC_A24, EVENTOUT } \end{gathered}$	-
-	-	-	-	-	C7	129	PG14	I/O	FT	-	TRACED3, USART6_TX, QUADSPI_BK2_IO3, FSMC_A25, EVENTOUT	-
-	-	-	-	-	-	130	VSS	S	-	-	-	-
-	-	-	-	-	F6	131	VDD	S	-	-	-	-
-	-	-	-	-	B7	132	PG15	I/O	FT	-	USART6_CTS, EVENTOUT	-
39	55	A5	89	A8	A7	133	PB3	I/O	FT	-	JTDO-SWO, TIM2_CH2, I2CFMP1_SDA, SPI1_SCK/I2S1_CK, SPI3_SCK/I2S3_CK, USART1_RX, I2C2_SDA, EVENTOUT	-
40	56	B4	90	A7	A6	134	PB4	I/O	FT	-	JTRST, TIM3 CH1, SPI1_MISO, SPI3_MISO, I2S3ext_SD, I2C3_SDA, SDIO_DO, EVENTOUT	-
41	57	C4	91	C5	B6	135	PB5	I/O	FT	-	TIM3_CH2, I2C1_SMBA, SPI1_MOSI/I2S1_SD, SPI3_MOSI/I2S3_SD, CAN2_RX, SDIO_D3, EVENTOUT	-

Table 9. STM32F412xE/G pin definition (continued)

Pin Number							Pin name (function after reset) ${ }^{(1)}$	$\begin{array}{\|c} \text { Pin } \\ \text { type } \end{array}$	I/O structure	Notes	Alternate functions	Additional functions
	$\begin{aligned} & \text { U } \\ & \text { OM } \\ & \text { OU } \end{aligned}$	$\begin{aligned} & \text { O } \\ & 0 \\ & 0 \\ & 0 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 8 \\ & \frac{0}{2} \\ & \frac{1}{0} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \frac{0}{4} \\ & 0 \\ & \hline 1 \\ & \hline \end{aligned}$								
42	58	B5	92	B5	C6	136	PB6	I/O	FT	-	TIM4_CH1, I2C1_SCL, USART1_TX, CAN2_TX, QUADSPI_BK1_NC̄S, SDIO_DO, EVENTOUT	-
43	59	A6	93	B4	D6	137	PB7	I/O	FT	-	TIM4_CH2, I2C1_SDA, USART1_RX, FSMC_NL, EVENTOUT	-
44	60	D4	94	A4	D5	138	BOOT0	1	B	-	-	VPP
45	61	C5	95	A3	C5	139	PB8	I/O	FT	-	$\begin{gathered} \text { TIM4_CH3, TIM10_CH1, } \\ \text { I2C1_SCL, } \\ \text { SPI5_MOSI/I2S5_SD, } \\ \text { CAN1_RX, I2C3_SDA, } \\ \text { SDIO_D4, EVENTOUT } \end{gathered}$	-
46	62	B6	96	B3	B5	140	PB9	I/O	FT	-	TIM4_CH4, TIM11_CH1, I2C1_SDA, SPI2_NSS/I2S2_WS, CAN1_TX, I2C2_SDA, SDIO_D5, EVENTOUT	-
-	-	-	97	C3	A5	141	PE0	I/O	FT	-	$\begin{gathered} \text { TIM4_ETR, FSMC_NBLO, } \\ \text { EVENTOUT } \end{gathered}$	-
-	-	-	98	A2	A4	142	PE1	I/O	FT	-	FSMC_NBL1, EVENTOUT	-
47	63	A7	99	-	E6	-	VSS	S	-	-	-	-
-	-	C6	-	H3	E5	143	PDR_ON	1	FT	-	-	-
48	64	A8	$\begin{gathered} 10 \\ 0 \end{gathered}$	-	F5	144	VDD	S	-	-	-	-

1. Function availability depends on the chosen device.
2. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:

- The speed should not exceed 2 MHz with a maximum load of 30 pF .
- These I/Os must not be used as a current source (e.g. to drive an LED).

3. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC register description sections in the STM32F412xE/Greference manual.
4. $\mathrm{FT}=5 \mathrm{~V}$ tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).

Port		AFO	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF12	AF15
		SYS_AF	$\begin{aligned} & \text { TIM1/ } \\ & \text { TIM2 } \end{aligned}$	$\begin{aligned} & \text { TIM3/ } \\ & \text { TIM4/ } \\ & \text { TIM5 } \end{aligned}$	$\begin{aligned} & \text { TIM8/ } \\ & \text { TIM9/ } \\ & \text { TIM10/ } \\ & \text { TIM11 } \end{aligned}$	$\begin{gathered} 12 \mathrm{C} 1 / \\ 12 \mathrm{C} 21 \\ 12 \mathrm{C} 31 \\ \text { 12CFMP1 } \end{gathered}$	SPI1/I2S1/ SP12/I2S2/ SPI3/I2S3/ SP14/I2S	/DFSDM1	SPI3/I2S3/ USART1/ USART2\| USART3	DFSDM1/ USART3/ USART6 CAN1	I2C2/I2C3/ 12CFMP1/ CAN1/CAN2 /TIM12l TIM13/TIM14 /QUADSPI	DFSDM1/ FSMC /OTG1_FS	FSMC /SDIO	SYS_AF
$\stackrel{\varangle}{\square}$	PAO	-	TIM2_CH1/	TIM5_CH1	TIM8_ETR	-	-	-	USART2_CTS	-	-	-	-	EVENTOUT
	PA1	-	TIM2_CH2	TIM5_CH2	-	-	$\begin{gathered} \text { SPI4_MOSI/I } \\ 2 S \overline{4} \text { _SD } \end{gathered}$	-	USART2_RTS	-	QUADSPI BK1_IO3	-	-	EVENTOUT
	PA2	-	TIM2_CH3	TIM5_CH3	TIM9_CH1	-	12S2_CKIN	-	USART2_TX	-	-	-	FSMC_D4	EVENTOUT
	PA3	-	TIM2_CH4	TIM5_CH4	TIM9_CH2	-	12S2_MCK	-	USART2_RX	-	-	-	FSMC_D5	EVENTOUT
	PA4	-	-	-	-	-	$\begin{gathered} \text { SPI1_NSS/I2 } \\ \text { S1_WS } \end{gathered}$	$\begin{aligned} & \text { SPI3_NSS/ } \\ & \text { I2S3_WS } \end{aligned}$	USART2_CK	DFSDM1 DATIN1	-	-	FSMC_D6	EVENTOUT
	PA5	-	$\begin{aligned} & \hline \text { TIM2_CH1/ } \\ & \text { TIM2_ETR } \end{aligned}$	-	TIM8_CH1N	-	SPI1_SCK/ I2S1_CK	-	-	DFSDM1 CKIN1	-	-	FSMC_D7	EVENTOUT
	PA6	-	TIM1_BKIN	TIM3_CH1	TIM8_BKIN	-	SPI1_MISO	I2S2_MCK	-	-	$\begin{gathered} \text { TIM13 } \\ \mathrm{CH}^{\mathrm{CH}} \end{gathered}$	QUADSPI BK2_1O0	SDIO_CMD	EVENTOUT
	PA7	-	TIM1_CH1N	TIM3_CH2	TIM8_CH1N	-	$\begin{array}{\|c\|c\|} \hline \text { SPI1_MOSI// } \\ \text { 2S1_SD } \end{array}$	-	-	-	$\begin{gathered} \text { TIM14- } \\ \text { CH1 } \end{gathered}$	QUADSPI BK2_101	-	EVENTOUT
	PA8	MCO_1	TIM1_CH1	-	-	12C3_SCL	-	-	USART1_CK	-	-	USB_FS_ SOF	SDIO_D1	EVENTOUT
	PA9	-	TIM1_CH2	-	-	$\begin{aligned} & 12 C 3 \\ & \text { SMB } \bar{A} \end{aligned}$	-	-	USART1_TX	-	-	USB_FS_ VBUS	SDIO_D2	EVENTOUT
	PA10	-	TIM1_CH3	-	-	-	-	SPI5_MOSI/ I2S5_SD	USART1_RX	-	-	USB_FS_ID	-	EVENTOUT
	PA11	-	TIM1_CH4	-	-	-	-	SPI4_MISO	USART1_CTS	$\begin{aligned} & \text { USART6_ } \\ & \text { TX } \end{aligned}$	CAN1_RX	USB_FS_DM	-	EVENTOUT
	PA12	-	TIM1_ETR	-	-	-	-	SP15_MISO	USART1_RTS	USART6_	CAN1_TX	USB_FS_DP	-	EVENTOUT
	PA13	JTMSSWDIO	-	-	-	-	-	-	-	-	-	-	-	EVENTOUT
	PA14	JTCK SWCLK	-	-	-	-	-	-	-	-	-	-	-	EVENTOUT
	PA15	JTDI	$\begin{aligned} & \text { TIM2_CH1/ } \\ & \text { TIM2_ETR } \end{aligned}$	-	-	-	SPI1_NSS/ I2S1_WS	$\begin{aligned} & \hline \text { SPI3_NSS/ } \\ & \text { I2S3_WS } \end{aligned}$	USART1_TX	-	-	-	-	EVENTOUT

DocID028087 Rev 4

Port		AFO	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF12	AF15
		SYS_AF	$\begin{aligned} & \text { TIM1/ } \\ & \text { TIM2 } \end{aligned}$	$\begin{aligned} & \text { TIM3/ } \\ & \text { TIM4/ } \\ & \text { TIM5 } \end{aligned}$	$\begin{aligned} & \text { TIM81 } \\ & \text { TIM9/ } \\ & \text { TIM10/ } \\ & \text { TIM11 } \end{aligned}$	$\begin{gathered} 12 \mathrm{C} 1 / \\ 12 \mathrm{C} 21 \\ 12 \mathrm{C} 3 / \\ 12 \mathrm{CFMP1} \end{gathered}$	SPI1/I2S1/ SP12/I2S2/ SP13/I2S3/ SPI4/I2S	SPI2/12S2/SP13 /I2S3/SP14/ I2S/SPI5/2S5 ISFSDM1	SPI3/I2S3/ USART1/ USART2 USART3	DFSDM1/ USART6/ CAN1	12C2/I2C3/ I2CFMP1/ CAN1/CAN2 /TIM12/ TIM13/TIM14 /QUADSPI	DFSDM1/ FSMC /OTG1_FS	FSMC /SDIO	SYS_AF
$\begin{aligned} & \infty \\ & \stackrel{\infty}{\circ} \\ & \hline \end{aligned}$	PB0	-	TIM1_CH2N	TIM3_CH3	TIM8_CH2N	-	-	$\begin{aligned} & \text { SPI5_SCK/ } \\ & \text { I2S5_CK } \end{aligned}$	-	-	-	-	-	EVENTOUT
	PB1	-	TIM1_CH3N	TIM3_CH4	TIM8_CH3N	-	-	$\begin{aligned} & \text { SPI5_NSS/ } \\ & \text { I2S5_WS } \end{aligned}$	-	$\begin{array}{\|c\|} \hline \text { DFSDM1_ } \\ \text { DATIN0 } \end{array}$	QUADSPI_ CLK	-	-	EVENTOUT
	PB2	-	-	-	-	-	-	$\begin{aligned} & \text { DFSDM1- } \\ & \text { CKINO } \end{aligned}$	-	-	QUADSPI_ CLK	-	-	EVENTOUT
	PB3	$\begin{aligned} & \text { JTDO- } \\ & \text { swo } \end{aligned}$	TIM2_CH2			$\begin{aligned} & \text { I2CFMP1_ } \\ & \text { SDA } \end{aligned}$	$\begin{gathered} \text { SPI1_SCK/I2 } \\ \text { S1_CK } \end{gathered}$	$\begin{aligned} & \mathrm{SPI} 3 \text { _SCK/ } \\ & \text { I2S3_CK } \end{aligned}$	USART1_RX	-	12C2_SDA	-	-	EVENTOUT
	PB4	JTRST	-	TIM3_CH1	-	-	SPI1_MISO	SPI3_MISO	I2S3ext_ SD	-	12C3_SDA	-	SDIO_D0	EVENTOUT
	PB5	-	-	TIM3_CH2	-	12C1_SMBA	$\begin{aligned} & \text { SPI1_MOSI/I } \\ & \text { 2S1_SD } \end{aligned}$	$\begin{gathered} \text { SPI3_MOSI/ } \\ \text { I2S3̄_SD } \end{gathered}$	-	-	CAN2_RX	-	SDIO_D3	EVENTOUT
	PB6	-	-	TIM4_CH1	-	12C1_SCL	-	-	USART1_TX	-	CAN2_TX	QUADSPI BK1_NCS	SDIO_D0	EVENTOUT
	PB7	-	-	TIM4_CH2	-	12C1_SDA	-	-	USART1_RX	-	-	-	FSMC_NL	Eventout
	PB8	-	-	TIM4_CH3	TIM10_CH1	12C1_SCL	-	$\underset{\|c\|}{\mid \text { SPI5_MOSI/I2S }}$	-	CAN1_RX	12C3_SDA	-	SDIO_D4	EVENTOUT
	PB9	-	-	TIM4_CH4	TIM11_CH1	12C1_SDA	SPI2 NSS/ 12S2_WS	-	-	CAN1_TX	12C2_SDA	-	SDIO_D5	EVENTOUT
	PB10	-	TIM2_CH3	-	-	12C2_SCL	$\begin{aligned} & \hline \text { SPI2_SCK/ } \\ & \text { I2S2_CK } \end{aligned}$	12S3_MCK	USART3_TX	-	$\begin{aligned} & \text { 2CFMP1_ } \\ & \text { SCL } \end{aligned}$	-	SDIO_D7	EVENTOUT
	PB11	-	TIM2_CH4	-	-	12C2_SDA	I2S2_CKIN	-	USART3_RX	-	-	-	-	eventout
	PB12	-	TIM1_BKIN	-	-	12C2_SMBA	SPI2 NSS/ I2S2_WS	$\begin{aligned} & \text { SPI4_NSS/ } \\ & \text { 12S4_WS } \end{aligned}$	$\begin{gathered} \text { SPI3_SCK/ } \\ 12 S 3 \bar{C} / \mathrm{CK} \end{gathered}$	USART3 CK	CAN2_RX	DFSDM1_ DATIN1	FSMC D13/F SMC_DA13	EVENTOUT
	PB13	-	TIM1_CH1N	-	-	$\begin{gathered} \text { I2CFMP1 }^{\text {SMBA }} \end{gathered}$	$\begin{aligned} & \text { SPI2_SCK/ } \\ & \text { I2S2_CK } \end{aligned}$	$\begin{aligned} & \text { SPI4_SCK/ } \\ & \text { I2S }{ }^{2} \text { _CK } \end{aligned}$	-	USART3_ CTS	CAN2_TX	$\begin{aligned} & \text { DFSDM1 } \\ & \text { CKIN1 } \end{aligned}$	-	EVENTOUT
	PB14	-	TIM1_CH2N	-	TIM8_CH2N	$\begin{aligned} & \text { I2CFMP1_ } \\ & \hline \text { SDA } \end{aligned}$	SPI2_MISO	12S2ext_SD	USART3 RTS	DFSDM1 DATIN2	TIM12_CH1	FSMC_D0	SDIO_D6	EVENTOUT
	PB15	RTC_ $50 \mathrm{~Hz}$	TIM1_CH3N	-	TIM8_CH3N	$\begin{gathered} \text { I2CFMP1_ } \\ \text { SCL } \end{gathered}$	$\begin{gathered} \hline \text { SPI2_MOSI/I } \\ 2 S_{2} \text { _SD } \end{gathered}$	-	-	$\begin{gathered} \text { DFSDM1_ } \\ \text { CKIN2 } \end{gathered}$	TIM12_CH2	-	SDIO_CK	EVENTOUT

Table 10．STM $32 F 412 \times E / G$ alternate functions（continued）

$\frac{n}{\dot{L}}$	$\begin{aligned} & \stackrel{4}{\overleftarrow{4}} \\ & \omega \\ & \vdots \end{aligned}$		$\begin{array}{\|l\|l} \hline \stackrel{y}{0} \\ \stackrel{y}{2} \\ \underset{\sim}{u} \end{array}$	$\stackrel{5}{\circ}$ $\stackrel{\rightharpoonup}{2}$ $\underset{U}{4}$	$\begin{aligned} & \text { 5} \\ & \sum_{2}^{2} \\ & \text { 2 } \end{aligned}$	$\begin{aligned} & \hline \stackrel{5}{\circ} \\ & \stackrel{0}{2} \\ & \underset{\sim}{\underset{\sim}{u}} \end{aligned}$	$\begin{array}{\|l\|l} \hline \stackrel{5}{0} \\ \stackrel{y}{2} \\ \underset{u}{u} \end{array}$		$\stackrel{5}{0}$ $\stackrel{2}{2}$ $\underset{u}{u}$	$\stackrel{5}{0}$ $\stackrel{2}{2}$ $\underset{u}{u}$				$\stackrel{5}{0}$ \sum_{2}^{3} $\underset{\sim}{3}$	$\stackrel{5}{\circ}$		旁
$\stackrel{N}{\mathbb{L}}$		，	，		$$			$\begin{aligned} & \circ_{1} \\ & \circ_{1} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \hat{O}_{1} \\ & \varrho_{1} \\ & 0 \end{aligned}$	$\begin{aligned} & \circ_{1} \\ & \circ_{0} \\ & \text { on } \end{aligned}$	$\begin{aligned} & \bar{\sigma}_{1} \\ & \varrho_{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \tilde{N}_{1} \\ & \stackrel{O}{0}_{6} \end{aligned}$	$\begin{aligned} & \varrho_{1} \\ & \varrho_{1} \\ & \stackrel{y}{n} \end{aligned}$	$\begin{aligned} & \check{y}_{1} \\ & \text { 음 } \end{aligned}$	，	－	，
은		，	，	，	，			$\begin{aligned} & \Sigma_{1} \\ & \sum_{0}^{0} \\ & \text { O} \end{aligned}$			，	，			，	，	，
눈		＇	，	，	，	，	，	，	，					，	，	，	，
$\stackrel{\infty}{4}$		，	，		．	－	－			这	，	，	，	，	，	＇	＇
㐫		．	－	，		＇		，	，		，				，	＇	，
$\stackrel{\circ}{4}$		．	＇			＇	－				，		$\begin{aligned} & \frac{0}{\infty} \\ & \sum_{1}^{\infty} \\ & \frac{m}{\omega} \end{aligned}$		，	，	，
$\stackrel{8}{4}$		．	＇	$\begin{aligned} & \stackrel{0}{\sum_{1}} \\ & \frac{N}{\omega} \\ & \frac{N}{N} \end{aligned}$			，			＇		，	$\begin{aligned} & \infty_{1} \\ & \stackrel{\text { ख }}{1} \\ & \stackrel{\oplus}{\infty} \end{aligned}$	，	，	，	，
先		．	－	，	，	，	${\underset{\sim}{i}}_{\sum_{i}^{\prime}}^{\sum_{0}^{\prime}}$					，	＇	，	－	，	，
毎		，	－	，	．	．	，	$\begin{aligned} & \bar{I}_{\mathbf{I}_{1}^{\prime}} \\ & \sum_{i}^{\infty} \end{aligned}$	$\begin{aligned} & {\underset{N}{N}}_{0}^{\prime} \\ & \sum_{i}^{\infty} \end{aligned}$	$\begin{aligned} & {\underset{N}{M}}_{0}^{0} \\ & \sum_{i}^{\infty} \end{aligned}$		，	＇	，	，	－	＇
Nㅜㄴ		，	，	，	，	，	＇	$\begin{aligned} & \text { 도 } \\ & \sum_{1}^{\prime} \\ & \sum_{i}^{\prime} \end{aligned}$			$\begin{aligned} & \text { 志 } \\ & \sum_{1}^{\prime} \\ & \sum_{i}^{\prime} \end{aligned}$	＇	＇	，	，	，	，
㐫	$\underset{i}{\sum \sum} \sum_{1}^{\sim}$	＇	－	，		＇	＇	＇	＇	＇	＇	＇	＇	，	，	，	＇
$\frac{10}{4}$	$\begin{aligned} & \frac{u}{4} \\ & \omega \\ & \omega \end{aligned}$	，	＇	，	＇	，	，	，	，	＇	$\begin{aligned} & N_{1}^{\prime} \\ & \stackrel{0}{2}_{2}^{2} \end{aligned}$	＇	＇	，	，	＇	，
	t	O	J	N	\％	答	¢	8	N	¢	O	음	\bar{i}	N	$\begin{aligned} & \text { m } \\ & \hline \end{aligned}$	－	边
		$\bigcirc \mathrm{Hod}$															

DocID028087 Rev 4

Port		AFO	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF12	AF15
		SYS_AF	$\begin{aligned} & \text { TIM1/ } \\ & \text { TIM2 } \end{aligned}$	$\begin{aligned} & \text { TIM3/ } \\ & \text { TIM4/ } \\ & \text { TIM5 } \end{aligned}$	$\begin{aligned} & \text { TIM81 } \\ & \text { TIIM10/ } \\ & \text { TIM10/ } \\ & \text { TM1M11 } \end{aligned}$	$\begin{gathered} 12 \mathrm{C} 1 / \\ 121 / \\ 12 \mathrm{C} 21 \\ \text { 12CFMP1 } \end{gathered}$	SPI1/I2S1/ SPI2/I2S2/ SP13/12S3/ SPI4/I2S	SPI2/I2S2/SPI3 112S3/SP14/ 12S4/SPI5/I2S5 IDFSDM1	SPI3/2S3/ USART1/ USART2/ USART3	DFSDM1/ USART3/ USART6 CAN1	12C2/\|2C3/ I2CFMP1/ CAN1/CAN2 /TIM12/ TIM13/TIM14 /QUADSPI	DFSDM1/ QUADSPI/ FSMC /OTG1_FS	FSMC /SDIO	SYS_AF
	PDO	-	-	-	-	-	-	-	-	-	CAN1_RX	-	$\begin{gathered} \text { FSMC_D2/FS } \\ \text { MC_DA2 } \end{gathered}$	eventout
	PD1	-	-	-	-	-	-	-	-	-	CAN1_TX	-	$\begin{gathered} \text { FSMC_D3/FS } \\ \text { MC_DA3 } \end{gathered}$	EVEntout
	PD2	-	-	TIM3_ETR	-	-	-	-	-	-	-	FSMC_NWE	SDIo_CMD	eventout
	PD3	TRACED1	-	-	-	-	$\begin{aligned} & \text { SPI2_SCK/ } \\ & \text { I2S2_CK } \end{aligned}$	$\begin{aligned} & \text { DFSDM1- } \\ & \text { DATIN0 } \end{aligned}$	USART2 CTS	-	QUADSPI_ CLK	-	FSMC_CLK	EVENTOUT
	PD4	-	-	-	-	-	-	$\begin{aligned} & \text { DFSDM1 } \\ & \text { CKIN1- } \end{aligned}$	USART2 RTS	-	-	-	FSMC_NOE	EVENTOUT
	PD5	-	-	-	-	-	-	-	USART2_TX	-	-	-	FSMC_NWE	eventout
	PD6	-	-	-	-	-	$\begin{gathered} \text { SPI3_MOSI/I } \\ 2 S \overline{3} _S D \end{gathered}$	DFSDM1 DATIN1	USART2_RX	-	-	-	FSMC NWAIT	eventout
	PD7	-	-	-	-	-	-	DFSDM1 CKIN1	USART2_CK	-	-	-	FSMC_NE1	eventout
	PD8	-	-	-	-	-	-	-	USART3_TX	-	-	-	FSMC D13/ FSMC_DA13	EVENTOUT
	PD9	-	-	-	-	-	-	-	USART3_RX	-	-	-	$\begin{aligned} & \text { FSMC_D14/ } \\ & \text { FSMC DA14 } \end{aligned}$	eventout
	PD10	-	-	-	-	-	-	-	USART3_CK	-	-	-	$\begin{aligned} & \text { FSMC_D15/ } \\ & \text { FSMC_DA15 } \end{aligned}$	EVENTOUT
	PD11	-	-	-	-	I2CFMP1_ SMBA	-	-	USART3 CTS	-	QUADSPI BK1_100	-	FSMC_A16	eventout
	PD12	-	-	TIM4_CH1	-	$\begin{gathered} \hline \text { 12CFMP1_ } \\ \text { SCL } \end{gathered}$			USART3 RTS	-	QUADSPI BK1_101	-	FSMC_A17	eventout
	PD13	-	-	TIM4_CH2	-	$\begin{gathered} \text { I2CFMP1_ } \\ \text { SDA } \end{gathered}$	-	-	-	-	$\begin{gathered} \text { QUADSPI_ } \\ \text { BK1_IO3 } \end{gathered}$	-	FSMC_A18	eventout
	PD14	-	-	TIM4_CH3	-	I2CFMP1_ SCL	-	-	-	-	-	-	FSMC_DO/ FSMC_DAO	EVENTOUT
	PD15	-	-	TIM4_CH4	-	$\begin{gathered} \text { I2CFMP1_ } \\ \text { SDA } \end{gathered}$	-	-	-	-	-	-	FSMC_D1/ FSMC_DA1	EVENTOUT

Table 10．STM $32 F 412 \times E / G$ alternate functions（continued）

$\begin{aligned} & \text { 先 } \\ & \stackrel{y}{4} \end{aligned}$	$\begin{aligned} & \stackrel{u}{\delta} \\ & \stackrel{\infty}{\omega} \end{aligned}$	$\begin{array}{\|l\|l} \hline \stackrel{y}{5} \\ \stackrel{\rightharpoonup}{0} \\ \underset{\sim}{3} \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline \stackrel{y}{0} \\ \stackrel{y}{2} \\ \underset{u}{4} \end{array}$		$\begin{array}{\|l\|l} \hline \stackrel{5}{0} \\ \stackrel{y}{2} \\ \underset{u}{2} \end{array}$	$\begin{aligned} & \hline \stackrel{5}{0} \\ & \stackrel{\rightharpoonup}{2} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{5}{\circ}$ \sum_{0} $\underset{U}{3}$	$\begin{array}{\|l\|l} \hline \stackrel{5}{0} \\ \stackrel{0}{2} \\ \underset{\sim}{4} \end{array}$		$\stackrel{5}{\circ}$ $\stackrel{y}{2}$ $\underset{\sim}{3}$	$$	$\stackrel{5}{0}$ $\stackrel{2}{2}$ $\underset{\sim}{u}$	$\stackrel{5}{0}$ $\stackrel{2}{2}$ $\underset{u}{u}$	$\stackrel{5}{0}$ $\stackrel{2}{2}$ $\underset{u}{u}$	$\begin{aligned} & \hline \stackrel{5}{\circ} \\ & \sum_{2}^{2} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \hline \stackrel{5}{\circ} \\ & \sum_{2}^{2} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{5}{\circ}$
$\begin{aligned} & \text { N } \\ & \frac{1}{4} \end{aligned}$	$\begin{aligned} & \text { 응 } \\ & 0 \\ & 0 \\ & \sum_{0}^{0} \end{aligned}$		$\bar{\sim}$ \sum_{i}^{0} \sum_{i}^{0}												$\begin{aligned} & \text { 힌움 } \\ & \sum_{1}^{0} \sum_{0}^{0} \\ & \sum_{i}^{0} \end{aligned}$		
$\begin{aligned} & \text { 은 } \\ & \frac{1}{4} \end{aligned}$		．	，	，	，	，	．	．						，	，	＇	，
華		．	－		－	，	＇	，	，	，	，	，	，	，	，	＇	，
$\stackrel{\text { ® }}{\text { ¢ }}$		．	－	，	－			，	，	，	＇	，	，	，	，	＇	，
获		－	，	，	－	＇	＇	，	，	，	，	＇	，	，	＇	＇	＇
$\stackrel{\circ}{4}$		．	－		－		$\begin{aligned} & \frac{\infty}{\infty} \\ & \sum_{1}^{\prime} \\ & \frac{\rho^{\prime}}{\infty} \end{aligned}$								$\begin{aligned} & \frac{0}{\infty} \\ & \sum_{1}^{\circ} \\ & \frac{\omega^{\prime}}{\infty} \end{aligned}$		，
毎		．	－		－		$\begin{aligned} & \stackrel{0}{\infty} \\ & \sum_{1}^{\prime} \\ & \frac{J^{\prime}}{\infty} \end{aligned}$		，	，	，	－			$\begin{aligned} & \stackrel{0}{\infty} \\ & \sum_{1}^{\prime} \\ & \frac{J^{\prime}}{\infty} \end{aligned}$		＇
先		－	，	，	－	，	＇	＇	，	，	＇	，	＇	＇	＇	＇	＇
$\stackrel{\text { ¹ }}{4}$		，	－	，	－	，			，	，	，	，	＇	＇	＇	＇	＇
$\frac{\text { N }}{4}$		$\begin{array}{\|l\|l} \hline \stackrel{r}{E} \\ \underset{\sim}{u} \\ \stackrel{\rightharpoonup}{\prime} \end{array}$	－	，	－	，	，	，	，	，	，	，	＇	＇	＇	＇	＇
「	$\sum_{i}^{\stackrel{\sum}{1}} \stackrel{N}{i}$	．	－	，	，	＇	＇	＇			$\begin{aligned} & \stackrel{\Gamma}{S_{1}} \\ & \stackrel{\rightharpoonup}{\mid} \end{aligned}$		$\begin{aligned} & \text { N } \\ & \mathbf{N}_{1} \\ & \sum_{i} \end{aligned}$		$\begin{aligned} & \text { M } \\ & M_{\mathrm{S}}^{1} \\ & \stackrel{\sum}{\mid} \end{aligned}$		
안	$\begin{aligned} & \stackrel{4}{4} \\ & \frac{\infty}{\omega} \\ & \vdots \end{aligned}$	．	，						＇	，	，	＇	＇	＇	＇	＇	＇
$\stackrel{\text { t }}{\text { L }}$		은	咎	ญี	吕	㟔	吕	吕	㟔	员	®	음		$\underset{\text { N }}{\text { N }}$	$\stackrel{\text { m }}{\stackrel{\rightharpoonup}{a}}$	$\stackrel{\text { 岗 }}{\text { ¢ }}$	$\stackrel{セ 0}{\square 1}$
		$\exists^{\text {น०d }}$															

Port		AFO	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF12	AF15
		SYS_AF	$\begin{aligned} & \text { TIM1/ } \\ & \text { TIM2 } \end{aligned}$	$\begin{aligned} & \text { TIM3/ } \\ & \text { TIM4/ } \\ & \text { TIM55 } \end{aligned}$	$\begin{aligned} & \text { TIM88/ } \\ & \text { TIM9/ } \\ & \text { TIM10/ } \\ & \text { TIM11 } \end{aligned}$	$\begin{gathered} \text { 12C11 } \\ \text { 12C21 } \\ \text { 12C33 } \\ \text { 12CFMP1 } \end{gathered}$	SP1/12S1/ SP12/2S2 SPI3/12S3/ SP14/12S4	SPI2/I2S2/SPI3 /12S3/SP14/ I2S4/SPI5/I2S5 /DFSDM1	SPI3/2S3/ USART1/ USART2 USART3	DFSDM1/ USART6/ CAN1	I2C2/I2C3/ I2CFMP1/ CAN1/CAN2 /TIM12 TIM13/TIM14 /QUADSPI	DFSDM1/ QUADSPI/ FSMC /OTG1_FS	FSMC /SDIO	SYS_AF
$\begin{array}{\|l\|l} \mathrm{u} \\ \mathrm{t} \\ \mathrm{D} \end{array}$	PF0	-	-	-	-	12C2_SDA	-	-	-	-	-	-	FSMC_A0	EVENTOUT
	PF1	-	-	-	-	12C2_SCL	-	-	-	-	-	-	FSMC_A1	EvENTOUT
	PF2	-	-	-	-	12C2_SMBA	-	-	-	-	-	-	FSMC_A2	EvENTOUT
	PF3	-	-	TIM5_CH1	-	-	-	-	-	-	-	-	FSMC_A3	EVENTOUT
	PF4	-	-	TIM5_CH2	-	-	-	-	-	-	-	-	FSMC_A4	EVENTOUT
	PF5	-	-	TIM5_CH3	-	-	-	-	-	-	-	-	FSMC_A5	EVENTOUT
	PF6	TRACEDO	-	-	TIM10_CH1	-	-	-	-	-	QUADSPI-	-	-	EVENTOUT
	PF7	TRACED1	-	-	TIM11_CH1	-	-	-	-	-	QUADSPI-	-	-	EVENTOUT
	PF8	-	-	-	-	-	-	-	-	-	TIM13_CH1	QUADSPI_ BK1_1O0	-	EVENTOUT
	PF9	-	-	-	-	-	-	-	-	-	TIM14_CH1	QUADSPI BK1_1O1	-	EVENTOUT
	PF10	-	TIM1_ETR	TIM5_CH4	-	-	-	-	-	-	-	-	-	EvENTOUT
	PF11	-	-	-	TIM8_ETR	-	-	-	-	-	-	-	-	EVENTOUT
	PF12	-	-	-	TIM8_BKIN	-	-	-	-	-	-	-	FSMC_A6	EVENTOUT
	PF13	-	-	-	-	$\begin{aligned} & \text { I2CFMP1- } \\ & \text { SMBA } \end{aligned}$	-	-	-	-	-	-	FSMC_A7	EvENTOUT
	PF14	-	-	-	-	$\begin{aligned} & \text { I2CFMP1_ } \\ & \text { SCL } \end{aligned}$	-	-	-	-	-	-	FSMC_A8	EVENTOUT
	PF15	-	-	-	-	$\begin{gathered} \text { I2CFMP1_ } \\ \text { SDA } \end{gathered}$	-	-	-	-	-	-	FSMC_A9	EVENTOUT

Table 10．STM32F412xE／G alternate functions（continued）

$\frac{n}{4}$	$\begin{aligned} & \stackrel{u}{4} \\ & \frac{\infty}{\omega} \\ & \hline \end{aligned}$	5 $\stackrel{5}{2}$ $\stackrel{y}{4}$	$\begin{array}{\|l\|l\|} \hline \stackrel{y}{0} \\ \sum_{4}^{2} \\ \hline \end{array}$	5 $\stackrel{5}{2}$ 2 2	5 \vdots \vdots 2 \vdots	$\begin{array}{\|l\|l} \hline \frac{5}{0} \\ \sum_{y}^{2} \\ \hline \end{array}$	5 $\stackrel{5}{2}$ $\stackrel{y}{4}$	产		$\begin{aligned} & \hline \stackrel{5}{\circ} \\ & \stackrel{\rightharpoonup}{2} \\ & \underset{\sim}{3} \end{aligned}$	$\stackrel{5}{2}$ $\stackrel{\sum}{2}$ $\underset{\sim}{4}$	$\begin{array}{\|l\|l} \hline \stackrel{y}{0} \\ \sum_{y}^{2} \\ \hline \end{array}$	5 $\stackrel{5}{2}$ 2 4	$\stackrel{5}{5}$	$\stackrel{5}{2}$ 总			5 $\stackrel{5}{2}$ 2 4	
$\stackrel{N}{4}$	을 0 0 0 0		$\begin{aligned} & \overline{\underset{~}{x}} \\ & \sum_{i}^{\prime} \\ & \underset{\sim}{L} \end{aligned}$					＇	＇		$\begin{aligned} & \underset{\sim}{\underset{\sim}{2}} \\ & \sum_{0}^{\prime} \\ & \sum_{0}^{2} \end{aligned}$						，	，	，
$\frac{\circ}{4}$		．	，	，	－	－	，		．	，	，	，	，	，	，	，	，	，	－
華				，	－	－	，	＇	，	，		－	$\begin{array}{\|l\|l} \underset{\sim}{x} \\ N_{1} \\ \underset{\sim}{2} \end{array}$	$\begin{aligned} & \underset{x_{1}^{\prime}}{N_{1}^{\prime}} \\ & {\underset{\sim}{1}}^{\prime} \end{aligned}$	，		，	，	－
$\stackrel{\infty}{4}$		，	，	＇	－	－	，	＇		－		，	，		边	$\stackrel{c^{\prime}}{\substack{\text { ¢ }}}$		，	－
㐫		－	－	＇	－	－	，	＇	＇	＇	＇	－	，	，	，	，	，	＇	－
$\stackrel{\circ}{4}$		－	－	＇	＇	－	．	＇	＇	，	＇	－	，	，	，	＇	，	＇	，
$\stackrel{6}{4}$		．	－	－	－	，	，	，	＇	＇	＇	－	，	，	，	，	－	＇	，
$\stackrel{\text { 殅 }}{ }$		－	－	－	－	－	＇	＇	＇	，	＇	－	，	－	，	，	，	＇	－
枈		．	－	－	－	－	－	＇	，	，	，	－	，	，	，	＇	－	＇	－
Nㅜㄴ	$\sum_{i}^{\bar{m}} \sum_{i}^{\text {Ti }} \sum_{i}^{n}$	＇	，	，	，	，	．	，	，	，	，	－	，	，	，	＇	，	＇	，
砏		．	，	，	，	，	．	＇	，	，	＇	－	，	，	，	＇	，	＇	，
안	$\begin{aligned} & \stackrel{4}{4} \\ & \stackrel{1}{\omega} \\ & \stackrel{1}{6} \end{aligned}$	，	，	＇	－	－	＇	，	＇	，	＇	－	，	，	N		，	，	－
닝		O	$\overline{\mathrm{L}}$	N	$\begin{aligned} & \text { §o } \\ & \hline \end{aligned}$	¢	! i	\％	§	\％	\％	음	F	N	$\begin{aligned} & \text { M } \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { J } \\ & \hline \mathrm{O} \end{aligned}$	$\begin{aligned} & \hline \stackrel{\circ}{\circ} \\ & \hline \end{aligned}$	옴	폰
		$\bigcirc \mathrm{HO}_{\mathrm{d}}$																	Hod

DocID028087 Rev 4

5 Memory mapping

The memory map is shown in Figure 18.
Figure 18. Memory map

Table 11. STM32F412xE/G register boundary addresses

Bus	Boundary address	Peripheral
	0xE010 0000-0xFFFF FFFF	Reserved
Cortex ${ }^{(\Omega}$-M4	0xE000 0000-0xE00F FFFF	Cortex-M4 internal peripherals
AHB3	0xA000 2000-0xDFFF FFFF	Reserved
	0xA000 1000-0xA000 1FFF	QuadSPI control register
	0xA000 0000-0xA000 0FFF	FSMC control register
	0x9000 0000-0x9FFF FFFF	QUADSPI
	0x7000 0000-0x08FFF FFFF	Reserved
	0x6000 0000-0x6FFF FFFF	FSMC
AHB2	0x5006 0C00-0x5FFF FFFF	Reserved
	0x5006 08000×5006 0BFF	RNG
	0x5004 000-0x5006 07FF	Reserved
	0x5000 0000-0x5003 FFFF	USB OTG FS
AHB1	0x4002 6800-0x4FFF FFFF	Reserved
	0x4002 6400-0x4002 67FF	DMA2
	0x4002 6000-0x4002 63FF	DMA1
	0x4002 5000-0x4002 4FFF	Reserved
	0x4002 3C00-0x4002 3FFF	Flash interface register
	0x4002 3800-0x4002 3BFF	RCC
	0x4002 3400-0x4002 37FF	Reserved
	0x4002 3000-0x4002 33FF	CRC
	0x4002 2000-0x4002 2FFF	Reserved
	0x4002 1C00-0x4002 1FFF	GPIOH
	0x4002 1800-0x4002 1BFF	GPIOG
	0x4002 1400-0x4002 17FF	GPIOF
	0x4002 1000-0x4002 13FF	GPIOE
	0x4002 0C00-0x4002 0FFF	GPIOD
	0x4002 0800-0x4002 0BFF	GPIOC
	0x4002 0400-0x4002 07FF	GPIOB
	0x4002 0000-0x4002 03FF	GPIOA

Table 11. STM32F412xE/G register boundary addresses (continued)

Bus	Boundary address	Peripheral
APB2	0x4001 6400-0x4001 FFFF	Reserved
	0x4001 6000-0x4001 63FF	DFSDM1
	0x4001 5400-0x4001 5FFF	Reserved
	0x4001 5000-0x4001 53FF	SPI5/I2S5
	0x4001 4800-0x4001 4BFF	TIM11
	0x4001 4400-0x4001 47FF	TIM10
	0x4001 4000-0x4001 43FF	TIM9
	0x4001 3C00-0x4001 3FFF	EXTI
	0x4001 3800-0x4001 3BFF	SYSCFG
	0x4001 3400-0x4001 37FF	SPI4/I2S4
	0x4001 3000-0x4001 33FF	SPI1/I2S1
	0x4001 2C00-0x4001 2FFF	SDIO
	0x4001 $2400-0 \times 4001$ 2BFF	Reserved
	0x4001 2000-0x4001 23FF	ADC1
	0x4001 1800-0x4001 1FFF	Reserved
	0x4001 1400-0x4001 17FF	USART6
	0x4001 1000-0x4001 13FF	USART1
	0x4001 $0800-0 \times 4001$ OFFF	Reserved
	0x4001 0400-0x4001 07FF	TIM8
	0x4001 $0000-0 \times 4001$ 03FF	TIM1
	0x4000 7400-0x4000 FFFF	Reserved

Table 11. STM32F412xE/G register boundary addresses (continued)

Bus	Boundary address	Peripheral
APB1	0x4000 7000-0x4000 73FF	PWR
	0x4000 6C00-0x4000 6FFF	Reserved
	0x4000 6800-0x4000 6BFF	CAN2
	0x4000 6400-0x4000 67FF	CAN1
	0x4000 6000-0x4000 63FF	I2CFMP1
	0x4000 5C00-0x4000 5FFF	I2C3
	0x4000 5800-0x4000 5BFF	I2C2
	0x4000 5400-0x4000 57FF	I2C1
	0x4000 4C00-0x4000 53FF	Reserved
	0x4000 4800-0x4000 4BFF	USART3
	0x4000 4400-0x4000 47FF	USART2
	0x4000 4000-0x4000 43FF	I2S3ext
	0x4000 3C00-0x4000 3FFF	SPI3 / I2S3
	0x4000 3800-0x4000 3BFF	SPI2 / I2S2
	0x4000 3400-0x4000 37FF	I2S2ext
	0x4000 3000-0x4000 33FF	IWDG
	0x4000 2C00-0x4000 2FFF	WWDG
	0x4000 2800-0x4000 2BFF	RTC \& BKP Registers
	0x4000 2400-0x4000 27FF	Reserved
	0x4000 2000-0x4000 23FF	TIM14
	0x4000 1C00-0x4000 1FFF	TIM13
	0x4000 1800-0x4000 1BFF	TIM12
	0x4000 1400-0x4000 17FF	TIM7
	0x4000 1000-0x4000 13FF	TIM6
	0x4000 0C00-0x4000 0FFF	TIM5
	0x4000 0800-0x4000 0BFF	TIM4
	0x4000 0400-0x4000 07FF	TIM3
	0x4000 0000-0x4000 03FF	TIM2

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{A}} \max$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3 \sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ (for the $1.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$ voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2 \sigma$).

6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 19.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 20.

6.1.6 Power supply scheme

Figure 21. Power supply scheme

1. To connect PDR_ON pin, refer to Section: Power supply supervisor.
2. The $4.7 \mu \mathrm{~F}$ ceramic capacitor must be connected to one of the $\mathrm{V}_{\mathrm{DD}} \mathrm{pin}$.
3. VCAP_2 pad is only available on 100-pin and 144-pin packages.
4. $V_{D D A}=V_{D D}$ and $V_{S S A}=V_{S S}$.
5. $V_{\text {DDUSB }}$ is a dedicated independent USB power supply for the on-chip full-speed OTG PHY module and associated DP/DM GPIOs. $V_{\text {DDUSB }}$ value does not depend on the $V_{D D}$ and $V_{\text {DDA }}$ values, but it must be the last supply to be provided and the first to disappear.
Caution: Each power supply pair (for example $V_{D D} / V_{S S}, V_{D D A} / V_{S S A}$) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure good operation of the device. It is not recommended to remove filtering capacitors to reduce PCB size or cost. This might cause incorrect operation of the device.

6.1.7 Current consumption measurement

Figure 22. Current consumption measurement scheme

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in Table 12: Voltage characteristics, Table 13: Current characteristics, and Table 14: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 12. Voltage characteristics

Symbol	Ratings	Min	Max	Unit
$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {SS }}$	External main supply voltage (including $\mathrm{V}_{\mathrm{DDA}}, \mathrm{V}_{\mathrm{DD}}$, $V_{\text {DDUSB }}$ and $\left.V_{B A T}\right)^{(1)}$	-0.3	4.0	V
$\mathrm{V}_{\text {IN }}$	Input voltage on FT and TC pins ${ }^{(2)}$	$\mathrm{V}_{S S}-0.3$	$\mathrm{V}_{\mathrm{DD}}+4.0$	
	Input voltage on any other pin	$\mathrm{V}_{\text {SS }}-0.3$	4.0	
	Input voltage for BOOT0	$V_{S S}$	9.0	
$\left\|\Delta \mathrm{V}_{\text {DDx }}\right\|$	Variations between different V_{DD} power pins	-	50	mV
$\left\|\mathrm{V}_{\mathrm{SSX}}-\mathrm{V}_{\text {SS }}\right\|$	Variations between all the different ground pins	-	50	
$\mathrm{V}_{\text {ESD }}$ (HBM)	Electrostatic discharge voltage (human body model)	see Section 6.3.14: Absolute maximum ratings (electrical sensitivity)		

1. All main power ($\mathrm{V}_{\text {DD }}, \mathrm{V}_{\text {DDA }}, \mathrm{V}_{\text {DDUSB }}$) and ground $\left(\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{SSA}}\right)$ pins must always be connected to the external power supply, in the permitted range.
2. V_{IN} maximum value must always be respected. Refer to Table 13 for the values of the maximum allowed injected current.

Table 13. Current characteristics

Symbol	Ratings	Max.	Unit
$\Sigma l_{\text {VDD }}$	Total current into sum of all $\mathrm{V}_{\text {DD_x }}$ p power lines (source) ${ }^{(1)}$	160	mA
$\Sigma I_{\text {VSS }}$	Total current out of sum of all $\mathrm{V}_{\text {SS_x }}$ ground lines (sink) ${ }^{(1)}$	-160	
$\Sigma I_{\text {VDDUSB }}$	Total current into $\mathrm{V}_{\text {DDUSB }}$ power lines (source)	25	
$\mathrm{I}_{\mathrm{VDD}}$	Maximum current into each $\mathrm{V}_{\text {DD_x }}$ power line (source) ${ }^{(1)}$	100	
Ivss	Maximum current out of each $\mathrm{V}_{\text {SS_x }}$ ground line (sink) ${ }^{(1)}$	-100	
$1{ }_{10}$	Output current sunk by any I/O and control pin	25	
	Output current sourced by any I/O and control pin	-25	
Σl_{10}	Total output current sunk by sum of all I/O and control pins ${ }^{(2)}$	120	
	Total output current sunk by sum of all USB I/Os	25	
	Total output current sourced by sum of all I/Os and control pins ${ }^{(2)}$	-120	
$\mathrm{I}_{\mathrm{INJ}(\mathrm{PIN})}{ }^{(3)}$	Injected current on FT and TC pins ${ }^{(4)}$	-5/+0	
	Injected current on NRST and B pins ${ }^{(4)}$		
$\Sigma \mathrm{l}_{\mathrm{INJ}(\mathrm{PIN})}$	Total injected current (sum of all I/O and control pins) ${ }^{(5)}$	± 25	

1. All main power $\left(\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DDA}}, \mathrm{V}_{\mathrm{DDUSB}}\right)$ and ground $\left(\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{SSA}}\right)$ pins must always be connected to the external power supply, in the permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins.
3. Negative injection disturbs the analog performance of the device. See note in Section 6.3.20: 12-bit ADC characteristics.
4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.
5. When several inputs are submitted to a current injection, the maximum $\Sigma \mathrm{I}_{\mathbb{N J}(\mathrm{PIN})}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Table 14. Thermal characteristics

Symbol	Ratings	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	
$\mathrm{~T}_{\mathrm{J}}$	Maximum junction temperature	125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {LEAD }}$	Maximum lead temperature during soldering (WLCSP64, LQFP64/100/144, UFQFPN48, UFBGA100/144)	see note ${ }^{(1)}$	

1. Compliant with JEDEC Std J-STD-020D (for small body, Sn-Pb or Pb assembly), the ST ECOPACK ${ }^{\circledR}$ 7191395 specification, and the European directive on Restrictions on Hazardous Substances (ROHS directive 2011/65/EU, July 2011).

6.3 Operating conditions

6.3.1 General operating conditions

Table 15. General operating conditions

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{f}_{\text {HCLK }}$	Internal AHB clock frequency	Power Scale3: Regulator ON, VOS[1:0] bits in PWR_CR register $=0 \times 01$	0	-	64	MHz
		Power Scale2: Regulator ON, VOS[1:0] bits in PWR_CR register $=0 \times 10$	0	-	84	
		Power Scale1: Regulator ON, VOS[1:0] bits in PWR_CR register $=0 \times 11$	0	-	100	
$\mathrm{f}_{\text {PCLK } 1}$	Internal APB1 clock frequency	-	0	-	50	MHz
$\mathrm{f}_{\text {PCLK2 }}$	Internal APB2 clock frequency	-	0	-	100	MHz
$V_{D D}$	Standard operating voltage	-	$1.7^{(1)}$	-	3.6	V
$\mathrm{V}_{\text {DDA }}{ }^{(2)(3)}$	Analog operating voltage (ADC limited to 1.2 M samples)	Must be the same potential as $\mathrm{V}_{\mathrm{DD}}{ }^{(4)}$	$1.7{ }^{(1)}$	-	2.4	V
	Analog operating voltage (ADC limited to 2.4 M samples)		2.4	-	3.6	
$V_{\text {DDUSB }}$	USB supply voltage (supply voltage for PA11 and PA12 pins)	USB not used	1.7	3.3	3.6	V
		USB used ${ }^{(5)}$	3.0	-	3.6	
$V_{\text {BAT }}$	Backup operating voltage	-	1.65	-	3.6	V
V_{12}	Regulator ON: 1.2 V internal voltage on VCAP_1/VCAP_2 pins	VOS[1:0] bits in PWR_CR register $=0 \times 01$ Max frequency 64 MHz	$1.08{ }^{(6)}$	1.14	$1.20^{(6)}$	V
		VOS[1:0] bits in PWR_CR register $=0 \times 10$ Max frequency 84 MHz	$1.20{ }^{(6)}$	1.26	$1.32{ }^{(6)}$	
		VOS[1:0] bits in PWR_CR register $=0 \times 11$ Max frequency 100 MHz	1.26	1.32	1.38	
V_{12}	Regulator OFF: 1.2 V external voltage must be supplied on VCAP_1/VCAP_2 pins	Max frequency 64 MHz	1.10	1.14	1.20	V
		Max frequency 84 MHz	1.20	1.26	1.32	
		Max frequency 100 MHz	1.26	1.32	1.38	
V_{IN}	Input voltage on RST, FT and TC pins ${ }^{(7)}$	$2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$	-0.3	-	5.5	V
		$\mathrm{V}_{\mathrm{DD}} \leq 2 \mathrm{~V}$	-0.3	-	5.2	
	Input voltage on BOOT0 pin	-	0	-	9	

Table 15. General operating conditions (continued)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
P_{D}	Power dissipation at TA $=85^{\circ} \mathrm{C}$ for range 6 or $\mathrm{TA}=105^{\circ} \mathrm{C}$ for range $7^{(8)}$	UFQFPN48	-	-	625	mW
		WLCSP64	-	-	392	
		LQFP64	-	-	425	
		LQFP100	-	-	465	
		LQFP144			571	
		UFBGA100	-	-	351	
		UFBGA144	-	-	416	
TA	Ambient temperature for range 6	Maximum power dissipation	-40	-	85	${ }^{\circ} \mathrm{C}$
		Low power dissipation ${ }^{(9)}$	-40	-	105	
	Ambient temperature for range 7	Maximum power dissipation	-40	-	105	
		Low power dissipation ${ }^{(9)}$	-40	-	125	
TJ	Junction temperature range	Range 6	-40	-	105	
		Range 7	-40	-	125	

1. $V_{D D} / V_{D D A}$ minimum value of 1.7 V with the use of an external power supply supervisor (refer to Section 3.18.2: Internal reset OFF).
2. When the ADC is used, refer to Table 71: ADC characteristics.
3. If $\mathrm{V}_{\mathrm{REF}}$ pin is present, it must respect the following condition: $\mathrm{V}_{\mathrm{DDA}}-\mathrm{V}_{\mathrm{REF}}+<1.2 \mathrm{~V}$.
4. It is recommended to power $\mathrm{V}_{D D}$ and $\mathrm{V}_{D D A}$ from the same source. A maximum difference of 300 mV between $\mathrm{V}_{D D}$ and $V_{\text {DDA }}$ can be tolerated during power-up and power-down operation.
5. Only the $\mathrm{DM}\left(\mathrm{P}_{\mathrm{A} 11}\right)$ and DP $\left(\mathrm{P}_{\mathrm{A} 12}\right)$ pads are supplied through $\mathrm{V}_{\text {DDUSB }}$. For application where the $\mathrm{V}_{\mathrm{B} U \mathrm{~S}}\left(\mathrm{P}_{\mathrm{A} 9}\right)$ is directly connected to the chip, a minimum V_{DD} supply of 2.7 V is required.
(some application examples are shown in appendix B)
6. Guaranteed by test in production
7. To sustain a voltage higher than $\mathrm{V}_{\mathrm{DD}}+0.3$, the internal Pull-up and Pull-Down resistors must be disabled
8. If T_{A} is lower, higher P_{D} values are allowed as long as T_{J} does not exceed $T_{J m a x}$.
9. In low power dissipation state, T_{A} can be extended to this range as long as T_{J} does not exceed $T_{J m a x}$.

Table 16. Features depending on the operating power supply range

Operating power supply range	ADC operation	Maximum Flash memory access frequency with no wait states ($\mathrm{f}_{\text {Flashmax }}$)	Maximum Flash memory access frequency with wait states ${ }^{(1)(2)}$	I/O operation	Clock output frequency on I/O pins ${ }^{(3)}$	Possible Flash memory operations
$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=1.7 \text { to } \\ & 2.1 \mathrm{~V}^{(4)} \end{aligned}$	Conversion time up to 1.2 Msps	$16 \mathrm{MHz}{ }^{(5)}$	100 MHz with 6 wait states	- No I/O compensation	up to 30 MHz	8-bit erase and program operations only
$\begin{aligned} & V_{\mathrm{DD}}=2.1 \text { to } \\ & 2.4 \mathrm{~V} \end{aligned}$	Conversion time up to 1.2 Msps	18 MHz	100 MHz with 5 wait states	- No I/O compensation	up to 30 MHz	16-bit erase and program operations
$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.4 \text { to } \\ & 2.7 \mathrm{~V} \end{aligned}$	Conversion time up to 2.4 Msps	24 MHz	100 MHz with 4 wait states	- I/O compensation works	up to 50 MHz	16-bit erase and program operations
$\begin{aligned} & V_{D D}=2.7 \text { to } \\ & 3.6 \mathrm{~V}^{(6)} \end{aligned}$	Conversion time up to 2.4 Msps	30 MHz	100 MHz with 3 wait states	- I/O compensation works	- up to 100 MHz when $\mathrm{V}_{\mathrm{DD}}=$ 3.0 to 3.6 V - up to 50 MHz when $\mathrm{V}_{\mathrm{DD}}=$ 2.7 to 3.0 V	32-bit erase and program operations

1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is required.
2. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state program execution.
3. Refer to Table 58: I/O AC characteristics for frequencies vs. external load.
4. $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{DDA}}$ minimum value of 1.7 V , with the use of an external power supply supervisor (refer to Section 3.18.2: Internal reset OFF).
5. Prefetch available over the complete VDD supply range.
6. The voltage range for the USB full speed embedded PHY can drop down to 2.7 V . However the electrical characteristics of D- and D+ pins will be degraded between 2.7 and 3 V .

6.3.2 VCAP_1/VCAP_2 external capacitors

Stabilization for the main regulator is achieved by connecting the external capacitor $\mathrm{C}_{\text {EXT }}$ to the VCAP_1 and VCAP_2 pins. For packages supporting only 1 VCAP pin, the 2 CEXT capacitors are replaced by a single capacitor.
$C_{\text {EXT }}$ is specified in Table 17.
Figure 23. External capacitor $\mathrm{C}_{\mathrm{EXT}}$

1. Legend: ESR is the equivalent series resistance.

Table 17. VCAP_1/VCAP_2 operating conditions ${ }^{(1)}$

Symbol	Parameter	Conditions
CEXT	Capacitance of external capacitor with the pins VCAP_1 and VCAP_2 available	$2.2 \mu \mathrm{~F}$
ESR	ESR of external capacitor with the pins VCAP_1 and VCAP_2 available	$<2 \Omega$
CEXT	Capacitance of external capacitor with a single VCAP pin available	$4.7 \mu \mathrm{~F}$
ESR	ESR of external capacitor with a single VCAP pin available	$<1 \Omega$

1. When bypassing the voltage regulator, the two $2.2 \mu \mathrm{~F} \mathrm{~V}_{\mathrm{CAP}}$ capacitors are not required and should be replaced by two 100 nF decoupling capacitors.

6.3.3 Operating conditions at power-up/power-down (regulator ON)

Subject to general operating conditions for T_{A}.
Table 18. Operating conditions at power-up / power-down (regulator ON)

Symbol	Parameter	Min	Max	Unit
$t_{\mathrm{V} D D}$	$\mathrm{~V}_{\mathrm{DD}}$ rise time rate	20	∞	$\mu \mathrm{~s} / \mathrm{V}$
	V_{DD} fall time rate	20	∞	

6.3.4 Operating conditions at power-up / power-down (regulator OFF)

Subject to general operating conditions for T_{A}.
Table 19. Operating conditions at power-up / power-down (regulator OFF) ${ }^{(1)}$

Symbol	Parameter	Conditions	Min	Max	Unit
$t_{V D D}$	$V_{D D}$ rise time rate	Power-up	20	∞	$\mu \mathrm{s} / \mathrm{V}$
	$V_{D D}$ fall time rate	Power-down	20	∞	
$\mathrm{t}_{\text {VCAP }}$	$\mathrm{V}_{\text {CAP_1 }}$ and $\mathrm{V}_{\text {CAP_2 }}$ rise time rate	Power-up	20	∞	
	$\mathrm{V}_{\text {CAP_1 }}$ and $\mathrm{V}_{\text {CAP_2 }}$ fall time rate	Power-down	20	∞	

[^0]Note: This feature is only available for UFBGA100 and UFBGA144 packages.

6.3.5 Embedded reset and power control block characteristics

The parameters given in Table 20 are derived from tests performed under ambient temperature and V_{DD} supply voltage @ 3.3 V .

Table 20. Embedded reset and power control block characteristics

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\text {PVD }}$	Programmable voltage detector level selection	PLS[2:0]=000 (rising edge)	2.09	2.14	2.19	V
		PLS[2:0]=000 (falling edge)	1.98	2.04	2.08	
		PLS[2:0]=001 (rising edge)	2.23	2.30	2.37	
		PLS[2:0]=001 (falling edge)	2.13	2.19	2.25	
		PLS[2:0]=010 (rising edge)	2.39	2.45	2.51	
		PLS[2:0]=010 (falling edge)	2.29	2.35	2.39	
		PLS[2:0]=011 (rising edge)	2.54	2.60	2.65	
		PLS[2:0]=011 (falling edge)	2.44	2.51	2.56	
		PLS[2:0]=100 (rising edge)	2.70	2.76	2.82	
		PLS[2:0]=100 (falling edge)	2.59	2.66	2.71	
		PLS[2:0]=101 (rising edge)	2.86	2.93	2.99	
		PLS[2:0]=101 (falling edge)	2.65	2.84	3.02	
		PLS[2:0]=110 (rising edge)	2.96	3.03	3.10	
		PLS[2:0]=110 (falling edge)	2.85	2.93	2.99	
		PLS[2:0]=111 (rising edge)	3.07	3.14	3.21	
		PLS[2:0]=111 (falling edge)	2.95	3.03	3.09	
$\mathrm{V}_{\text {PVDhyst }}{ }^{(2)}$	PVD hysteresis	-	-	100	-	mV
$\mathrm{V}_{\text {POR/PDR }}$	Power-on/power-down reset threshold	Falling edge	$1.60^{(1)}$	1.68	1.76	V
		Rising edge	1.64	1.72	1.80	

Table 20. Embedded reset and power control block characteristics (continued)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\text {PDRhyst }}{ }^{(2)}$	PDR hysteresis	-	-	40	-	mV
$\mathrm{V}_{\text {BOR1 }}$	Brownout level 1 threshold	Falling edge	2.13	2.19	2.24	V
		Rising edge	2.23	2.29	2.33	
$V_{\text {BOR2 }}$	Brownout level 2 threshold	Falling edge	2.44	2.50	2.56	
		Rising edge	2.53	2.59	2.63	
$V_{\text {BOR3 }}$	Brownout level 3 threshold	Falling edge	2.75	2.83	2.88	
		Rising edge	2.85	2.92	2.97	
$V_{\text {BORhyst }}{ }^{(2)}$	BOR hysteresis	-	-	100	-	mV
$\mathrm{T}_{\text {RSTITE(3) }}$	POR reset timing	-	0.5	1.5	3.0	ms
$\mathrm{I}_{\text {RUSH }}{ }^{(2)}$	In-Rush current on voltage regulator poweron (POR or wakeup from Standby)	-	-	160	200	mA
$\mathrm{E}_{\text {RUSH }}{ }^{(2)}$	In-Rush energy on voltage regulator poweron (POR or wakeup from Standby)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=1.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=105^{\circ} \mathrm{C}, \\ & \mathrm{I}_{\mathrm{RUSH}}=171 \mathrm{~mA} \text { for } 31 \mu \mathrm{~S} \end{aligned}$	-	-	5.4	$\mu \mathrm{C}$

1. The product behavior is guaranteed by design down to the minimum $V_{\text {POR/PDR }}$ value.
. Guaranteed by design, not tested in production.
2. The reset timing is measured from the power-on (POR reset or wakeup from $\mathrm{V}_{\mathrm{BAT}}$) to the instant when first instruction is fetched by the user application code.

6.3.6 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.
The current consumption is measured as described in Figure 22: Current consumption measurement scheme.

All the run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at VDD or VSS (no load).
- All peripherals are disabled except if it is explicitly mentioned.
- The Flash memory access time is adjusted to both $f_{\text {HCLK }}$ frequency and VDD ranges (refer to Table 16: Features depending on the operating power supply range).
- The voltage scaling is adjusted to $\mathrm{f}_{\mathrm{HCLK}}$ frequency as follows:
- Scale 3 for $\mathrm{f}_{\mathrm{HCLK}} \leq 64 \mathrm{MHz}$
- Scale 2 for $64 \mathrm{MHz}<\mathrm{f}_{\mathrm{HCLK}} \leq 84 \mathrm{MHz}$
- Scale 1 for $84 \mathrm{MHz}<\mathrm{f}_{\mathrm{HCLK}} \leq 100 \mathrm{MHz}$
- The system clock is HCLK, $\mathrm{f}_{\text {PCLK } 1}=\mathrm{f}_{\text {HCLK }} / 2$, and $\mathrm{f}_{\text {PCLK } 2}=\mathrm{f}_{\text {HCLK }}$.
- External clock is 4 MHz and PLL is ON except if it is explicitly mentioned.
- The maximum values are obtained for $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$ and a maximum ambient temperature (T_{A}), and the typical values for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ unless otherwise specified.

Table 21. Typical and maximum current consumption, code with data processing (ART accelerator disabled) running from SRAM $-\mathrm{V}_{\mathrm{DD}}=1.7 \mathrm{~V}$

Symbol	Parameter	Conditions	$\mathrm{f}_{\mathrm{HCLK}}$ (MHz)	Typ	Max ${ }^{(1)}$			Unit
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=105^{\circ} \mathrm{C}$	
$I_{\text {DD }}$	Supply current in Run mode	External clock, PLL ON, all peripherals enabled ${ }^{(2)(3)}$	100	28.1	30.24	31.27	32.21	mA
			84	22.7	24.05	24.54	25.11	
			64	15.7	16.99	17.47	18.03	
			50	12.3	13.36	13.82	14.36	
			25	6.5	7.44	7.82	8.30	
			20	5.6	6.16	6.66	7.20	
		HSI, PLL off, all peripherals enabled ${ }^{(2)(3)}$	16	3.9	4.70	5.31	6.08	
			1	0.6	0.78	1.33	1.98	
		External clock, PLL ON, all peripherals disabled ${ }^{(3)}$	100	14.0	15.48	16.08	16.83	
			84	11.3	12.23	12.75	13.41	
			64	7.9	8.84	9.31	10.01	
			50	6.2	7.06	7.53	8.19	
			25	3.4	4.18	4.61	5.13	
			20	2.9	3.44	3.98	4.65	
		HSI, PLL off, all peripherals disabled ${ }^{(3)}$	16	2.0	2.51	3.13	3.89	
			1	0.5	0.64	1.21	1.90	

1. Based on characterization, not tested in production unless otherwise specified
2. When analog peripheral blocks such as ADC, HSE, LSE, HSI, or LSI are ON, an additional power consumption has to be considered.
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA for the analog part.

Table 22. Typical and maximum current consumption, code with data processing (ART accelerator disabled) running from SRAM $-V_{D D}=3.6 \mathrm{~V}$

Symbol	Parameter	Conditions	$\mathrm{f}_{\mathrm{HCLK}}$ (MHz)	Typ	Max ${ }^{(1)}$			Unit
				$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} T_{A}= \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} T_{A}= \\ 85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} T_{A}= \\ 105^{\circ} \mathrm{C} \end{gathered}$	
$I_{\text {D }}$	Supply current in Run mode	External clock, PLL ON, all peripherals enabled ${ }^{(2)}$	100	28.4	$28.80{ }^{(3)}$	30.84	$32.39^{(3)}$	mA
			84	23.0	$24.09{ }^{(3)}$	25.20	$26.57^{(3)}$	
			64	16.0	$16.83{ }^{(3)}$	17.77	$19.12^{(3)}$	
			50	12.6	13.46	13.98	14.68	
			25	6.8	7.63	8.14	8.61	
			20	5.8	6.31	6.74	7.43	
		HSI, PLL OFF ${ }^{(4)}$,	16	3.9	4.65	5.33	6.11	
		all peripherals enabled ${ }^{(2)}$	1	0.6	0.78	1.34	2.00	
			100	14.3	$15.09{ }^{(3)}$	16.22	$17.90^{(3)}$	
			84	11.6	$12.28{ }^{(3)}$	13.36	$14.99^{(3)}$	
		External clock,	64	8.2	$8.75{ }^{(3)}$	9.68	$11.21^{(3)}$	
		all peripherals disabled ${ }^{(2)}$	50	6.5	7.21	7.69	8.47	
			25	3.6	4.22	4.68	5.29	
			20	3.2	3.65	4.18	4.94	
		HSI, PLL OFF, all peripherals disabled ${ }^{(2)}$	16	2.0	2.48	3.12	3.94	
			1	0.5	0.65	1.26	1.94	

1. Based on characterization, not tested in production unless otherwise specified
2. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA for the analog part.
3. Tested in production
4. When analog peripheral blocks such as ADC, HSE, LSE, HSI, or LSI are ON, an additional power consumption has to be considered

Table 23. Typical and maximum current consumption in run mode, code with data processing (ART accelerator enabled except prefetch) running from Flash memory- $\mathrm{V}_{\mathrm{DD}}=1.7 \mathrm{~V}$

Symbol	Parameter	Conditions	$\mathrm{f}_{\mathrm{HCLK}}$ (MHz)	Typ	Max ${ }^{(1)}$			Unit
				$\begin{array}{r} \mathrm{T}_{\mathrm{A}}= \\ 25^{\circ} \mathrm{C} \end{array}$	$\begin{array}{r} T_{A}= \\ 25^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & T_{A}= \\ & 85^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ 105^{\circ} \mathrm{C} \end{gathered}$	
$I_{\text {D }}$	Supply current in Run mode	External clock, PLL ON, all peripherals enabled ${ }^{(2)(3)}$	100	26.9	28.78	29.86	31.30	mA
			84	21.6	23.14	23.93	24.89	
			64	15.0	16.08	16.70	17.46	
			50	11.8	12.74	13.33	14.07	
			25	6.3	7.13	7.69	8.30	
			20	5.5	6.09	6.64	7.30	
		HSI, PLL OFF, all peripherals enabled ${ }^{(2)}$	16	3.9	4.20	4.78	4.49	
			1	0.9	0.98	1.50	2.20	
		External clock, PLL ON ${ }^{(4)}$ all peripherals disabled ${ }^{(2)}$	100	12.7	13.82	14.71	15.76	
			84	10.3	11.20	11.97	12.96	
			64	7.2	7.87	8.57	9.41	
			50	5.7	6.33	7.02	7.87	
			25	3.2	3.77	4.38	5.13	
			20	2.9	3.31	3.93	4.69	
		HSI, PLL OFF, all peripherals disabled ${ }^{(2)}$	16	2.1	2.25	2.83	3.56	
			1	0.7	0.83	1.42	2.12	

1. Based on characterization, not tested in production unless otherwise specified.
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is ON (ADON bit is set in the ADC_CR2 register).
3. When the ADC is ON (ADON bit set in the ADC_CR2), add an additional power consumption of 1.6 mA per ADC for the analog part.
4. Refer to Table 44 and RM0383 for the possible PLL VCO setting

Table 24. Typical and maximum current consumption in run mode, code with data processing (ART accelerator enabled except prefetch) running from Flash memory - $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$

Symbol	Parameter	Conditions	$\mathrm{f}_{\mathrm{HCLK}}$ (MHz)	Typ	Max ${ }^{(1)}$			Unit
				$\begin{array}{r} \mathrm{T}_{\mathrm{A}}= \\ 25^{\circ} \mathrm{C} \end{array}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & T_{A}= \\ & 85^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ 105^{\circ} \mathrm{C} \end{gathered}$	
$I_{\text {D }}$	Supply current in Run mode	External clock, PLL ON ${ }^{(2)}$, all peripherals enabled ${ }^{(3)}$	100	27.2	$28.70^{(4)}$	30.14	31.98	mA
			84	21.9	23.60	24.31	25.37	
			64	15.2	16.45	17.03	17.87	
			50	12.1	13.12	13.67	14.46	
			25	6.6	7.59	8.12	8.77	
			20	5.7	6.51	7.07	7.77	
		HSI, PLL OFF, all peripherals enabled ${ }^{(3)}$	16	4.0	4.32	4.88	5.69	
			1	0.8	1.14	1.67	2.38	
		External clock, PLL ON ${ }^{(2)}$ all peripherals disabled ${ }^{(3)}$	100	13.0	$14.06{ }^{(4)}$	15.34	17.27	
			84	10.5	11.21	12.16	13.47	
			64	7.5	8.29	9.01	9.88	
			50	6.0	6.73	7.32	8.27	
			25	3.5	4.18	4.73	5.57	
			20	3.1	3.72	4.25	5.10	
		HSI, PLL OFF, all peripherals disabled ${ }^{(3)}$	16	2.1	2.41	2.94	3.75	
			1	0.7	0.99	1.51	2.30	

1. Based on characterization, not tested in production unless otherwise specified.
2. Refer to Table 44 and RM0383 for the possible PLL VCO setting
3. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is ON (ADON bit is set in the ADC_CR2 register).
4. Tested in production.

Table 25. Typical and maximum current consumption in run mode, code with data processing (ART accelerator disabled) running from Flash memory - $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$

1. Based on characterization, not tested in production unless otherwise specified.
2. Refer to Table 44 and RM0383 for the possible PLL VCO setting
3. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is ON (ADON bit is set in the ADC_CR2 register).

Table 26. Typical and maximum current consumption in run mode, code with data processing (ART accelerator disabled) running from Flash memory $-\mathrm{V}_{\mathrm{DD}}=1.7 \mathrm{~V}$

Symbol	Parameter	Conditions	$\mathrm{f}_{\mathrm{HCLK}}$ (MHz)	Typ	Max ${ }^{(1)}$			Unit
				$\begin{array}{r} \mathrm{T}_{\mathrm{A}}= \\ 25^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}= \\ & 25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}= \\ & 85^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ 105^{\circ} \mathrm{C} \end{gathered}$	
$I_{\text {D }}$	Supply current in Run mode	External clock, PLL ON, all peripherals enabled ${ }^{(2)(3)}$	100	35.9	38.55	40.77	42.52	mA
			84	29.4	31.59	33.12	34.42	
			64	22.4	24.02	25.15	26.28	
			50	18.6	20.07	21.08	22.05	
			25	10.3	11.62	12.39	13.34	
			20	8.9	9.85	10.59	11.32	
		HSI, PLL OFF, all peripherals enabled ${ }^{(2)(3)}$	16	6.7	7.26	8.04	8.80	
			1	1.1	1.44	1.99	2.66	
		External clock, PLL ON ${ }^{(3)}$ all peripherals disabled	100	21.7	23.55	25.48	27.07	
			84	18.0	19.16	20.93	22.39	
			64	14.6	15.93	17.32	18.59	
			50	12.5	13.63	14.90	16.07	
			25	7.2	8.25	9.26	10.26	
			20	6.3	7.15	7.99	8.84	
		HSI, PLL OFF, all peripherals disabled ${ }^{(3)}$	16	4.9	5.37	6.20	7.03	
			1	1.0	1.30	1.91	2.65	

1. Based on characterization, not tested in production unless otherwise specified.
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is ON (ADON bit is set in the ADC_CR2 register).
3. When the ADC is ON (ADON bit set in the ADC_CR2), add an additional power consumption of 1.6 mA per ADC for the analog part.

Table 27. Typical and maximum current consumption in run mode, code with data processing (ART accelerator enabled with prefetch) running from Flash memory - $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$

Symbol	Parameter	Conditions	$\mathbf{f}_{\mathrm{HCLK}}$ (MHz)	Typ	Max ${ }^{(1)}$			Unit
				$\begin{array}{r} \mathrm{T}_{\mathrm{A}}= \\ 25^{\circ} \mathrm{C} \end{array}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} T_{A}= \\ 85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ 105^{\circ} \mathrm{C} \end{gathered}$	
$I_{\text {DD }}$	Supply current in Run mode	External clock, PLL ON, all peripherals enabled ${ }^{(2)}$	100	38.9	41.10	42.85	44.28	mA
			84	32.8	34.61	35.77	36.72	
			64	23.6	24.96	25.84	26.64	
			50	18.7	19.90	20.67	21.45	
			25	10.1	11.11	11.70	12.40	
			20	8.6	9.46	10.07	10.81	
		HSI, PLL OFF,	16	6.3	6.77	7.42	8.21	
		all peripherals enabled	1	1.1	1.35	1.84	2.59	
			100	24.7	26.11	27.59	28.84	
			84	21.4	22.22	23.53	24.66	
		External clock,	64	15.8	16.80	17.90	18.99	
		all peripherals disabled	50	12.6	13.51	14.52	15.54	
			25	7.0	7.85	8.57	9.39	
			20	6.0	6.67	7.37	8.26	
		HSI, PLL OFF, all peripherals disabled	16	4.5	4.80	5.47	6.33	
			1	0.9	1.25	1.81	2.58	

1. Based on characterization, not tested in production unless otherwise specified.
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is ON (ADON bit is set in the ADC_CR2 register).

Table 28. Typical and maximum current consumption in Sleep mode - $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$

Symbol	Parameter	Conditions	$\mathrm{f}_{\mathrm{HCLK}}$ (MHz)	Typ	Max ${ }^{(1)}$			Unit
				$\begin{array}{r} \mathrm{T}_{\mathrm{A}}= \\ 25^{\circ} \mathrm{C} \end{array}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}= \\ & 85^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ 105^{\circ} \mathrm{C} \end{gathered}$	
I_{DD}	Supply current in Sleep mode	All peripherals enabled ${ }^{(2)}$, External clock, PLL ON, Flash deep power down	100	17.7	$18.48{ }^{(3)}$	19.83	21.70	mA
			84	14.3	15.39	16.31	17.48	
			64	10.0	10.71	11.35	12.13	
			50	7.9	8.53	9.13	9.89	
			25	4.4	4.99	5.46	6.11	
			20	4.0	4.42	4.95	5.64	
		All peripherals enabled ${ }^{(2)}$, HSI, PLL OFF, Flash deep power down	16	2.7	2.83	3.47	4.21	
			1	0.5	0.68	1.25	1.92	
		All peripherals enabled ${ }^{(2)}$, External clock, PLL ON Flash ON	100	18.1	19.39	20.70	22.24	
			84	14.7	15.80	16.71	17.92	
			64	10.3	11.02	11.66	12.45	
			50	8.2	8.88	9.53	10.26	
			25	4.7	5.30	5.82	6.53	
			20	4.2	4.67	5.18	5.90	
		All peripherals enabled ${ }^{(2)}$,	16	2.7	3.10	3.72	4.50	
		HSI, PLL ON, Flash ON	1	0.8	0.93	1.50	2.18	
			100	3.2	3.42	4.98	6.88	
			84	2.6	3.09	3.63	4.44	
		External clock,	64	2.0	2.33	2.81	3.46	
		PLL ON ${ }^{(2)}$,	50	1.7	2.02	2.54	3.12	
		Flash deep power down	25	1.2	1.63	2.21	2.89	
			20	1.3	1.62	2.09	2.78	
		All peripherals disabled,	16	0.5	0.63	1.24	1.92	
		HSI, PLL OFF ${ }^{(2)}$, Flash deep power down	1	0.4	0.53	1.14	1.82	
		All peripherals disabled, External clock, PLL ON ${ }^{(2)}$, Flash ON	100	3.6	4.17	4.84	5.63	
			84	3.0	3.49	4.13	4.88	
			64	2.3	2.69	3.23	3.85	
			50	2.0	2.33	2.83	3.45	
			25	1.4	1.88	2.39	3.06	
			20	1.5	1.88	2.43	3.06	
		All peripherals disabled, HSI, PLL OFF ${ }^{(2)}$, Flash ON	16	0.8	0.91	1.50	2.22	
			1	0.7	0.78	1.37	2.09	

1. Based on characterization, not tested in production unless otherwise specified.
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is ON (ADON bit is set in the ADC_CR2 register).
3. Tested in production.

Table 29. Typical and maximum current consumption in Sleep mode - $\mathrm{V}_{\mathrm{DD}}=1.7 \mathrm{~V}$

Symbol	Parameter	Conditions	$\mathrm{f}_{\mathrm{HCLK}}$ (MHz)	Typ	Max ${ }^{(1)}$			Unit
				$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ 85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} T_{A}= \\ 105^{\circ} \mathrm{C} \end{gathered}$	
I_{DD}	Supply current in Sleep mode	External clock, PLL ON, Flash deep power down, all peripherals enabled ${ }^{(2)}$	100	17.3	18.62	19.90	21.40	mA
			84	14.0	15.08	16.04	17.16	
			64	9.7	10.41	11.02	11.80	
			50	7.6	8.27	8.89	9.62	
			25	4.2	4.79	5.35	6.00	
			20	3.7	4.11	4.67	5.31	
		HSI, PLL OFF ${ }^{(2)}$,	16	2.4	2.81	3.45	4.20	
		Flash deep power down	1	0.5	0.67	1.27	1.91	
		External clock, PLL ON ${ }^{(2)}$ all peripherals enabled, Flash ON	100	17.8	19.08	20.35	21.90	
			84	14.4	15.49	16.42	17.59	
			64	10.0	10.76	11.43	12.18	
			50	7.9	8.58	9.19	9.94	
			25	4.4	4.99	5.54	6.21	
			20	4.0	4.42	4.95	5.64	
		HSI, PLL OFF ${ }^{(2)}$, all peripherals enabled, Flash ON	16	2.7	3.09	3.75	4.49	
			1	0.8	0.93	1.52	2.18	

Table 29. Typical and maximum current consumption in Sleep mode - $\mathrm{V}_{\mathrm{DD}}=1.7 \mathrm{~V}$ (continued)

Symbol	Parameter	Conditions	$\mathrm{f}_{\mathrm{HCLK}}$ (MHz)	Typ	Max ${ }^{(1)}$			Unit
				$\begin{array}{r} \mathrm{T}_{\mathrm{A}}= \\ 25^{\circ} \mathrm{C} \end{array}$	$\begin{array}{r} \mathrm{T}_{\mathrm{A}}= \\ 25^{\circ} \mathrm{C} \end{array}$	$\begin{gathered} T_{A}= \\ 85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} T_{A}= \\ 105^{\circ} \mathrm{C} \end{gathered}$	
I_{DD}	Supply current in Sleep mode	All peripherals disabled, External clock, PLL ON ${ }^{(2)}$, Flash deep power down	100	2.9	3.51	4.14	4.90	mA
			84	2.4	2.83	3.46	4.16	
			64	1.7	2.08	2.59	3.18	
			50	1.4	1.77	2.23	2.84	
			25	1.0	1.37	1.88	2.50	
			20	1.3	1.37	1.88	2.50	
		All peripherals disabled,	16	0.5	0.63	1.23	1.91	
		HSI, PLL OFF ${ }^{(2)}$, Flash deep power down	1	0.4	0.52	1.13	1.81	
			100	3.3	3.22	3.98	4.90	
			84	2.8	2.62	3.30	4.16	
		All peripherals disabled,	64	2.1	1.89	2.50	3.18	
		Flash ON	50	1.7	1.58	2.16	2.84	
			25	1.2	1.28	1.82	2.50	
			20	1.3	1.28	1.82	2.50	
		All peripherals disabled, HSI, PLL OFF ${ }^{(2)}$, Flash ON	16	0.8	0.88	1.36	1.91	
			1	0.7	0.77	1.26	1.81	

1. Based on characterization, not tested in production unless otherwise specified.
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is ON (ADON bit is set in the ADC_CR2 register).

Table 30. Typical and maximum current consumptions in Stop mode - $\mathrm{V}_{\mathrm{DD}}=1.7 \mathrm{~V}$

Symbol	Conditions	Parameter	Typ ${ }^{(1)}$	Max ${ }^{(1)}$			Unit
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ 85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ 105^{\circ} \mathrm{C} \end{gathered}$	
IDD_STOP	Flash in Stop mode, all oscillators OFF, no independent watchdog	Main regulator usage	121.1	168.0	648.7	1213.0	$\mu \mathrm{A}$
		Low power regulator usage	50.8	104.7	667.4	1328.0	
	Flash in Deep power down mode, all oscillators OFF, no independent watchdog	Main regulator usage	79.1	122.0	609.1	1181.0	
		Low power regulator usage	22.4	74.7	631.9	1286.0	
		Low power low voltage regulator usage	18.5	58.5	558.3	1145.0	

[^1]Table 31. Typical and maximum current consumption in Stop mode - $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$

Symbol	Conditions	Parameter	Typ	Max ${ }^{(1)}$			Unit
			$\begin{array}{r} \mathrm{T}_{\mathrm{A}}= \\ 25^{\circ} \mathrm{C} \end{array}$	$\begin{array}{r} \mathrm{T}_{\mathrm{A}}= \\ 25^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}= \\ & 85^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ 105^{\circ} \mathrm{C} \end{gathered}$	
IDD_STOP	Flash in Stop mode, all oscillators OFF, no independent watchdog	Main regulator usage	124.0	$179.0^{(2)}$	907.2	$1762.0^{(2)}$	$\mu \mathrm{A}$
		Low power regulator usage	52.8	$104.9^{(2)}$	773.8	1559.0	
	Flash in Deep power down mode, all oscillators OFF, no independent watchdog	Main regulator usage	87.6	123.0	698.5	1374.0	
		Low power regulator usage	26.2	74.7	737.2	1515.0	
		Low power low voltage regulator usage	20.1	$58.5{ }^{(2)}$	629.1	$1299.0^{(2)}$	

1. Based on characterization, not tested in production.
2. Tested in production.

Table 32. Typical and maximum current consumption in Standby mode - $\mathrm{V}_{\mathrm{DD}}=1.7 \mathrm{~V}$

Symbol	Parameter	Conditions	Typ ${ }^{(1)}$	Max ${ }^{(2)}$			Unit
			$\begin{array}{r} \mathrm{T}_{\mathrm{A}}= \\ 25^{\circ} \mathrm{C} \end{array}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ 85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ 105^{\circ} \mathrm{C} \end{gathered}$	
$\mathrm{I}_{\text {DD_StBY }}$	Supply current in Standby mode	Low-speed oscillator (LSE in low drive mode) and RTC ON	1.8	3.7	12.9	23.7	$\mu \mathrm{A}$
		Low-speed oscillator (LSE in high drive mode) and RTC ON	2.6	4.5	13.7	24.5	
		RTC and LSE OFF	1.1	3.0	13.1	25.0	

1. When the PDR is OFF (internal reset is OFF), the typical current consumption is reduced by $1.2 \mu \mathrm{~A}$.
2. Based on characterization, not tested in production unless otherwise specified.

Table 33. Typical and maximum current consumption in Standby mode - $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$

Symbol	Parameter	Conditions	Typ ${ }^{(1)}$	Max ${ }^{(2)}$			Unit
			$\begin{array}{r} \mathrm{T}_{\mathrm{A}}= \\ 25^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}= \\ & 25^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ 85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ 105^{\circ} \mathrm{C} \end{gathered}$	
$\mathrm{I}_{\text {DD_StBy }}$	Supply current in Standby mode	Low-speed oscillator (LSE in low drive mode) and RTC ON	3.7	5.4	16.0	28.4	$\mu \mathrm{A}$
		Low-speed oscillator (LSE in high drive mode) and RTC ON	4.5	6.2	16.8	29.2	
		RTC and LSE OFF	2.6	4.0	16.0	$30.0{ }^{(3)}$	

1. When the PDR is OFF (internal reset is OFF), the typical current consumption is reduced by $1.2 \mu \mathrm{~A}$.
2. Guaranteed by characterization, not tested in production unless otherwise specified.
3. Tested in production.

Table 34. Typical and maximum current consumptions in $\mathrm{V}_{\mathrm{BAT}}$ mode

Symbol	Parameter	Conditions ${ }^{(1)}$	Typ				Max ${ }^{(2)}$		Unit
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				$\begin{aligned} & T_{A}= \\ & 85^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ 105^{\circ} \mathrm{C} \end{gathered}$	
			$\begin{gathered} \mathrm{V}_{\mathrm{BAT}}= \\ 1.7 \mathrm{~V} \end{gathered}$	$\begin{aligned} & V_{\mathrm{BAT}}= \\ & 2.4 \mathrm{~V} \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{BAT}}= \\ 3.3 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{BAT}}= \\ 3.6 \mathrm{~V} \end{gathered}$	$\mathrm{V}_{\text {BAT }}=3.6 \mathrm{~V}$		
IDD_VBAT	Backup domain supply current	Low-speed oscillator (LSE in lowdrive mode) and RTC ON	0.74	0.87	1.04	1.11	3.0	5.0	$\mu \mathrm{A}$
		Low-speed oscillator (LSE in highdrive mode) and RTC ON	1.52	1.70	1.97	2.09	3.8	5.8	
		RTC and LSE OFF	0.04	0.04	0.05	0.05	2.0	4.0	

1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a C_{L} of 6 pF for typical values.
2. Guaranteed by characterization, not tested in production.

Figure 24. Typical $\mathrm{V}_{\text {BAT }}$ current consumption (LSE and RTC ON/LSE oscillator "low power" mode selection)

Figure 25. Typical V $_{\text {BAT }}$ current consumption (LSE and RTC ON/LSE oscillator "high drive" mode selection)

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in Table 56: I/O static characteristics.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.
Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption (see Table 36: Peripheral current consumption), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O
pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$
I_{S W}=V_{D D} \times f_{S W} \times C
$$

where
$I_{\text {SW }}$ is the current sunk by a switching I/O to charge/discharge the capacitive load
$V_{D D}$ is the MCU supply voltage
$\mathrm{f}_{\text {SW }}$ is the I/O switching frequency
C is the total capacitance seen by the I/O pin: $C=C_{I N T}+C_{E X T}$
The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

Table 35. Switching output l/O current consumption

1. CS is the PCB board capacitance including the pad pin. $\mathrm{CS}=7 \mathrm{pF}$ (estimated value).

On-chip peripheral current consumption

The MCU is placed under the following conditions:

- At startup, all I/O pins are in analog input configuration.
- All peripherals are disabled unless otherwise mentioned.
- The ART accelerator is ON.
- Voltage Scale 2 mode selected, internal digital voltage $\mathrm{V} 12=1.26 \mathrm{~V}$.
- HCLK is the system clock at $100 \mathrm{MHz} . \mathrm{f}_{\text {PCLK } 1}=\mathrm{f}_{\text {HCLK }} / 2$, and $\mathrm{f}_{\text {PCLK } 2}=\mathrm{f}_{\text {HCLK }}$.

The given value is calculated by measuring the difference of current consumption

- with all peripherals clocked off,
- with only one peripheral clocked on,
- scale 1 with $\mathrm{f}_{\mathrm{HCLK}}=100 \mathrm{MHz}$,
- scale 2 with $f_{\text {HCLK }}=84 \mathrm{MHz}$,
- \quad scale 3 with $f_{\text {HCLK }}=64 \mathrm{MHz}$.
- Ambient operating temperature is $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$.

Table 36. Peripheral current consumption

Peripheral		I_{DD} (Typ)			Unit
		Scale 1	Scale 2	Scale 3	
AHB1	GPIOA	1.84	1.75	1.55	$\mu \mathrm{A} / \mathrm{MHz}$
	GPIOB	1.90	1.80	1.61	
	GPIOC	1.77	1.67	1.50	
	GPIOD	1.67	1.58	1.42	
	GPIOE	1.75	1.67	1.48	
	GPIOF	1.65	1.56	1.39	
	GPIOG	1.65	1.56	1.39	
	GPIOH	0.62	0.57	0.53	
	CRC	0.26	0.25	0.22	
	DMA1 ${ }^{(1)}$	1,71N+2,98	1,62N+2,87	1,45N+2,58	
	DMA2 ${ }^{(1)}$	1,78N+2,62	1,70N+2.53	1,52N+2.26	
AHB2	RNG	0.77	0.74	0.66	
	USB_OTG_FS	19.68	18.73	16.78	
AHB3	FSMC	5.36	5.11	4.56	
	QSPI	9.99	9.51	8.53	

Table 36. Peripheral current consumption (continued)

Peripheral		$I_{\text {DD }}$ (Typ)			Unit
		Scale 1	Scale 2	Scale 3	
APB1	AHB-APB1 bridge	1.10	1.00	0.94	$\mu \mathrm{A} / \mathrm{MHz}$
	TIM2	13.62	12.95	11.59	
	TIM3	10.56	10.05	8.97	
	TIM4	10.72	10.21	9.12	
	TIM5	13.46	12.83	11.47	
	TIM6	2.92	2.79	2.47	
	TIM7	2.72	2.60	2.31	
	TIM12	6.22	5.93	5.28	
	TIM13	4.70	4.48	3.97	
	TIM14	4.60	4.38	3.91	
	WWDG	1.76	1.67	1.47	
	SPI2/I2S2	4.04	3.83	3.41	
	SPI3/I2S3	4.26	4.05	3.62	
	USART2	4.42	4.19	3.75	
	USART3	4.44	4.21	3.75	
	I2C1	4.32	4.10	3.66	
	I2C2	4.36	4.17	3.69	
	12C3	4.36	4.14	3.69	
	I2CFMP1	5.96	5.69	5.06	
	CAN1	6.18	5.90	5.25	
	CAN2	5.86	5.52	4.97	
	PWR	1.82	1.69	1.56	

Table 36. Peripheral current consumption (continued)

Peripheral		I_{DD} (Typ)			Unit
		Scale 1	Scale 2	Scale 3	
APB2	AHB-APB2 bridge	0.09	0.07	0.08	$\mu \mathrm{A} / \mathrm{MHz}$
	TIM1	6.83	6.46	5.81	
	TIM8	6.63	6.29	5.63	
	USART1	3.31	3.11	2.80	
	USART6	3.21	3.02	2.73	
	ADC1	3.51	3.31	2.98	
	SDIO	3.74	3.51	3.17	
	SPI1	1.47	1.36	1.23	
	SPI4	1.56	1.45	1.31	
	SYSCFG	0.54	0.49	0.45	
	TIM9	3.09	2.92	2.63	
	TIM10	1.91	1.79	1.61	
	TIM11	1.93	1.81	1.64	
	SPI5	1.54	1.44	1.30	
	DFSDM1	4.25	4.02	3.61	
Bus Matrix		3.23	3.06	2.73	

1. N is the number of stream enable (1...8).

6.3.7 Wakeup time from low-power modes

The wakeup times given in Table 37 are measured starting from the wakeup event trigger up to the first instruction executed by the CPU:

- For Stop or Sleep modes: the wakeup event is WFE.
- WKUP (PA0/PC0/PC1) pins are used to wakeup from Standby, Stop and Sleep modes.

Figure 26. Low-power mode wakeup

All timings are derived from tests performed under ambient temperature and $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$.
Table 37. Low-power mode wakeup timings ${ }^{(1)}$

Symbol	Parameter	Conditions	Min $^{(1)}$	Typ $^{(1)}$	Max $^{(1)}$	Unit
$\mathrm{t}_{\text {WUSLEEP }}$	Wakeup from Sleep mode	-	-	4	6	clk cycles
$\mathrm{t}_{\text {WUSLEEPFDSM }}$		Flash memory in Deep power down mode	-	-	50.0	$\mu \mathrm{~s}$

Table 37. Low-power mode wakeup timings ${ }^{(1)}$ (continued)

Symbol	Parameter	Conditions	Min ${ }^{(1)}$	Typ ${ }^{(1)}$	Max ${ }^{(1)}$	Unit
$t_{\text {WUSTOP }}$	Wakeup from STOP mode Code execution on Flash	Main regulator	-	12.9	15.0	$\mu \mathrm{s}$
		Main regulator, Flash memory in Deep power down mode	-	104.9	120.0	
		Wakeup from Stop mode, regulator in low power mode ${ }^{(2)}$	-	20.8	28.0	
		Regulator in low power mode, Flash memory in Deep power down mode ${ }^{(2)}$	-	112.9	130.0	
$t_{\text {WUSTOP }}$	Wakeup from STOP mode code execution on RAM ${ }^{(3)}$	Main regulator with Flash in Stop mode or Deep power down	-	4.9	7.0	
		Wakeup from Stop mode, regulator in low power mode and Flash in Stop mode or Deep power down ${ }^{(2)}$	-	12.8	20.0	
${ }^{\text {twustdib }}$	Wakeup from Standby mode	-	-	316.8	400.0	
$t_{\text {WUFLASH }}$	Wakeup of Flash	From Flash_Stop mode	-		11.0	
		From Flash Deep power down mode	-		50.0	

1. Guaranteed by characterization, not tested in production.
2. The specification is valid for wakeup from regulator in low power mode or low power low voltage mode, since the timing difference is negligible.
3. For the faster wakeup time for code execution on RAM, the Flash must be in STOP or DeepPower Down mode (see reference manual RM0402).

6.3.8 External clock source characteristics

High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard I/O. The external clock signal has to respect the Table 56. However, the recommended clock input waveform is shown in Figure 27.

The characteristics given in Table 38 result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 15.

Table 38. High-speed external user clock characteristics

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{f}_{\text {HSE_ext }}$	External user clock source frequency ${ }^{(1)}$		1	-	50	MHz
$\mathrm{V}_{\text {HSEH }}$	OSC_IN input pin high level voltage		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	$V_{\text {DD }}$	V
$\mathrm{V}_{\text {HSEL }}$	OSC_IN input pin low level voltage		$\mathrm{V}_{S S}$	-	$0.3 \mathrm{~V}_{\mathrm{DD}}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{w}(\mathrm{HSE})} \\ & \mathrm{t}_{\mathrm{w}(\mathrm{HSE})} \end{aligned}$	OSC_IN high or low time ${ }^{(1)}$		5	-	-	ns
$\begin{aligned} & \left.\mathrm{t}_{\mathrm{r}(\mathrm{HSE}}\right) \\ & \left.\mathrm{t}_{\mathrm{f}(\mathrm{HSE}}\right) \end{aligned}$	OSC_IN rise or fall time ${ }^{(1)}$		-	-	10	
$\mathrm{C}_{\text {in(HSE) }}$	OSC_IN input capacitance ${ }^{(1)}$		-	5	-	pF
$\mathrm{DuCy}_{(\text {(HSE) }}$	Duty cycle		45	-	55	\%
I	OSC_IN Input leakage current	$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{DD}}$	-	-	± 1	$\mu \mathrm{A}$

1. Guaranteed by design, not tested in production.

Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The external clock signal has to respect the Table 56. However, the recommended clock input waveform is shown in Figure 28.

The characteristics given in Table 39 result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 15.

Table 39. Low-speed external user clock characteristics

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{f}_{\text {LSE_ext }}$	User External clock source frequency ${ }^{(1)}$		-	32.768	1000	kHz
$\mathrm{V}_{\text {LSEH }}$	OSC32_IN input pin high level voltage		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	$V_{D D}$	V
$V_{\text {LSEL }}$	OSC32_IN input pin low level voltage		V_{SS}	-	$0.3 \mathrm{~V}_{\mathrm{DD}}$	
$\begin{aligned} & \mathrm{t}_{w(L S E)} \\ & \mathrm{t}_{\mathrm{f}(\mathrm{LSE})} \end{aligned}$	OSC32_IN high or low time ${ }^{(1)}$		450	-	-	ns
$\begin{aligned} & \left.\mathrm{t}_{\mathrm{r}(\mathrm{LSE})}\right) \\ & \left.\mathrm{t}_{\mathrm{f}(\mathrm{LSE})}\right) \end{aligned}$	OSC32_IN rise or fall time ${ }^{(1)}$		-	-	50	
$\mathrm{C}_{\text {in(LSE) }}$	OSC32_IN input capacitance ${ }^{(1)}$		-	5	-	pF
DuCy ${ }_{(\text {LSE) }}$	Duty cycle		30	-	70	\%
I_{L}	OSC32_IN Input leakage current	$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{DD}}$	-	-	± 1	$\mu \mathrm{A}$

1. Guaranteed by design, not tested in production.

Figure 27. High-speed external clock source AC timing diagram

Figure 28. Low-speed external clock source AC timing diagram

High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 40. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Table 40. HSE 4-26 MHz oscillator characteristics ${ }^{(1)}$

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
fosc_IN	Oscillator frequency		4	-	26	MHz
R_{F}	Feedback resistor		-	200	-	k Ω
IDD	HSE current consumption	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \\ \mathrm{ESR}=30 \Omega \\ \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} @ 25 \mathrm{MHz} \end{gathered}$	-	450	-	$\mu \mathrm{A}$
		$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \\ \mathrm{ESR}=30 \Omega \\ \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} @ 25 \mathrm{MHz} \end{gathered}$	-	530	-	
$\mathrm{ACC}_{\text {HSE }}{ }^{(2)}$	HSE accuracy	-	-500	-	500	ppm
$\mathrm{G}_{\mathrm{m} \text { _crit_max }}$	Maximum critical crystal gm_{m}	Startup	-	-	1	mA/V
$\mathrm{t}_{\mathrm{SU}(\mathrm{HSE})^{(3)}}$	Startup time	$V_{D D}$ is stabilized	-	2	-	ms

1. Guaranteed by design, not tested in production.
2. This parameter depends on the crystal used in the application. The minimum and maximum values must be respected to comply with USB standard specifications.
3. $t_{S U(H S E)}$ is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For $\mathrm{C}_{\mathrm{L} 1}$ and $\mathrm{C}_{\mathrm{L} 2}$, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (Typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 29). $\mathrm{C}_{\mathrm{L} 1}$ and $\mathrm{C}_{\mathrm{L} 2}$ are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of $C_{L 1}$ and $C_{L 2}$. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing $\mathrm{C}_{\mathrm{L} 1}$ and $\mathrm{C}_{\mathrm{L} 2}$.

Note: \quad For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

Figure 29. Typical application with an 8 MHz crystal

Resonator with integrated capacitors

ai17530

1. $R_{E X T}$ value depends on the crystal characteristics.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 41. In the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

The LSE high-power mode allows to cover a wider range of possible crystals but with a cost of higher power consumption.

Table 41. LSE oscillator characteristics ($\mathrm{f}_{\mathrm{LSE}}=32.768 \mathrm{kHz}$) ${ }^{(1)}$

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
R_{F}	Feedback resistor	LSE current consumption	Low-power mode (default)	-	-	1

1. Guaranteed by design, not tested in production.
2. This parameter depends on the crystal used in the application. Refer to the application note AN2867.
3. $t_{\text {SU(LSE }}$ is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is guaranteed by characterization and not tested in production. It is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

For information about the LSE high-power mode, refer to the reference manual RM0383.
Figure 30. Typical application with a 32.768 kHz crystal

6.3.9 Internal clock source characteristics

The parameters given in Table 42 and Table 43 are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in Table 15.

High-speed internal (HSI) RC oscillator
Table 42. HSI oscillator characteristics ${ }^{(1)}$

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{f}_{\mathrm{HSI}}$	Frequency	-	-	16	-	MHz
$\mathrm{ACC}_{\mathrm{HSI}}$	HSI user trimming step ${ }^{(2)}$	-	-	-	1	\%
	Accuracy of the HSI oscillator	$\mathrm{T}_{\mathrm{A}}=-40$ to $105^{\circ} \mathrm{C}^{(3)}$	-8	-	4.5	\%
		$\mathrm{T}_{\mathrm{A}}=-10$ to $85^{\circ} \mathrm{C}^{(3)}$	-4	-	4	\%
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{(4)}$	-1	-	1	\%
$\mathrm{t}_{\text {su(HSI) }}{ }^{(2)}$	HSI oscillator startup time	-	-	2.2	4	$\mu \mathrm{s}$
$\mathrm{I}_{\mathrm{DD}(\mathrm{HSI})}{ }^{(2)}$	HSI oscillator power consumption	-	-	60	80	$\mu \mathrm{A}$

1. $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $105^{\circ} \mathrm{C}$ unless otherwise specified.
2. Guaranteed by design, not tested in production
3. Based on characterization, not tested in production
4. Factory calibrated, parts not soldered.

Figure 31. $\mathrm{ACC}_{\mathrm{HSI}}$ versus temperature

1. Guaranteed by characterization, not tested in production.

Low-speed internal (LSI) RC oscillator

Table 43. LSI oscillator characteristics ${ }^{(1)}$

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{f}_{\mathrm{LSI}}{ }^{(2)}$	Frequency	17	32	47	kHz
$\mathrm{t}_{\mathrm{su}(\mathrm{LSI})}{ }^{(3)}$	LSI oscillator startup time	-	15	40	$\mu \mathrm{~s}$
$\mathrm{I}_{\mathrm{DD}(\mathrm{LSI})}{ }^{(3)}$	LSI oscillator power consumption	-	0.4	0.6	$\mu \mathrm{~A}$

1. $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $105^{\circ} \mathrm{C}$ unless otherwise specified.
2. Guaranteed by characterization, not tested in production.
3. Guaranteed by design, not tested in production.

Figure 32. $A C C_{\text {LSI }}$ versus temperature

6.3.10 PLL characteristics

The parameters given in Table 44 and Table 45 are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in Table 15.

Table 44. Main PLL characteristics

Symbol	Parameter	Conditions		Min	Typ	Max	Unit
$\mathrm{f}_{\text {PLL_IN }}$	PLL input clock ${ }^{(1)}$	-		$0.95{ }^{(2)}$	1	2.10	MHz
$\mathrm{f}_{\text {PLL_OUT }}$	PLL multiplier output clock	-		24	-	100	MHz
$\mathrm{f}_{\text {PLL48_OUT }}$	48 MHz PLL multiplier output clock	-		-	48	75	MHz
$\mathrm{f}_{\mathrm{VCO}}$ _OUT	PLL VCO output	-		100	-	432	MHz
t Lock	PLL lock time	VCO freq $=100 \mathrm{MHz}$		75	-	200	$\mu \mathrm{s}$
		VCO freq $=432 \mathrm{MHz}$		100	-	300	
Jitter ${ }^{(3)}$	Cycle-to-cycle jitter	System clock$100 \mathrm{MHz}$	RMS	-	25	-	ps
			peak to peak	-	± 150	-	
	Period Jitter		RMS	-	15	-	
			peak to peak	-	± 200	-	
	Bit Time CAN jitter	Cycle to cycle at 1 MHz on 1000 samples.		-	330	-	
$\mathrm{I}_{\mathrm{DD}(\mathrm{PLL})}{ }^{(4)}$	PLL power consumption on VDD	$\begin{aligned} & \mathrm{VCO} \text { freq }=100 \mathrm{MHz} \\ & \mathrm{VCO} \text { freq }=432 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 0.15 \\ & 0.45 \end{aligned}$	-	$\begin{aligned} & 0.40 \\ & 0.75 \end{aligned}$	mA
$\mathrm{I}_{\mathrm{DDA}(\mathrm{PLL})}{ }^{(4)}$	PLL power consumption on VDDA	$\begin{aligned} & \mathrm{VCO} \text { freq }=100 \mathrm{MHz} \\ & \mathrm{VCO} \text { freq }=432 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 0.30 \\ & 0.55 \end{aligned}$	-	$\begin{aligned} & 0.40 \\ & 0.85 \end{aligned}$	

1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared between PLL and PLLI2S.
2. Guaranteed by design, not tested in production.
3. The use of two PLLs in parallel could degraded the Jitter up to $+30 \%$.
4. Guaranteed by characterization, not tested in production.

Table 45. PLLI2S (audio PLL) characteristics

Symbol	Parameter	Conditions		Min	Typ	Max	Unit
$\mathrm{f}_{\text {PLLI2S_IN }}$	PLLI2S input clock ${ }^{(1)}$	-		$0.95{ }^{(2)}$	1	2.10	MHz
$\mathrm{f}_{\text {PLLI2S_OUT }}$	PLLI2S multiplier output clock	-		-	-	216	
$\mathrm{f}_{\text {VCO_OUT }}$	PLLI2S VCO output	-		100	-	432	
t Lock	PLLI2S lock time	VCO freq $=100 \mathrm{MHz}$		75	-	200	$\mu \mathrm{s}$
		VCO freq $=432 \mathrm{MHz}$		100	-	300	
Jitter ${ }^{(3)}$	Master I2S clock jitter	Cycle to cycle at 12.288 MHz on 48 kHz period, $\mathrm{N}=432$, R=5	RMS	-	90	-	
			peak to peak	-	± 280	-	ps
		Average frequency of 12.288 MHz $N=432, R=5$ on 1000 samples		-	90	-	
	WS I2S clock jitter	Cycle to cycle at 48 KHz on 1000 samples		-	400	-	
$\mathrm{I}_{\mathrm{DD}(\mathrm{PLLI} 2 \mathrm{~S})}{ }^{(4)}$	PLLI2S power consumption on $V_{D D}$	$\begin{aligned} & \mathrm{VCO} \text { freq }=100 \mathrm{MHz} \\ & \mathrm{VCO} \text { freq }=432 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 0.15 \\ & 0.45 \end{aligned}$	-	$\begin{aligned} & 0.40 \\ & 0.75 \end{aligned}$	mA
$\mathrm{I}_{\text {DDA(PLLI2S) }}{ }^{(4)}$	PLLI2S power consumption on $V_{\text {DDA }}$	$\begin{aligned} & \mathrm{VCO} \text { freq }=100 \mathrm{MHz} \\ & \mathrm{VCO} \text { freq }=432 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 0.30 \\ & 0.55 \end{aligned}$	-	$\begin{aligned} & 0.40 \\ & 0.85 \end{aligned}$	

1. Take care of using the appropriate division factor M to have the specified PLL input clock values.
2. Guaranteed by design, not tested in production.
3. Value given with main PLL running.
4. Guaranteed by characterization, not tested in production.

6.3.11 PLL spread spectrum clock generation (SSCG) characteristics

The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic interferences (see Table 52: EMI characteristics for LQFP144). It is available only on the main PLL.

Table 46. SSCG parameter constraints

Symbol	Parameter	Min	Typ	Max $^{(1)}$	Unit
$\mathrm{f}_{\text {Mod }}$	Modulation frequency	-	-	10	kHz
md	Peak modulation depth	0.25	-	2	$\%$
MODEPER * INCSTEP	(Modulation period) * (Increment Step)	-	-	$2^{15}-1$	-

1. Guaranteed by design, not tested in production.

Equation 1

The frequency modulation period (MODEPER) is given by the equation below:

$$
\text { MODEPER }=\operatorname{round}\left[\mathrm{f}_{\text {PLL_IN }} /\left(4 \times \mathrm{f}_{\text {Mod }}\right)\right]
$$

$\mathrm{f}_{\text {PLL_IN }}$ and $\mathrm{f}_{\text {Mod }}$ must be expressed in Hz .
As an example:
If $\mathrm{f}_{\mathrm{PLL}} \mathrm{IN}=1 \mathrm{MHz}$, and $\mathrm{f}_{\mathrm{MOD}}=1 \mathrm{kHz}$, the modulation depth (MODEPER) is given by equation 1:

$$
\operatorname{MODEPER}=\operatorname{round}\left[10^{6} /\left(4 \times 10^{3}\right)\right]=250
$$

Equation 2

Equation 2 allows to calculate the increment step (INCSTEP):

$$
\text { INCSTEP }=\operatorname{round}\left[\left(\left(2^{15}-1\right) \times \mathrm{md} \times \text { PLLN }\right) /(100 \times 5 \times \text { MODEPER })\right]
$$

$\mathrm{f}_{\text {Vco_out }}$ must be expressed in MHz .
With a modulation depth $(\mathrm{md})= \pm 2 \%$ (4% peak to peak), and PLLN $=240$ (in MHz):

$$
\operatorname{INCSTEP}=\operatorname{round}\left[\left(\left(2^{15}-1\right) \times 2 \times 240\right) /(100 \times 5 \times 250)\right]=126 \mathrm{md}(\text { quantitazed }) \%
$$

An amplitude quantization error may be generated because the linear modulation profile is obtained by taking the quantized values (rounded to the nearest integer) of MODPER and INCSTEP. As a result, the achieved modulation depth is quantized. The percentage quantized modulation depth is given by the following formula:

$$
\mathrm{md}_{\text {quantized }} \%=(\text { MODEPER } \times \operatorname{INCSTEP} \times 100 \times 5) /\left(\left(2^{15}-1\right) \times \text { PLLN }\right)
$$

As a result:

$$
\mathrm{md}_{\text {quantized }} \%=(250 \times 126 \times 100 \times 5) /\left(\left(2^{15}-1\right) \times 240\right)=2.002 \%(\text { peak })
$$

Figure 33 and Figure 34 show the main PLL output clock waveforms in center spread and down spread modes, where:

F0 is $f_{P L L _O U T}$ nominal.
$T_{\text {mode }}$ is the modulation period.
md is the modulation depth.
Figure 33. PLL output clock waveforms in center spread mode

Figure 34. PLL output clock waveforms in down spread mode

6.3.12 Memory characteristics

Flash memory

The characteristics are given at $\mathrm{T}_{\mathrm{A}}=-40$ to $105^{\circ} \mathrm{C}$ unless otherwise specified.
The devices are shipped to customers with the Flash memory erased.
Table 47. Flash memory characteristics

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$I_{\text {D }}$	Supply current	Write / Erase 8-bit mode, $\mathrm{V}_{\mathrm{DD}}=1.7 \mathrm{~V}$	-	5	-	mA
		Write / Erase 16-bit mode, $\mathrm{V}_{\mathrm{DD}}=2.1 \mathrm{~V}$	-	8	-	
		Write / Erase 32-bit mode, $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$	-	12	-	

Table 48. Flash memory programming

Symbol	Parameter	Conditions	Min ${ }^{(1)}$	Typ	Max ${ }^{(1)}$	Unit
$\mathrm{t}_{\text {prog }}$	Word programming time	Program/erase parallelism $(\text { PSIZE })=x 8 / 16 / 32$	-	16	$100^{(2)}$	$\mu \mathrm{s}$
terase16Kb	Sector (16 KB) erase time	Program/erase parallelism $(P S I Z E)=x 8$	-	400	800	ms
		Program/erase parallelism $(\text { PSIZE })=x 16$	-	300	600	
		Program/erase parallelism $(\text { PSIZE })=x 32$	-	250	500	
$\mathrm{t}_{\text {ERASE64KB }}$	Sector (64 KB) erase time	Program/erase parallelism $(\text { PSIZE })=x 8$	-	1200	2400	ms
		Program/erase parallelism $(\text { PSIZE })=x 16$	-	700	1400	
		Program/erase parallelism (PSIZE) $=x 32$	-	550	1100	
terase128KB	Sector (128 KB) erase time	Program/erase parallelism $(\text { PSIZE })=x 8$	-	2	4	s
		Program/erase parallelism $(\text { PSIZE })=x 16$	-	1.3	2.6	
		Program/erase parallelism $(\text { PSIZE })=x 32$	-	1	2	
$\mathrm{t}_{\text {ME }}$	Mass erase time	Program/erase parallelism $(\mathrm{PSIZE})=x 8$	-	16	32	s
		Program/erase parallelism $(P S I Z E)=x 16$	-	11	22	
		Program/erase parallelism $(\text { PSIZE })=x 32$	-	8	16	
$V_{\text {prog }}$	Programming voltage	32-bit program operation	2.7	-	3.6	V
		16-bit program operation	2.1	-	3.6	V
		8-bit program operation	1.7	-	3.6	V

1. Guaranteed by characterization, not tested in production.
2. The maximum programming time is measured after 100 K erase operations.

Table 49. Flash memory programming with V_{PP} voltage

Symbol	Parameter	Conditions	Min ${ }^{(1)}$	Typ	Max ${ }^{(1)}$	Unit
$\mathrm{t}_{\text {prog }}$	Double word programming	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0 \text { to }+40^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{PP}}=8.5 \mathrm{~V} \end{gathered}$	-	16	$100^{(2)}$	$\mu \mathrm{s}$
terase16KB	Sector (16 KB) erase time		-	230	-	ms
$t_{\text {ERASE64KB }}$	Sector (64 KB) erase time		-	490	-	
terase128KB	Sector (128 KB) erase time		-	875	-	
$\mathrm{t}_{\text {ME }}$	Mass erase time		-	6.9	-	s
$\mathrm{V}_{\text {prog }}$	Programming voltage	-	2.7	-	3.6	V
$V_{P P}$	$V_{P P}$ voltage range	-	7	-	9	V
$\mathrm{I}_{\text {PP }}$	Minimum current sunk on the $V_{P P}$ pin	-	10	-	-	mA
$\mathrm{t}_{\text {VPP }}{ }^{(3)}$	Cumulative time during which $V_{P P}$ is applied	-	-	-	1	hour

1. Guaranteed by design, not tested in production.
2. The maximum programming time is measured after 100 K erase operations.
3. $V_{P P}$ should only be connected during programming/erasing.

Table 50. Flash memory endurance and data retention

Symbol	Parameter	Conditions	Value	Unit
			Min ${ }^{(1)}$	
$\mathrm{N}_{\text {END }}$	Endurance	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C}(6 \text { suffix versions }) \\ & \left.\mathrm{T}_{\mathrm{A}}=-40 \text { to }+105^{\circ} \mathrm{C} \text { (} 7 \text { suffix versions }\right) \end{aligned}$	10	kcycles
$\mathrm{t}_{\text {RET }}$	Data retention	$1 \mathrm{kcycle}^{(2)}$ at $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	30	Years
		$1 \mathrm{kcycle}^{(2)}$ at $\mathrm{T}_{\mathrm{A}}=105^{\circ} \mathrm{C}$	10	
		$10 \mathrm{kcycle}^{(2)}$ at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$	20	

1. Guaranteed by characterization, not tested in production.
2. Cycling performed over the whole temperature range.

6.3.13 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to $V_{D D}$ and $V_{S S}$ through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in Table 52. They are based on the EMS levels and classes defined in application note AN1709.

Table 51. EMS characteristics for LQFP144 package

Symbol	Parameter	Conditions	Level/ Class
V	Voltage limits to be applied on any I / O pin to induce a functional disturbance	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$, LQFP144 $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{HCLK}}=100 \mathrm{MHz}$, conforms to IEC $61000-4-2$	2 B
V	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$, LQFP144 $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{HCLK}}=100 \mathrm{MHz}$, conforms to IEC $61000-4-4$	4 B

When the application is exposed to a noisy environment, it is recommended to avoid pin exposition to disturbances. The pins showing a middle range robustness are: PA0, PA1, PA2, on LQFP144 packages and PDR_ON on WLCSP49.

As a consequence, it is recommended to add a serial resistor ($1 \mathrm{k} \Omega$ maximum) located as close as possible to the MCU to the pins exposed to noise (connected to tracks longer than 50 mm on PCB).

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application, executing EEMBC code, is running. This emission test is compliant with IEC61967-2 standard which specifies the test board and the pin loading.

Table 52. EMI characteristics for LQFP144

Symbol	Parameter	Conditions	Monitored frequency band	Max vs. [$\mathrm{f}_{\mathrm{HSE}} / \mathrm{f}_{\mathrm{CPU}}$]	Unit
				8/100 MHz	
$\mathrm{S}_{\text {EMI }}$	Peak level	$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, LQFP144 package, conforming to IEC 61967-2, EEMBC, ART ON, all peripheral clocks enabled, clock dithering disabled.	0.1 to 30 MHz	20	$\mathrm{dB} \mu \mathrm{V}$
			30 to 130 MHz	28	
			130 MHz to 1 GHz	21	
			EMI Level	3.5	-

6.3.14 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts $\times(n+1$) supply pins). This test conforms to the JESD22-A114/C101 standard.

Table 53. ESD absolute maximum ratings

Symbol	Ratings	Conditions	Class	$\begin{gathered} \text { Maximum } \\ \text { value }^{(1)} \end{gathered}$	Unit
$\mathrm{V}_{\text {ESD (HBM) }}$	Electrostatic discharge voltage (human body model)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ conforming to JESD22-A114	2	2000	V
$\mathrm{V}_{\text {ESD (CDM) }}$	Electrostatic discharge voltage (charge device model)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ conforming to ANSI/ESD STM5.3.1, UFBGA144, UFBGA100, LQFP100, LQFP64, UFQFPN48	4	500	
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ conforming to ANSI/ESD STM5.3.1, WLCSP64	3	400	
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ conforming to ANSI/ESD STM5.3.1, LQFP144	3	250	

[^2]
Static latchup

Two complementary static tests are required on six parts to assess the latchup performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latchup standard.
Table 54. Electrical sensitivities

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$ conforming to JESD78A	II level A

6.3.15 I/O current injection characteristics

As a general rule, current injection to the I / O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V -capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of $-5 \mu \mathrm{~A} /+0 \mu \mathrm{~A}$ range), or other functional failure (for example reset, oscillator frequency deviation).
Negative induced leakage current is caused by negative injection and positive induced leakage current by positive injection.

The test results are given in Table 55.

Table 55. I/O current injection susceptibility ${ }^{(1)}$

Symbol	Description		Functional susceptibility	

1. $N A=$ not applicable.

Note: It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

6.3.16 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in Table 56 are derived from tests performed under the conditions summarized in Table 15. All I/Os are CMOS and TTL compliant.

Table 56. I/O static characteristics

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\text {IL }}$	FT, TC and NRST I/O input low level voltage	$1.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$	-	-	$0.3 \mathrm{~V}_{\mathrm{DD}}{ }^{(1)}$	V
	BOOTO I/O input low level voltage	$1.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$, $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 105^{\circ} \mathrm{C}$	-	-	$0.1 \mathrm{~V}_{\mathrm{DD}}+0.1^{(2)}$	
		$\begin{gathered} 1.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}, \\ 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 105^{\circ} \mathrm{C} \end{gathered}$	-	-		
V_{IH}	FT, TC and NRST I/O input high level voltage ${ }^{(5)}$	$1.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$	$0.7 \mathrm{~V}_{\mathrm{DD}}{ }^{(1)}$	-	-	V
	BOOTO I/O input high level voltage	$\begin{aligned} & 1.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}, \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 105^{\circ} \mathrm{C} \end{aligned}$	$0.17 V_{D D}+0.7^{(2)}$	-	-	
		$\begin{gathered} 1.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}, \\ 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 105^{\circ} \mathrm{C} \end{gathered}$				

Table 56. I/O static characteristics (continued)

Symbol	Parameter		Conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\mathrm{HYS}}$	FT, TC and NRST I/O input hysteresis		$1.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$	$10 \% \mathrm{~V}_{\mathrm{DD}}{ }^{(2)(3)}$	-	-	
	BOOTO I/O input hysteresis		$\begin{aligned} & 1.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}, \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 105^{\circ} \mathrm{C} \end{aligned}$	0.1			V
			$\begin{gathered} 1.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}, \\ 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 105^{\circ} \mathrm{C} \end{gathered}$				
$\mathrm{I}_{\mathrm{lkg}}$	I/O input leakage	current ${ }^{(4)}$	$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{DD}}$	-	-	± 1	$\mu \mathrm{A}$
	I/O FT/TC input leakage current (5)		$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$	-	-	3	
R_{PU}	Weak pull-up equivalent resistor ${ }^{(6)}$	All pins except for PA10 (OTG_FS_ID)	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$	30	40	50	$\mathrm{k} \Omega$
		$\begin{aligned} & \text { PA10 } \\ & \text { (OTG_FS_ID) } \end{aligned}$	-	7	10	14	
R_{PD}	Weak pull-down equivalent resistor ${ }^{(7)}$	All pins except for PA10 (OTG_FS_ID)	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$	30	40	50	
		$\begin{aligned} & \text { PA10 } \\ & \text { (OTG_FS_ID) } \end{aligned}$	-	7	10	14	
$\mathrm{ClO}_{10}{ }^{(8)}$	I/O pin capacitance		-	-	5	-	pF

1. Guaranteed by test in production.
2. Guaranteed by design, not tested in production.
3. With a minimum of 200 mV .
4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 55: I/O current injection susceptibility
5. To sustain a voltage higher than VDD +0.3 V , the internal pull-up/pull-down resistors must be disabled. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins.Refer to Table 55: I/O current injection susceptibility
6. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimum ($\sim 10 \%$ order).
7. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the series resistance is minimum ($\sim 10 \%$ order).
8. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization, not tested in production.

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements for FT and TC I/Os is shown in Figure 35.

Figure 35. FT/TC I/O input characteristics

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to $\pm 8 \mathrm{~mA}$, and sink or source up to $\pm 20 \mathrm{~mA}$ (with a relaxed $\mathrm{V}_{\mathrm{OL}} / \mathrm{V}_{\mathrm{OH}}$) except PC13, PC14 and PC15 which can sink or source up to $\pm 3 \mathrm{~mA}$. When using the PC13 to PC15 GPIOs in output mode, the speed should not exceed 2 MHz with a maximum load of 30 pF .

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2. In particular:

- The sum of the currents sourced by all the I/Os on $V_{D D}$, plus the maximum Run consumption of the MCU sourced on $V_{D D}$, cannot exceed the absolute maximum rating $\Sigma \mathrm{l}_{\mathrm{VDD}}$ (see Table 13).
- The sum of the currents sunk by all the I/Os on $V_{S S}$ plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating $\Sigma \mathrm{l}_{\text {vss }}$ (see Table 13).

Output voltage levels

Unless otherwise specified, the parameters given in Table 57 are derived from tests performed under ambient temperature and $V_{D D}$ supply voltage conditions summarized in Table 15. All I/Os are CMOS and TTL compliant.

Table 57. Output voltage characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
$\mathrm{V}_{\mathrm{OL}}{ }^{(1)}$	Output low level voltage for an I/O pin	$\begin{gathered} \mathrm{CMOS}_{\text {port }}{ }^{(2)} \\ \mathrm{I}_{\mathrm{IO}}=+8 \mathrm{~mA} \\ 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V} \end{gathered}$	-	0.4	V
$\mathrm{V}_{\mathrm{OH}}{ }^{(3)}$	Output high level voltage for an I/O pin		$\mathrm{V}_{\mathrm{DD}}-0.4$	-	
$\mathrm{V}_{\mathrm{OL}}{ }^{(1)}$	Output low level voltage for an I/O pin	$\begin{gathered} \text { TTL port }^{(2)} \\ \mathrm{I}_{\mathrm{IO}}=+8 \mathrm{~mA} \\ 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V} \end{gathered}$	-	0.4	V
$\mathrm{V}_{\mathrm{OH}}{ }^{(3)}$	Output high level voltage for an I/O pin		2.4	-	
$\mathrm{V}_{\mathrm{OL}}{ }^{(1)}$	Output low level voltage for an I/O pin	$\begin{gathered} \mathrm{I}_{\mathrm{O}}=+20 \mathrm{~mA} \\ 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V} \end{gathered}$	-	$1.3{ }^{(4)}$	V
$\mathrm{V}_{\mathrm{OH}}{ }^{(3)}$	Output high level voltage for an I/O pin		$\mathrm{V}_{\mathrm{DD}} \mathrm{B}^{1.3}{ }^{(4)}$	-	
$\mathrm{V}_{\mathrm{OL}}{ }^{(1)}$	Output low level voltage for an I/O pin	$\begin{gathered} \mathrm{l}_{\mathrm{O}}=+6 \mathrm{~mA} \\ 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V} \end{gathered}$	-	$0.4{ }^{(4)}$	V
$\mathrm{V}_{\mathrm{OH}}{ }^{(3)}$	Output high level voltage for an I/O pin		$\mathrm{V}_{\mathrm{DD}}-0.4^{(4)}$	-	
$\mathrm{V}_{\mathrm{OL}}{ }^{(1)}$	Output low level voltage for an I/O pin	$\begin{gathered} \mathrm{l}_{\mathrm{OO}}=+4 \mathrm{~mA} \\ 1.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V} \end{gathered}$	-	$0.4{ }^{(5)}$	V
$\mathrm{V}_{\mathrm{OH}}{ }^{(3)}$	Output high level voltage for an I/O pin		$\mathrm{V}_{\mathrm{DD}}-0.4^{(5)}$	-	

1. The l_{j} current sunk by the device must always respect the absolute maximum rating specified in Table 13. and the sum of I_{IO} (I/O ports and control pins) must not exceed $\mathrm{I}_{\text {VSS }}$.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 13 and the sum of l_{IO} (I/O ports and control pins) must not exceed $\mathrm{I}_{\mathrm{VDD}}$.
4. Guaranteed by characterization results, not tested in production.
5. Guaranteed by design, not tested in production.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in Figure 36 and Table 58, respectively.

Unless otherwise specified, the parameters given in Table 58 are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in Table 15.

Table 58. I/O AC characteristics ${ }^{(1)(2)}$

$\begin{aligned} & \text { OSPEEDRy } \\ & \text { [1:0] bit } \\ & \text { value }^{(1)} \end{aligned}$	Symbol	Parameter	Conditions	Min	Typ	Max	Unit
00	$\mathrm{f}_{\max (10) \text { out }}$	Maximum frequency ${ }^{(3)}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 2.70 \mathrm{~V}$	-	-	4	MHz
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 1.7 \mathrm{~V}$	-	-	2	
			$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 2.70 \mathrm{~V}$	-	-	8	
			$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 1.7 \mathrm{~V}$	-	-	4	
	$\mathrm{t}_{\mathrm{f}(\mathrm{IO}) \text { out }}{ }^{\prime}$ $\mathrm{t}_{\mathrm{r}(\mathrm{IO}) \text { out }}$	Output high to low level fall time and output low to high level rise time	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \mathrm{~V}_{\mathrm{DD}}=1.7 \mathrm{~V} \text { to } \\ & 3.6 \mathrm{~V} \end{aligned}$	-	-	100	ns

Table 58. I/O AC characteristics ${ }^{(1)(2)}$ (continued)

$\begin{aligned} & \text { OSPEEDRy } \\ & {[1: 0] \text { bit }} \\ & \text { value }^{(1)} \end{aligned}$	Symbol	Parameter	Conditions	Min	Typ	Max	Unit
01	$\mathrm{f}_{\max (10) \text { out }}$	Maximum frequency ${ }^{(3)}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 2.70 \mathrm{~V}$	-	-	25	MHz
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 1.7 \mathrm{~V}$	-	-	12.5	
			$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 2.70 \mathrm{~V}$	-	-	50	
			$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 1.7 \mathrm{~V}$	-	-	20	
	$\mathrm{t}_{\mathrm{f}}(\mathrm{O})$ out ${ }^{\prime}$ $\mathrm{t}_{\mathrm{r}(\mathrm{IO}) \text { out }}$	Output high to low level fall time and output low to high level rise time	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 2.7 \mathrm{~V}$	-	-	10	ns
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 1.7 \mathrm{~V}$	-	-	20	
			$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 2.70 \mathrm{~V}$	-	-	6	
			$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 1.7 \mathrm{~V}$	-	-	10	
10	$\mathrm{f}_{\max (10) \text { out }}$	Maximum frequency ${ }^{(3)}$	$\mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 2.70 \mathrm{~V}$	-	-	$50^{(4)}$	MHz
			$\mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 1.7 \mathrm{~V}$	-	-	25	
			$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 2.70 \mathrm{~V}$	-	-	$100^{(4)}$	
			$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 1.7 \mathrm{~V}$	-	-	$50^{(4)}$	
	$\left.\mathrm{t}_{\mathrm{f}} \mathrm{IO}\right)$ out ${ }^{\prime}$ $\mathrm{t}_{\mathrm{r}(\mathrm{IO}) \text { out }}$	Output high to low level fall time and output low to high level rise time	$\mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 2.70 \mathrm{~V}$	-	-	6	ns
			$\mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 1.7 \mathrm{~V}$	-	-	10	
			$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 2.70 \mathrm{~V}$	-	-	4	
			$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 1.7 \mathrm{~V}$	-	-	6	
11	$\mathrm{F}_{\text {max(IO)out }}$	Maximum frequency ${ }^{(3)}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 2.70 \mathrm{~V}$	-	-	$100^{(4)}$	MHz
			$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 1.7 \mathrm{~V}$	-	-	$50^{(4)}$	
	$\mathrm{t}_{\mathrm{f}(\mathrm{IO}) \text { out }}$ $\mathrm{t}_{\mathrm{r}(\mathrm{IO}) \text { out }}$	Output high to low level fall time and output low to high level rise time	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 2.70 \mathrm{~V}$	-	-	4	ns
			$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 1.7 \mathrm{~V}$	-	-	6	
			$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 2.70 \mathrm{~V}$	-	-	2.5	
			$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 1.7 \mathrm{~V}$	-	-	4	
-	${ }^{\text {EXXTIpw }}$	Pulse width of external signals detected by the EXTI controller	-	10	-	-	ns

1. Guaranteed by characterization, not tested in production.
2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F4xx reference manual for a description of the GPIOx_SPEEDR GPIO port output speed register.
3. The maximum frequency is defined in Figure 36.
4. For maximum frequencies above 50 MHz and $\mathrm{V}_{\mathrm{DD}}>2.4 \mathrm{~V}$, the compensation cell should be used.

Figure 36. I/O AC characteristics definition

6.3.17 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R RU (see Table 56).

Unless otherwise specified, the parameters given in Table 59 are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in Table 15. Refer to Table 56: I/O static characteristics for the values of VIH and VIL for NRST pin.

Table 59. NRST pin characteristics

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
R_{PU}	Weak pull-up equivalent resistor ${ }^{(1)}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$	30	40	50	$\mathrm{k} \Omega$
$\mathrm{V}_{\mathrm{F}(\mathrm{NRST})}{ }^{(2)}$	NRST Input filtered pulse	-	-	-	100	ns
$\mathrm{~V}_{\mathrm{NF}(\mathrm{NRST})^{(2)}}$	NRST Input not filtered pulse	$\mathrm{V}_{\mathrm{DD}}>2.7 \mathrm{~V}$	300	-	-	ns
$\mathrm{T}_{\text {NRST_OUT }}$	Generated reset pulse duration	Internal Reset source	20	-	-	$\mu \mathrm{s}$

1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum ($\sim 10 \%$ order).
2. Guaranteed by design, not tested in production.

Figure 37. Recommended NRST pin protection

1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the $\mathrm{V}_{\text {IL(NRST) }}$ max level specified in Table 59. Otherwise the reset is not taken into account by the device.

6.3.18 TIM timer characteristics

The parameters given in Table 60 are guaranteed by design.
Refer to Section 6.3.16: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Table 60. TIMx characteristics ${ }^{(1)(2)}$

Symbol	Parameter	Conditions ${ }^{(3)}$	Min	Max	Unit
$\mathrm{t}_{\text {res(TIM) }}$	Timer resolution time	AHB/APBx prescaler=1 or 2 or $4, \mathrm{f}_{\text {TIMxCLK }}=$ 100 MHz	1	-	${ }_{\text {t }}^{\text {TIM }}$ CLK
			11.9	-	ns
		AHB/APBx prescaler>4, $\mathrm{f}_{\mathrm{TIMxCLK}}=100 \mathrm{MHz}$	1	-	$\mathrm{t}_{\text {TIM } \times \text { CLK }}$
			11.9	-	ns
$\mathrm{f}_{\mathrm{EXT}}$	Timer external clock frequency on CH 1 to CH 4	$\mathrm{f}_{\text {TIM } \times \text { CLK }}=100 \mathrm{MHz}$	0	$\mathrm{f}_{\text {TIM } \times \text { CLK }} / 2$	MHz
			0	50	MHz
$\mathrm{Res}_{\text {tim }}$	Timer resolution		-	16/32	bit
${ }^{\text {t COUNTER }}$	16-bit counter clock period when internal clock is selected	$\mathrm{f}_{\mathrm{TIMxCLK}}=100 \mathrm{MHz}$	0.0119	780	$\mu \mathrm{s}$
$\mathrm{t}_{\text {MAX_COUNT }}$	Maximum possible count with 32-bit counter	-	-	$\begin{gathered} 65536 \times \\ 65536 \end{gathered}$	$\mathrm{t}_{\text {TIM }}$ CLK
		$\mathrm{f}_{\text {TIMxCLK }}=100 \mathrm{MHz}$	-	51.1	S

1. TIMx is used as a general term to refer to the TIM1 to TIM11 timers.
2. Guaranteed by design, not tested in production.
3. The maximum timer frequency on APB1 is 50 MHz and on APB2 is up to 100 MHz , by setting the TIMPRE bit in the RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4 , then TIMxCLK $=H C K L$, otherwise TIMxCLK >= 4x PCLKx.

6.3.19 Communications interfaces

$I^{2} \mathrm{C}$ interface characteristics

The $I^{2} \mathrm{C}$ interface meets the requirements of the standard $\mathrm{I}^{2} \mathrm{C}$ communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not "true" opendrain. When configured as open-drain, the PMOS connected between the I/O pin and $V_{D D}$ is disabled, but is still present.
The $I^{2} \mathrm{C}$ characteristics are described in Table 61. Refer also to Section 6.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL).

The $\mathrm{I}^{2} \mathrm{C}$ bus interface supports standard mode (up to 100 kHz) and fast mode (up to 400 kHz). The $\mathrm{I}^{2} \mathrm{C}$ bus frequency can be increased up to 1 MHz . For more details about the complete solution, contact your local ST sales representative.

Table 61. ${ }^{2} \mathrm{C}$ characteristics

Symbol	Parameter	Standard mode$I^{2} C^{(1)(2)}$		Fast mode $\mathrm{I}^{2} \mathrm{C}^{(1)(2)}$		Unit
		Min	Max	Min	Max	
$\mathrm{t}_{\mathrm{w} \text { (SCLL) }}$	SCL clock low time	4.7	-	1.3	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {w(SCLH) }}$	SCL clock high time	4.0	-	0.6	-	
$\mathrm{t}_{\text {su(SDA }}$	SDA setup time	250	-	100	-	ns
$\mathrm{t}_{\mathrm{h} \text { (SDA) }}$	SDA data hold time	0	$3450{ }^{(3)}$	0	$900^{(4)}$	
$\begin{aligned} & \left.\mathrm{t}_{\mathrm{r}(\mathrm{SDA})}\right) \\ & \mathrm{t}_{\mathrm{r}(\mathrm{SCL})} \end{aligned}$	SDA and SCL rise time	-	1000	-	300	
$\begin{aligned} & \mathrm{t}_{\mathrm{f}(\mathrm{SDA})} \\ & \left.\mathrm{t}_{\mathrm{f}(\mathrm{SCL})}\right) \end{aligned}$	SDA and SCL fall time	-	300	-	300	
$\mathrm{t}_{\mathrm{h} \text { (STA) }}$	Start condition hold time	4.0	-	0.6	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {su(STA) }}$	Repeated Start condition setup time	4.7	-	0.6	-	
$\mathrm{t}_{\text {su(STO) }}$	Stop condition setup time	4.0	-	0.6	-	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{w} \text { (STO:STA) }}$	Stop to Start condition time (bus free)	4.7	-	1.3	-	$\mu \mathrm{s}$
$t_{\text {SP }}$	Pulse width of the spikes that are suppressed by the analog filter for standard fast mode	-	-	50	$120^{(5)}$	ns
C_{b}	Capacitive load for each bus line	-	400	-	400	pF

1. Guaranteed by design, not tested in production.
2. $f_{P C L K 1}$ must be at least 2 MHz to achieve standard mode $\mathrm{I}^{2} \mathrm{C}$ frequencies. It must be at least 4 MHz to achieve fast mode $\mathrm{I}^{2} \mathrm{C}$ frequencies, and a multiple of 10 MHz to reach the 400 kHz maximum $\mathrm{I}^{2} \mathrm{C}$ fast mode clock.
3. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL.
4. The maximum data hold time has only to be met if the interface does not stretch the low period of SCL signal.
5. The minimum width of the spikes filtered by the analog filter is above t_{SP} (max)

Figure 38. $I^{2} \mathrm{C}$ bus AC waveforms and measurement circuit

1. $R_{S}=$ series protection resistor.
2. $R_{P}=$ external pull-up resistor.
3. $V_{D D _I 2 C}$ is the I2C bus power supply.

Table 62. SCL frequency ($\mathrm{f}_{\mathrm{PCLK} 1}=50 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DD}-12 \mathrm{C}}=3.3 \mathrm{~V}$) ${ }^{(1)(2)}$

$\mathbf{f}_{\mathbf{S C L}}(\mathbf{k H z})$	I2C_CCR value
	$\mathbf{R}_{\mathbf{P}}=\mathbf{4 . 7} \mathbf{~ k} \Omega$
400	0×8019
300	0×8021
200	0×8032
100	0×0096
50	$0 \times 012 \mathrm{C}$
20	$0 \times 02 \mathrm{EE}$

1. $R_{P}=$ External pull-up resistance, $f_{S C L}=I^{2} C$ speed
2. For speeds around 200 kHz , the tolerance on the achieved speed is of $\pm 5 \%$. For other speed ranges, the tolerance on the achieved speed is $\pm 2 \%$. These variations depend on the accuracy of the external components used to design the application.

FMPI ${ }^{2}$ C characteristics

The following table presents $\mathrm{FMPI}^{2} \mathrm{C}$ characteristics.
Refer also to Section 6.3.16: I/O port characteristics for more details on the input/output function characteristics (SDA and SCL).

Table 63. FMPI 2 C characteristics ${ }^{(1)}$

	Parameter	Standard mode		Fast mode		Fast+ mode		Unit
		Min	Max	Min	Max	Min	Max	
ffMPI2CC	FMPI2CCLK frequency	2	-	8	-	18	-	
tw(SCLL)	SCL clock low time	4.7	-	1.3	-	0.5	-	
tw(SCLH)	SCL clock high time	4.0	-	0.6	-	0.26	-	
tsu(SDA)	SDA setup time	0.25	-	0.10	-	0.05	-	
tH(SDA)	SDA data hold time	0	-	0	-	0	-	
tv(SDA,ACK)	Data, ACK valid time	-	3.45	-	0.9	-	0.45	
$\begin{aligned} & \operatorname{tr}(\mathrm{SDA}) \\ & \operatorname{tr}(\mathrm{SCL}) \end{aligned}$	SDA and SCL rise time	-	1.0	-	0.30	-	0.12	
tf(SDA) tf(SCL)	SDA and SCL fall time	-	0.30	-	0.30	-	0.12	$\mu \mathrm{s}$
$\operatorname{tn}(S T A)$	Start condition hold time	4	-	0.6	-	0.26	-	
tsu(STA)	Repeated Start condition setup time	4.7	-	0.6	-	0.26	-	
tsu(STO)	Stop condition setup time	4	-	0.6	-	0.26	-	
tw(STO:STA)	Stop to Start condition time (bus free)	4.7	-	1.3	-	0.5	-	
tsp	Pulse width of the spikes that are suppressed by the analog filter for standard and fast mode	-	-	0.05	0.1	0.05	0.1	
Cb	Capacitive load for each bus Line	-	400	-	400	-	$550^{(2)}$	pF

1. Based on characterization results, not tested in production.
2. Can be limited. Maximum supported value can be retrieved by referring to the following formulas:
$\mathrm{t}_{\mathrm{r}(\text { SDA/SCL }}=0.8473 \times R_{\mathrm{p}} \times \mathrm{C}_{\text {load }}$
$\mathrm{R}_{\mathrm{p}(\text { min })}=(\mathrm{VDD}-\operatorname{Vol}($ max $)) / \mathrm{loL}($ max $)$

Figure 39. $\mathrm{FMPI}^{2} \mathrm{C}$ timing diagram and measurement circuit

SPI interface characteristics

Unless otherwise specified, the parameters given in Table 64 for the SPI interface are derived from tests performed under the ambient temperature, $\mathrm{f}_{\text {PCLKx }}$ frequency and V_{DD} supply voltage conditions summarized in Table 15, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load $\mathrm{C}=30 \mathrm{pF}$
- Measurement points are done at CMOS levels: $0.5 \mathrm{~V}_{\mathrm{DD}}$

Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI).

Table 64. SPI dynamic characteristics ${ }^{(1)}$

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$f_{\text {SCK }}$ $1 / \mathrm{t}_{\mathrm{C} \text { (SCK) }}$	SPI clock frequency	Master full duplex/receiver mode, $2.7 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V}$ SPI1/4/5	-	-	50	MHz
		Master transmitter mode $1.7 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V}$ SPI1/4/5	-	-	50	
		Master mode $\begin{aligned} & 1.7 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V} \\ & \text { SPI } 1 / 2 / 3 / 4 / 5 \end{aligned}$	-	-	25	
		Slave transmitter/full duplex mode $2.7 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V}$ SPI $1 / / 4 / 5$	-	-	50	
		Slave transmitter/full duplex mode $1.7 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V}$ SPI1/4/5	-	-	$35^{(2)}$	
		Slave receiver mode, $1.7 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V}$ SPI1/4/5	-	-	50	
		Slave mode, $1.7 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V}$ SPI2/3	-	-	25	
Duty(SCK)	Duty cycle of SPI clock frequency	Slave mode	30	50	70	\%
$\mathrm{t}_{\mathrm{w} \text { (SCKH) }}$ $\mathrm{t}_{\mathrm{w} \text { (SCKL) }}$	SCK high and low time	Master mode, SPI presc = 2	$\mathrm{T}_{\text {PCLK }} 1.5$	$\mathrm{T}_{\text {PCLK }}$	$\begin{aligned} & \mathrm{T}_{\mathrm{PCLK}} \\ & +1.5 \end{aligned}$	ns
$\mathrm{t}_{\text {su(NSS) }}$	NSS setup time	Slave mode, SPI presc = 2	$3 \mathrm{~T}_{\text {PCLK }}$	-	-	ns
$\mathrm{t}_{\mathrm{h} \text { (NSS) }}$	NSS hold time	Slave mode, SPI presc = 2	$2 \mathrm{~T}_{\text {PCLK }}$	-	-	ns
$\mathrm{t}_{\text {su(MI) }}$	Data input setup time	Master mode	4.5	-	-	ns
$\mathrm{t}_{\text {su(SI) }}$		Slave mode	1.5	-	-	ns
$\mathrm{t}_{\text {(}}^{\text {(MI) }}$	Data input hold time	Master mode	5	-	-	ns
$\mathrm{t}_{\mathrm{h}(\mathrm{SI})}$		Slave mode	0.5	-	-	ns

Table 64. SPI dynamic characteristics ${ }^{(1)}$ (continued)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{t}_{\mathrm{a}(\mathrm{SO})}$	Data output access time	Slave mode	7	-	21	ns
$\mathrm{t}_{\text {dis(SO) }}$	Data output disable time	Slave mode	5	-	12	ns
$\mathrm{t}_{\mathrm{v}(\mathrm{SO})}$	Data output valid time	Slave mode (after enable edge), $2.7 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V}$	-	7.5	9	ns
	Slave mode (after enable edge), $1.7 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V}$	-	7.5	14	ns	
	Data output hold time	Slave mode (after enable edge), $1.7 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V}$	5.5	-	-	ns
	Data output valid time	Master mode (after enable edge)	-	3	8	ns
	Data output hold time	Master mode (after enable edge)	2	-	-	ns

1. Guaranteed by characterization, not tested in production.
2. Maximum frequency in Slave transmitter mode is determined by the sum of $\mathrm{t}_{\mathrm{v}(\mathrm{SO})}$ and $\mathrm{t}_{\text {su(MI) }}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $\mathrm{t}_{\mathrm{su}(\mathrm{MI})}=0$ while Duty $(\mathrm{SCK})=50 \%$

Figure 40. SPI timing diagram - slave mode and CPHA $=0$

Figure 41. SPI timing diagram - slave mode and CPHA = $1^{(1)}$

Figure 42. SPI timing diagram - master mode ${ }^{(1)}$

1^{2} S interface characteristics

Unless otherwise specified, the parameters given in Table 65 for the I^{2} S interface are derived from tests performed under the ambient temperature, $f_{P C L K x}$ frequency and $V_{D D}$ supply voltage conditions summarized in Table 15, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load $\mathrm{C}=30 \mathrm{pF}$
- Measurement points are done at CMOS levels: $0.5 \mathrm{~V}_{\mathrm{DD}}$

Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (CK, SD, WS).

Table 65. $\mathrm{I}^{2} \mathrm{~S}$ dynamic characteristics ${ }^{(1)}$

Symbol	Parameter	Conditions	Min	Max	Unit
$\mathrm{f}_{\text {MCK }}$	I2S Main clock output	-	256x8K	$256 x F s^{(2)}$	MHz
f_{CK}	12S clock frequency	Master data: 32 bits	-	64xFs	MHz
		Slave data: 32 bits	-	64xFs	
D_{CK}	I2S clock frequency duty cycle	Slave receiver	30	70	\%
$\mathrm{t}_{\mathrm{v} \text { (WS) }}$	WS valid time	Master mode	-	5	ns
$t_{\text {(}}$ (WS)	WS hold time	Master mode	0	-	
$\mathrm{t}_{\text {su(}}$ (WS)	WS setup time	Slave mode	2	-	
$t_{\text {(}}$ (WS)	WS hold time	Slave mode	0.5	-	
$\mathrm{t}_{\text {su(SD_MR) }}$	Data input setup time	Master receiver	0	-	
$\mathrm{t}_{\text {su(SD_SR) }}$		Slave receiver	2	-	
$\mathrm{th}_{\text {(SD_MR) }}$	Data input hold time	Master receiver	0	-	
$\mathrm{t}_{\mathrm{h} \text { (SD_SR) }}$		Slave receiver	2.5	-	
$\mathrm{t}_{\mathrm{v} \text { (SD_ST) }}$	Data output valid time	Slave transmitter (after enable edge)	-	15	
$\mathrm{t}_{\mathrm{v} \text { (SD_MT) }}$		Master transmitter (after enable edge)	-	2.5	
$\mathrm{t}_{\mathrm{h} \text { (SD_ST) }}$	Data output hold time	Slave transmitter (after enable edge)	6	-	
$\mathrm{th}_{\text {(SD_MT) }}$		Master transmitter (after enable edge)	0	-	

1. Guaranteed by characterization, not tested in production.
2. The maximum value of $256 x F s$ is 50 MHz (APB1 maximum frequency).

Note: \quad Refer to the I2S section of RM0383 reference manual for more details on the sampling frequency (F_{S}).
$f_{M C K}, f_{C K}$, and $D_{C K}$ values reflect only the digital peripheral behavior. The values of these parameters might be slightly impacted by the source clock precision. $D_{C K}$ depends mainly on the value of ODD bit. The digital contribution leads to a minimum value of (I2SDIV/(2*I2SDIV+ODD) and a maximum value of (I2SDIV+ODD)/(2*I2SDIV+ODD). F_{S} maximum value is supported for each mode/condition.

Figure 43. $\mathrm{I}^{2} \mathrm{~S}$ slave timing diagram (Philips protocol) ${ }^{(1)}$

1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 44. I^{2} S master timing diagram (Philips protocol) ${ }^{(1)}$

1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

QSPI interface characteristics

Unless otherwise specified, the parameters given in the following tables for QSPI are derived from tests performed under the ambient temperature, $\mathrm{f}_{\mathrm{AHB}}$ frequency and V_{DD} supply voltage conditions summarized in Table 15, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C=20pF
- Measurement points are done at CMOS levels: 0.5VDD

Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate function characteristics.

Table 66. QSPI dynamic characteristics in SDR mode ${ }^{(1)}$

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{f}_{\mathrm{SCK}}$ $1 / \mathrm{t}_{\mathrm{C}(\mathrm{SCK})}$	QSPI clock frequency	Write mode $1.71 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$ $\mathrm{C}_{\text {load }}=15 \mathrm{pF}$	-	-	80	MHz
		$\begin{aligned} & \text { Read mode } \\ & 2.7 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V} \\ & \mathrm{C}_{\text {load }}=15 \mathrm{pF} \end{aligned}$	-	-	100	
		$1.71 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$	-	-	50	
$\mathrm{t}_{\mathrm{w}(\mathrm{CKH})}$	QSPI clock high and low	-	$\left(\mathrm{T}_{(\mathrm{CK})} / 2\right)-1$	-	$\mathrm{T}_{(\mathrm{CK})} / 2$	ns
$\mathrm{t}_{\mathrm{w} \text { (CKL) }}$			$\mathrm{T}_{\text {(CK) }} / 2$)	-	$\left(\mathrm{T}_{(\mathrm{CK})} / 2\right)+1$	
$\mathrm{t}_{\text {s(IN) }}$	Data input setup time	-	0.5	-	-	
$t_{\text {h(IN }}$	Data input hold time	-	3.5	-	-	
$\mathrm{t}_{\mathrm{v} \text { (OUT) }}$	Data output valid time	-	-	1	1.5	
$t_{\text {h(OUT }}$	Data output hold time	-	0.5	-	-	

1. Guaranteed by characterization results, not tested in production.

Table 67. QSPI dynamic characteristics in DDR mode ${ }^{(1)}$

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\begin{aligned} & \mathrm{f}_{\mathrm{SCK}} \\ & 1 / \mathrm{t}_{\mathrm{C}(\mathrm{SCK})} \end{aligned}$	QSPI clock frequency	Write mode $\begin{aligned} & 1.71 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V} \\ & \mathrm{C}_{\text {load }}=15 \mathrm{pF} \\ & \hline \end{aligned}$	-	-	80	MHz
		$\begin{aligned} & \text { Read mode } \\ & 2.7 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V} \\ & \mathrm{C}_{\text {load }}=15 \mathrm{pF} \\ & \hline \end{aligned}$	-	-	80	
		$1.71 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$	-	-	50	

Table 67. QSPI dynamic characteristics in DDR mode ${ }^{(1)}$ (continued)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{t}_{\mathrm{w}(\mathrm{CKH})}$	QSPI clock high and low	-	$\left(\mathrm{T}_{(\mathrm{CK})} / 2\right)-1$	-	$\mathrm{T}_{\text {(CK) }} / 2$	ns
$\mathrm{t}_{\mathrm{w} \text { (CKL) }}$			$\left.\mathrm{T}_{(\mathrm{CK})} / 2\right)$	-	($\left.{ }_{(C K)} / 2\right)+1$	
$\mathrm{t}_{\mathrm{s} \text { (IN) }}$	Data input setup time	-	0	-	-	
$\mathrm{t}_{\mathrm{h}(\mathrm{IN})}$	Data input hold time	-	4	-	-	
$\mathrm{t}_{\mathrm{v} \text { (OUT) }}$	Data output valid time	$2.7 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V}$	-	8	10.5	
		$1.71 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V}$	-	8	13	
$\mathrm{t}_{\mathrm{h} \text { (OUT) }}$	Data output hold time	-	7.5	-	-	

1. Guaranteed by characterization results, not tested in production.

USB OTG full speed (FS) characteristics

This interface is present in USB OTG FS controller.
Table 68. USB OTG FS startup time

Symbol	Parameter	Max	Unit
t $_{\text {STARTUP }}{ }^{(1)}$	USB OTG FS transceiver startup time	1	$\mu \mathrm{~s}$

1. Guaranteed by design, not tested in production.

Table 69. USB OTG FS DC electrical characteristics

Symbol		Parameter	Conditions	Min. ${ }^{(1)}$	Typ.	Max. ${ }^{(1)}$	Unit
Input levels	$V_{\text {DD }}$	USB OTG FS operating voltage		$3.0{ }^{(2)}$	-	3.6	V
	$V_{D I}{ }^{(3)}$	Differential input sensitivity	I(USB_FS_DP/DM)	0.2	-	-	V
	$V_{C M}{ }^{(3)}$	Differential common mode range	Includes $\mathrm{V}_{\text {DI }}$ range	0.8	-	2.5	
	$V_{S E}{ }^{(3)}$	Single ended receiver threshold		1.3	-	2.0	
Output levels	$\mathrm{V}_{\text {OL }}$	Static output level low	R_{L} of $1.5 \mathrm{k} \Omega$ to $3.6 \mathrm{~V}^{(4)}$	-	-	0.3	V
	V_{OH}	Static output level high	R_{L} of $15 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{SS}}{ }^{(4)}$	2.8	-	3.6	
R_{PD}		PA11, PA12 (USB_FS_DM/DP)	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$	17	21	24	$\mathrm{k} \Omega$
		PA9 (OTG_FS_VBUS)		0.65	1.1	2.0	
RPU		PA11, PA12 (USB_FS_DM/DP)	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$	1.5	1.8	2.1	
		PA9 (OTG_FS_VBUS)	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$	0.25	0.37	0.55	

1. All the voltages are measured from the local ground potential.
2. The USB OTG FS functionality is ensured down to 2.7 V but not the full USB full speed electrical characteristics which are degraded in the 2.7-to- $3.0 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}$ voltage range.
3. Guaranteed by design, not tested in production.
4. R_{L} is the load connected on the USB OTG FS drivers.

Note:
When VBUS sensing feature is enabled, PA9 should be left at their default state (floating input), not as alternate function. A typical 200μ A current consumption of the embedded sensing block (current to voltage conversion to determine the different sessions) can be observed on PA9 when the feature is enabled.

Figure 45. USB OTG FS timings: definition of data signal rise and fall time

Table 70. USB OTG FS electrical characteristics ${ }^{(1)}$

Driver characteristics					
Symbol	Parameter	Conditions	Min	Max	Unit
t_{r}	Rise time $^{(2)}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4	20	ns
t_{f}	Fall time $^{(2)}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4	20	ns
$\mathrm{t}_{\mathrm{rfm}}$	Rise/ fall time matching	$\mathrm{t}_{\mathrm{r}} / \mathrm{t}_{\mathrm{f}}$	90	110	$\%$
$\mathrm{~V}_{\mathrm{CRS}}$	Output signal crossover voltage		1.3	2.0	V

1. Guaranteed by design, not tested in production.
2. Measured from 10% to 90% of the data signal. For more detailed informations, refer to USB Specification Chapter 7 (version 2.0).

CAN (controller area network) interface

Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (CANx_TX and CANx_RX).

6.3.20 12-bit ADC characteristics

Unless otherwise specified, the parameters given in Table 71 are derived from tests performed under the ambient temperature, $\mathrm{f}_{\text {PCLK2 }}$ frequency and $\mathrm{V}_{\text {DDA }}$ supply voltage conditions summarized in Table 15.

Table 71. ADC characteristics

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\text {DDA }}$	Power supply	$\mathrm{V}_{\mathrm{DDA}}-\mathrm{V}_{\text {REF+ }}<1.2 \mathrm{~V}$	$1.7{ }^{(1)}$	-	3.6	V
$\mathrm{V}_{\text {REF+ }}$	Positive reference voltage		$1.7{ }^{(1)}$	-	$\mathrm{V}_{\text {DDA }}$	V
$\mathrm{f}_{\text {ADC }}$	ADC clock frequency	$V_{\text {DDA }}=1.7^{(1)}$ to 2.4 V	0.6	15	18	MHz
		$\mathrm{V}_{\text {DDA }}=2.4$ to 3.6 V	0.6	30	36	MHz
$\mathrm{f}_{\text {TRIG }}{ }^{(2)}$	External trigger frequency	$\begin{aligned} & \hline \mathrm{f}_{\mathrm{ADC}}=30 \mathrm{MHz}, \\ & \text { 12-bit resolution } \end{aligned}$	-	-	1764	kHz
		-	-	-	17	$1 / \mathrm{f}_{\text {ADC }}$
$\mathrm{V}_{\text {AIN }}$	Conversion voltage range ${ }^{(3)}$	-	$\begin{aligned} & 0\left(V_{S S A} \text { or } V_{R E F}-\right. \\ & \text { tied to ground }) \end{aligned}$	-	$\mathrm{V}_{\text {REF+ }}$	V
$\mathrm{R}_{\text {AIN }}{ }^{(2)}$	External input impedance	See Equation 1 for details	-	-	50	k Ω
$\mathrm{R}_{\text {ADC }}{ }^{(2)(4)}$	Sampling switch resistance	-	-	-	6	k Ω
$\mathrm{C}_{\text {ADC }}{ }^{(2)}$	Internal sample and hold capacitor	-	-	4	7	pF
$\mathrm{t}_{\text {at }}{ }^{(2)}$	Injection trigger conversion latency	$\mathrm{f}_{\text {ADC }}=30 \mathrm{MHz}$	-	-	0.100	$\mu \mathrm{s}$
		-	-	-	$3^{(5)}$	$1 / f_{\text {ADC }}$
$\mathrm{t}_{\text {latr }}{ }^{(2)}$	Regular trigger conversion latency	$\mathrm{f}_{\text {ADC }}=30 \mathrm{MHz}$	-	-	0.067	$\mu \mathrm{s}$
		-	-	-	$2^{(5)}$	$1 / f_{\text {ADC }}$
$\mathrm{t}_{s}{ }^{(2)}$	Sampling time	$\mathrm{f}_{\text {ADC }}=30 \mathrm{MHz}$	0.100	-	16	$\mu \mathrm{s}$
		-	3	-	480	$1 / \mathrm{f}_{\text {ADC }}$
$\mathrm{t}_{\text {STAB }}{ }^{(2)}$	Power-up time	-	-	2	3	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{CONV}}{ }^{(2)}$	Total conversion time (including sampling time)	$\begin{aligned} & \mathrm{f}_{\mathrm{ADC}}=30 \mathrm{MHz} \\ & \text { 12-bit resolution } \end{aligned}$	0.50	-	16.40	$\mu \mathrm{s}$
		$\begin{aligned} & \mathrm{f}_{\mathrm{ADC}}=30 \mathrm{MHz} \\ & \text { 10-bit resolution } \end{aligned}$	0.43	-	16.34	$\mu \mathrm{s}$
		$\begin{aligned} & \mathrm{f}_{\mathrm{ADC}}=30 \mathrm{MHz} \\ & \text { 8-bit resolution } \end{aligned}$	0.37	-	16.27	$\mu \mathrm{s}$
		$\begin{aligned} & \mathrm{f}_{\mathrm{ADC}}=30 \mathrm{MHz} \\ & 6 \text {-bit resolution } \end{aligned}$	0.30	-	16.20	$\mu \mathrm{s}$
		9 to 492 (t_{S} for sampling +n -bit resolution for successive approximation)				$1 / \mathrm{f}_{\mathrm{ADC}}$

Table 71. ADC characteristics (continued)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{f}_{S}{ }^{(2)}$	Sampling rate ($\mathrm{f}_{\mathrm{ADC}}=30 \mathrm{MHz}$, and $\mathrm{t}_{\mathrm{s}}=3$ ADC cycles)	12-bit resolution Single ADC	-	-	2	Msps
		12-bit resolution Interleave Dual ADC mode	-	-	3.75	Msps
		12-bit resolution Interleave Triple ADC mode	-	-	6	Msps
$\mathrm{IVREFF}^{(2)}$	ADC $V_{\text {REF }}$ DC current consumption in conversion mode	-	-	300	500	$\mu \mathrm{A}$
$\mathrm{IVDDA}^{(2)}$	ADC $V_{\text {DDA }}$ DC current consumption in conversion mode	-	-	1.6	1.8	mA

1. $V_{\text {DDA }}$ minimum value of 1.7 V is possible with the use of an external power supply supervisor (refer to Section 3.18.2:
Internal reset OFF). Internal reset OFF).
2. Guaranteed by characterization, not tested in production.
3. $\mathrm{V}_{\mathrm{REF}+}$ is internally connected to $\mathrm{V}_{\mathrm{DDA}}$ and $\mathrm{V}_{\text {REF- }}$ is internally connected to $\mathrm{V}_{\mathrm{SSA}}$.
4. $R_{A D C}$ maximum value is given for $V_{D D}=1.7 \mathrm{~V}$, and minimum value for $V_{D D}=3.3 \mathrm{~V}$.
5. For external triggers, a delay of $1 / \mathrm{f}_{\mathrm{PCLK} 2}$ must be added to the latency specified in Table 71.

Equation 1: $\mathbf{R}_{\text {AIN }} \max$ formula

$$
R_{A I N}=\frac{(k-0.5)}{f_{A D C} \times C_{A D C} \times \ln \left(2^{N+2}\right)}-R_{A D C}
$$

The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below $1 / 4$ of LSB. $\mathrm{N}=12$ (from 12-bit resolution) and k is the number of sampling periods defined in the ADC_SMPR1 register.

Table 72. $A D C$ accuracy at $f_{A D C}=18 \mathrm{MHz}^{(1)}$

Symbol	Parameter	Test conditions	Typ	Max ${ }^{(2)}$	Unit
ET	Total unadjusted error	$\begin{gathered} \mathrm{f}_{\mathrm{ADC}}=18 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{DDA}}=1.7 \text { to } 3.6 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{REF}}=1.7 \text { to } 3.6 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DDA}}-\mathrm{V}_{\mathrm{REF}}<1.2 \mathrm{~V} \end{gathered}$	± 3	± 4	LSB
EO	Offset error		± 2	± 3	
EG	Gain error		± 1	± 3	
ED	Differential linearity error		± 1	± 2	
EL	Integral linearity error		± 2	± 3	

1. Better performance could be achieved in restricted V_{DD}, frequency and temperature ranges.
2. Guaranteed by characterization, not tested in production.

Table 73. ADC accuracy at $\mathrm{f}_{\mathrm{ADC}}=\mathbf{3 0} \mathbf{M H z}^{(1)}$

Symbol	Parameter	Test conditions	Typ	Max ${ }^{(2)}$	Unit
ET	Total unadjusted error	$\begin{aligned} & \mathrm{f}_{\mathrm{ADC}}=30 \mathrm{MHz}, \\ & \mathrm{R}_{\mathrm{AIN}}<10 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{DDA}}=2.4 \text { to } 3.6 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{REF}}=1.7 \text { to } 3.6 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DDA}}-\mathrm{V}_{\mathrm{REF}}<1.2 \mathrm{~V} \end{aligned}$	± 2	± 5	LSB
EO	Offset error		± 1.5	± 2.5	
EG	Gain error		± 1.5	± 4	
ED	Differential linearity error		± 1	± 2	
EL	Integral linearity error		± 1.5	± 3	

1. Better performance could be achieved in restricted V_{DD}, frequency and temperature ranges.
2. Guaranteed by characterization, not tested in production.

Table 74. ADC accuracy at $\mathrm{f}_{\mathrm{ADC}}=\mathbf{3 6} \mathrm{MHz}^{(1)}$

Symbol	Parameter	Test conditions	Typ	Max ${ }^{(2)}$	Unit
ET	Total unadjusted error	$\begin{gathered} \mathrm{f}_{\mathrm{ADC}}=36 \mathrm{MHz}, \\ \mathrm{~V}_{\mathrm{DDA}}=2.4 \text { to } 3.6 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{REF}}=1.7 \text { to } 3.6 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DDA}}-\mathrm{V}_{\mathrm{REF}}<1.2 \mathrm{~V} \end{gathered}$	± 4	± 7	LSB
EO	Offset error		± 2	± 3	
EG	Gain error		± 3	± 6	
ED	Differential linearity error		± 2	± 3	
EL	Integral linearity error		± 3	± 6	

1. Better performance could be achieved in restricted V_{DD}, frequency and temperature ranges.
2. Guaranteed by characterization, not tested in production.

Table 75. ADC dynamic accuracy at $\mathrm{f}_{\text {ADC }}=18 \mathrm{MHz}$ - limited test conditions ${ }^{(1)}$

Symbol	Parameter	Test conditions	Min	Typ	Max	Unit
ENOB	Effective number of bits	$\begin{gathered} \mathrm{f}_{\mathrm{ADC}}=18 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{DDA}}=\mathrm{V}_{\mathrm{REF}}=1.7 \mathrm{~V} \\ \text { Input Frequency }=20 \mathrm{kHz} \\ \text { Temperature }=25^{\circ} \mathrm{C} \end{gathered}$	10.3	10.4	-	bits
SINAD	Signal-to-noise and distortion ratio		64	64.2	-	dB
SNR	Signal-to-noise ratio		64	65	-	
THD	Total harmonic distortion		-	-72	-67	

1. Guaranteed by characterization, not tested in production.

Table 76. ADC dynamic accuracy at $\mathrm{f}_{\text {ADC }}=36 \mathrm{MHz}$ - limited test conditions ${ }^{(1)}$

Symbol	Parameter	Test conditions	Min	Typ	Max	Unit
ENOB	Effective number of bits	$\begin{gathered} \mathrm{f}_{\mathrm{ADC}}=36 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{DDA}}=\mathrm{V}_{\mathrm{REF+}}=3.3 \mathrm{~V} \\ \text { Input Frequency }=20 \mathrm{kHz} \\ \text { Temperature }=25^{\circ} \mathrm{C} \end{gathered}$	10.6	10.8	-	bits
SINAD	Signal-to noise and distortion ratio		66	67	-	dB
SNR	Signal-to noise ratio		64	68	-	
THD	Total harmonic distortion		-	-72	-70	

1. Guaranteed by characterization, not tested in production.

Note: \quad ADC accuracy vs. negative injection current: injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.
Any positive injection current within the limits specified for $I_{I N J(P I N)}$ and $\Sigma l_{I N J(P I N)}$ in Section 6.3.16 does not affect the ADC accuracy.

Figure 46. ADC accuracy characteristics

1. See also Table 73.
2. Example of an actual transfer curve.
3. Ideal transfer curve.
4. End point correlation line.
5. $\mathrm{E}_{\mathrm{T}}=$ Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO = Offset Error: deviation between the first actual transition and the first ideal one.
EG = Gain Error: deviation between the last ideal transition and the last actual one.
ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one. $E L=$ Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line.

Figure 47. Typical connection diagram using the ADC

1. Refer to Table 71 for the values of $R_{\text {AIN }}, R_{A D C}$ and $C_{A D C}$.
2. $\mathrm{C}_{\text {parasitic }}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 5 pF). A high $\mathrm{C}_{\text {parasitic }}$ value downgrades conversion accuracy. To remedy this, $\mathrm{f}_{\mathrm{ADC}}$ should be reduced.

General PCB design guidelines

Power supply decoupling should be performed as shown in Figure 48 or Figure 49, depending on whether $\mathrm{V}_{\text {REF }}$ is connected to $\mathrm{V}_{\text {DDA }}$ or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip.

Figure 48. Power supply and reference decoupling ($\mathrm{V}_{\mathrm{REF}+}$ not connected to $\mathrm{V}_{\text {DDA }}$)

1. $V_{\text {REF+ }}$ and $V_{\text {REF- }}$ inputs are both available on UFBGA100. $V_{\text {REF+ }}$ is also available on LQFP100. When $V_{\text {REF }}$ and $V_{\text {REF- }}$ are not available, they are internally connected to $V_{\text {DDA }}$ and $V_{\text {SSA }}$.

Figure 49. Power supply and reference decoupling ($\mathrm{V}_{\text {REF+ }}$ connected to $\mathrm{V}_{\text {DDA }}$)

1. $V_{\text {REF+ }}$ and $V_{\text {REF- }}$ inputs are both available on UFBGA100. $V_{R E F+}$ is also available on LQFP100. When $\mathrm{V}_{\text {REF+ }}$ and $\mathrm{V}_{\text {REF- }}$ are not available, they are internally connected to $\mathrm{V}_{\mathrm{DDA}}$ and $\mathrm{V}_{\text {SSA }}$.

6.3.21 Temperature sensor characteristics

Table 77. Temperature sensor characteristics

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{T}_{\mathrm{L}}{ }^{(1)}$	$\mathrm{V}_{\text {SENSE }}$ linearity with temperature	-	± 1	± 2	${ }^{\circ} \mathrm{C}$
Avg_Slope $^{(1)}$	Average slope	-	2.5	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{25}{ }^{(1)}$	Voltage at $25^{\circ} \mathrm{C}$	-	0.76	-	V
$\mathrm{t}_{\text {START }}{ }^{(2)}$	Startup time	-	6	10	$\mu \mathrm{~s}$
$\mathrm{~T}_{\text {S_temp }}{ }^{(2)}$	ADC sampling time when reading the temperature $\left(1^{\circ} \mathrm{C}\right.$ accuracy $)$	10	-	-	$\mu \mathrm{s}$

1. Guaranteed by characterization, not tested in production.
2. Guaranteed by design, not tested in production.

Table 78. Temperature sensor calibration values

Symbol	Parameter	Memory address
TS_CAL1	TS ADC raw data acquired at temperature of $30^{\circ} \mathrm{C}, \mathrm{V}_{\text {DDA }}=3.3 \mathrm{~V}$	$0 \times 1 F F F 7 A 2 \mathrm{C}-0 \times 1 F F F$ 7A2D
TS_CAL2	TS ADC raw data acquired at temperature of $110^{\circ} \mathrm{C}, \mathrm{V}_{\text {DDA }}=3.3 \mathrm{~V}$	0×1 FFF 7A2E - 0x1FFF 7A2F

6.3.22 $\quad V_{\text {BAT }}$ monitoring characteristics

Table 79. $\mathrm{V}_{\text {BAT }}$ monitoring characteristics

Symbol	Parameter	Min	Typ	Max	Unit
R	Resistor bridge for $\mathrm{V}_{\mathrm{BAT}}$	-	50	-	$\mathrm{K} \Omega$
Q	Ratio on $\mathrm{V}_{\mathrm{BAT}}$ measurement	-	4	-	
$\operatorname{Er}^{(1)}$	Error on Q	-1	-	+1	$\%$
$\mathrm{~T}_{\text {S_vbat }^{(2)(2)}}$ADC sampling time when reading the $\mathrm{V}_{\text {BAT }}$ 1 mV accuracy	5	-	-	$\mu \mathrm{s}$	

1. Guaranteed by design, not tested in production.
2. Shortest sampling time can be determined in the application by multiple iterations.

6.3.23 Embedded reference voltage

The parameters given in Table 80 are derived from tests performed under ambient temperature and $V_{D D}$ supply voltage conditions summarized in Table 15.

Table 80. Embedded internal reference voltage

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\text {REFINT }}$	Internal reference voltage	$-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+105^{\circ} \mathrm{C}$	1.18	1.21	1.24	V
$\mathrm{~T}_{\text {S_vrefint }}{ }^{(1)}$	ADC sampling time when reading the internal reference voltage	-	10	-	-	$\mu \mathrm{s}$
$\mathrm{V}_{\text {RERINT_s }}{ }^{(2)}$	Internal reference voltage spread over the temperature range	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \mathrm{mV}$	-	3	5	mV
$\mathrm{T}_{\text {Coeff }}{ }^{(2)}$	Temperature coefficient	-	-	30	50	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\text {START }}{ }^{(2)}$	Startup time	-	-	6	10	$\mu \mathrm{~s}$

1. Shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design, not tested in production

Table 81. Internal reference voltage calibration values

Symbol	Parameter	Memory address
$\mathrm{V}_{\text {REFIN_CAL }}$	Raw data acquired at temperature of $30^{\circ} \mathrm{C} \mathrm{V}_{\mathrm{DDA}}=3.3 \mathrm{~V}$	0×1 FFF 7A2A - 0x1FFF 7A2B

6.3.24 DFSDM characteristics

Unless otherwise specified, the parameters given in Table 82 for DFSDM are derived from tests performed under the ambient temperature, $\mathrm{f}_{\mathrm{APB} 2}$ frequency and V_{DD} supply voltage conditions summarized in Table 15: General operating conditions.

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load $\mathrm{C}=30 \mathrm{pF}$
- Measurement points are done at CMOS levels: $0.5 \times$ VDD

Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (DFSDM_CKINy, DFSDM_DATINy, DFSDM_CKOUT for DFSDM).

Table 82. DFSDM characteristics ${ }^{(1)}$

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{f}_{\text {DFSDMCLK }}$	DFSDM clock	-	-	-	$\mathrm{f}_{\text {SYSCLK }}$	MHz
$\begin{gathered} \mathrm{f}_{\mathrm{CKIN}} \\ \left(1 / \mathrm{T}_{\mathrm{CKIN}}\right) \end{gathered}$	Input clock frequency	SPI mode (SITP[1:0] = 01)	-	-	$\begin{gathered} 20 \\ \left(\mathrm{f}_{\mathrm{DFSDMCLK}} / 4\right) \end{gathered}$	
$\mathrm{f}_{\text {CKOUT }}$	Output clock frequency	-	-	-	20	MHz
DuCyckout	Output clock frequency duty cycle	-	30	50	75	\%
t_{wh} (CKIN) t_{wl} (CKIN)	Input clock high and low time	SPI mode (SITP[1:0] = 01), External clock mode (SPICKSEL[1:0] = 0)	$\mathrm{T}_{\text {CKIN }} / 2-0.5$	$\mathrm{T}_{\text {CKIN }} / 2$	-	ns
$\mathrm{t}_{\text {su }}$	Data input setup time	SPI mode (SITP[1:0]=01), External clock mode (SPICKSEL[1:0] = 0)	1	-	-	
$t_{\text {h }}$	Data input hold time	SPI mode (SITP[1:0]=01), External clock mode (SPICKSEL[1:0] = 0)	1	-	-	
$\mathrm{T}_{\text {Manchester }}$	Manchester data period (recovered clock period)	$\begin{aligned} & \text { Manchester mode (SITP[1:0] } \\ & =10 \text { or } 11 \text {), } \\ & \text { Internal clock mode } \\ & \text { (SPICKSEL[1:0] }=0 \text {) } \end{aligned}$	(CKOUT DIV+1) x TDFSDMCLK	-	($2 \times$ CKOUTDIV) $\times \mathrm{T}_{\text {DFSDMCLK }}$	

1. Data based on characterization results, not tested in production.

Figure 16: DFSDM timing diagram

6.3.25 FSMC characteristics

Unless otherwise specified, the parameters given in Table 83 to Table 90 for the FSMC interface are derived from tests performed under the ambient temperature, $\mathrm{f}_{\mathrm{HCLK}}$ frequency and V_{DD} supply voltage conditions summarized in Table 14 , with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitance load C=30 pF
- Measurement points are done at CMOS levels: 0.5. V_{DD}

Refer to Section 6.3.16: I/O port characteristics for more details on the input/output characteristics.

Asynchronous waveforms and timings

Figure 50 through Figure 53 represent asynchronous waveforms and Table 83 through Table 90 provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration:

- AddressSetupTime $=0 \times 1$
- AddressHoldTime $=0 \times 1$
- DataSetupTime $=0 \times 1$ (except for asynchronous NWAIT mode, DataSetupTime $=0 \times 5$)
- BusTurnAroundDuration $=0 \times 0$

In all timing tables, the $\mathrm{T}_{\text {HCLK }}$ is the HCLK clock period.
Figure 50. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms

1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.

Table 83. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings ${ }^{(1)(2)}$

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\mathrm{w}(\mathrm{NE})}$	FSMC_NE low time	$2 \mathrm{~T}_{\text {HCLK }}-1$	$2 \mathrm{~T}_{\text {HCLK }}+0.5$	ns
$\mathrm{t}_{\text {(}}$ (NOE_NE)	FSMC_NEx low to FSMC_NOE low	0	1	
$\mathrm{t}_{\mathrm{w} \text { (NOE) }}$	FSMC_NOE low time	$2 \mathrm{~T}_{\text {HCLK }}$ - 1.5	$2 \mathrm{~T}_{\text {HCLK }}$	
t_{h} (NE_NOE)	FSMC_NOE high to FSMC_NE high hold time	0	-	
$\mathrm{t}_{\mathrm{v}(\mathrm{A}-\mathrm{NE})}$	FSMC_NEx low to FSMC_A valid	-	1.5	
$t_{\text {h(A_NOE }}$	Address hold time after FSMC_NOE high	0	-	
$\mathrm{t}_{\mathrm{v} \text { (BL_NE) }}$	FSMC_NEx low to FSMC_BL valid	-	0.5	
$\mathrm{t}_{\mathrm{h} \text { (BL_NOE) }}$	FSMC_BL hold time after FSMC_NOE high	0	-	
$\mathrm{t}_{\text {su(Data_NE) }}$	Data to FSMC_NEx high setup time	$\mathrm{T}_{\text {HCLK }}$ - 1	-	
$\mathrm{t}_{\text {su(}{ }^{\text {(Data_NOE) }} \text {) }}$	Data to FSMC_NOEx high setup time	THCLK - 1	-	
$\mathrm{t}_{\mathrm{h} \text { (Data_NOE) }}$	Data hold time after FSMC_NOE high	0	-	
$\mathrm{t}_{\mathrm{h} \text { (Data_NE) }}$	Data hold time after FSMC_NEx high	0	-	
$\mathrm{t}_{\mathrm{v} \text { (NADV_NE) }}$	FSMC_NEx low to FSMC_NADV low	-	0	
$\mathrm{t}_{\mathrm{w} \text { (NADV) }}$	FSMC_NADV low time	-	$\mathrm{T}_{\text {HCLK }}+0.5$	

1. $C_{L}=30 \mathrm{pF}$.
2. Based on characterization, not tested in production.

Table 84. Asynchronous non-multiplexed SRAM/PSRAM/NOR read NWAIT timings ${ }^{(1)(2)}$

Symbol	Parameter	Min	Max	Unit
$t_{w(N E)}$	FSMC_NE low time	$7 \mathrm{~T}_{\text {HCLK }}-1$	$7 \mathrm{~T}_{\text {HCLK }}+0.5$	ns
$\mathrm{t}_{\mathrm{w} \text { (NOE) }}$	FSMC_NWE low time	$5 \mathrm{~T}_{\text {HCLK }}-1.5$	$5 \mathrm{~T}_{\text {HCLK }}$	
$\mathrm{t}_{\text {w(NWAIT) }}$	FSMC_NWAIT low time	THCLK -0.5	-	
$\mathrm{t}_{\text {su(}}$ (NWAIT_NE)	FSMC_NWAIT valid before FSMC_NEx high	$5 \mathrm{~T}_{\text {HCLK }}-1$	-	
$t_{\text {h(NE_NWAIT }}$	FSMC_NEx hold time after FSMC_NWAIT invalid	$4 \mathrm{~T}_{\text {HCLK }}+1$	-	

1. $C_{L}=30 \mathrm{pF}$.
2. Based on characterization, not tested in production.

Figure 51. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms

1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.

Table 85. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings ${ }^{(1)(2)}$

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\mathrm{w}(\mathrm{NE})}$	FSMC_NE low time	$3 \mathrm{~T}_{\text {HCLK }}-1$	$3 \mathrm{~T}_{\text {HCLK }}+0.5$	ns
$\mathrm{t}_{\mathrm{v} \text { (NWE_NE) }}$	FSMC_NEx low to FSMC_NWE low	$\mathrm{T}_{\text {HCLK }}+0.5$	$\mathrm{T}_{\text {HCLK }}+0.5$	
$\mathrm{t}_{\mathrm{w} \text { (NWE) }}$	FSMC_NWE low time	$\mathrm{T}_{\text {HCLK }}$ - 1.5	$\mathrm{T}_{\text {HCLK }}{ }^{+1}$	
$t_{\text {h(NE_NWE) }}$	FSMC_NWE high to FSMC_NE high hold time	T ${ }_{\text {HCLK }}$ - 1	-	
$\mathrm{t}_{\mathrm{v} \text { (A_NE) }}$	FSMC_NEx low to FSMC_A valid	-	0.5	
$t_{\text {h(A_NWE) }}$	Address hold time after FSMC_NWE high	THCLK ${ }^{-0.5}$	-	
$\mathrm{t}_{\mathrm{v} \text { (BL_NE) }}$	FSMC_NEx low to FSMC_BL valid	-	1	
$\mathrm{t}_{\text {(} \text { (BL_NWE) }}$	FSMC_BL hold time after FSMC_NWE high	THCLK ${ }^{-1}$	-	
$\mathrm{t}_{\mathrm{v} \text { (Data_NE) }}$	Data to FSMC_NEx low to Data valid	-	$\mathrm{T}_{\text {HCLK }}+2$	
$\mathrm{t}_{\text {(Data_NWE) }}$	Data hold time after FSMC_NWE high	$\mathrm{T}_{\text {HCLK }}+0.5$	-	
$\mathrm{t}_{\mathrm{v} \text { (NADV_NE) }}$	FSMC_NEx low to FSMC_NADV low	-	1	
$\mathrm{t}_{\mathrm{w} \text { (NADV) }}$	FSMC_NADV low time	-	$\mathrm{T}_{\text {HCLK }}{ }^{+0.5}$	

1. $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.
2. Based on characterization, not tested in production.

Table 86. Asynchronous non-multiplexed SRAM/PSRAM/NOR write NWAIT timings ${ }^{(1)(2)}$

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\mathrm{w}(\mathrm{NE})}$	FSMC_NE low time	$8 \mathrm{~T}_{\text {HCLK }}-1$	$8 \mathrm{~T}_{\text {HCLK }}+0.5$	
$\mathrm{t}_{\text {w(NWE) }}$	FSMC_NWE low time	$6 \mathrm{~T}_{\text {HCLK }}+0.5$	$6 \mathrm{~T}_{\text {HCLK }}+1$	$\mathrm{n} s$
$\mathrm{t}_{\text {su(NWAIT_NE) }}$	FSMC_NWAIT valid before FSMC_NEx high	$6 \mathrm{~T}_{\text {HCLK }}+0.5$	-	
$\mathrm{t}_{\mathrm{h} \text { (NE_NWAIT) }}$	FSMC_NEx hold time after FSMC_NWAIT invalid	$4 \mathrm{~T}_{\text {HCLK }}+1$	-	

1. $C_{L}=30 \mathrm{pF}$.
2. Based on characterization, not tested in production.

Figure 52. Asynchronous multiplexed PSRAM/NOR read waveforms

Table 87. Asynchronous multiplexed PSRAM/NOR read timings ${ }^{(1)(2)}$

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\mathrm{w} \text { (NE) }}$	FSMC_NE low time	$3 \mathrm{H}_{\text {HCLK }}-1$	$3 \mathrm{~T}_{\text {HCLK }}+0.5$	ns
$\mathrm{t}_{\text {(}}$ (NOE_NE)	FSMC_NEx low to FSMC_NOE low	$2 \mathrm{~T}_{\text {HCLK }}$	$2 \mathrm{~T}_{\text {HCLK }}+1$	
$\mathrm{t}_{\text {tw(}}$ (NOE)	FSMC_NOE low time	THCLK ${ }^{\text {- } 1.5}$	$\mathrm{T}_{\text {HCLK }}$	
$t_{\text {h }}$ (NE_NOE)	FSMC_NOE high to FSMC_NE high hold time	0	-	
$\mathrm{t}_{\mathrm{v} \text { (A_NE) }}$	FSMC_NEx low to FSMC_A valid	-	0.5	
$\mathrm{t}_{\mathrm{v} \text { (NADV_NE) }}$	FSMC_NEx low to FSMC_NADV low	0	1	
$\mathrm{t}_{\mathrm{w} \text { (NADV) }}$	FSMC_NADV low time	THCLK -0.5	$\mathrm{T}_{\text {HCLK }}+0.5$	
$t_{\text {h(AD_NADV) }}$	FSMC_AD(address) valid hold time after FSMC_NADV high)	0	-	
$\mathrm{t}_{\mathrm{h} \text { (A_NOE) }}$	Address hold time after FSMC_NOE high	THCLK -0.5	-	
t_{h} (BL_NOE)	FSMC_BL time after FSMC_NOE high	0	-	
$\mathrm{t}_{\mathrm{v} \text { (BL_NE) }}$	FSMC_NEx low to FSMC_BL valid	-	0.5	
$\mathrm{t}_{\text {su(Data_NE) }}$	Data to FSMC_NEx high setup time	T ${ }_{\text {HCLK }}$ - 2	-	
$\mathrm{t}_{\text {su(Data_NOE) }}$	Data to FSMC_NOE high setup time	T HCLK - 2	-	
$\mathrm{t}_{\mathrm{h} \text { (Data_NE) }}$	Data hold time after FSMC_NEx high	0	-	
$\mathrm{t}_{\text {(Data_NOE) }}$	Data hold time after FSMC_NOE high	0	-	

1. $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.
2. Based on characterization, not tested in production.

Table 88. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings ${ }^{(1)(2)}$

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\mathrm{w} \text { (NE) }}$	FSMC_NE low time	$8 \mathrm{~T}_{\text {HCLK }}-1$	$8 \mathrm{~T}_{\text {HCLK }}+0.5$	
$\mathrm{t}_{\mathrm{w} \text { (NOE) }}$	FSMC_NWE low time	$5 \mathrm{~T}_{\text {HCLK }}$	$5 \mathrm{~T}_{\text {HCLK }}+0.5$	n ns
$\mathrm{t}_{\text {su(NWAIT_NE) }}$	FSMC_NWAIT valid before FSMC_NEx high	$5 \mathrm{~T}_{\text {HCLK }}-1$	-	
$\mathrm{t}_{\mathrm{h} \text { (NE_NWAIT) }}$	FSMC_NEx hold time FSMC_NWAIT invalid	$4 \mathrm{~T}_{\text {HCLK }}+1$	-	

1. $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.
2. Based on characterization, not tested in production.

Figure 53. Asynchronous multiplexed PSRAM/NOR write waveforms

Table 89. Asynchronous multiplexed PSRAM/NOR write timings ${ }^{(1)(2)}$

Symbol	Parameter	Min	Max	Unit
$t_{w(N E)}$	FSMC_NE low time	$4 \mathrm{~T}_{\text {HCLK }}-1$	$4 \mathrm{~T}_{\text {HCLK }}+0.5$	ns
$\mathrm{t}_{\mathrm{v} \text { (NWE_NE) }}$	FSMC_NEx low to FSMC_NWE low	$\mathrm{T}_{\text {HCLK }}$	$\mathrm{T}_{\text {HCLK }}+1$	
$\mathrm{t}_{\mathrm{w} \text { (NWE) }}$	FSMC_NWE low time	$2 \mathrm{~T}_{\text {HCLK }}-1$	$2 \mathrm{~T}_{\text {HCLK }}+0.5$	
$\mathrm{t}_{\text {(}}$ (NE_NWE)	FSMC_NWE high to FSMC_NE high hold time	THCLK ${ }^{\text {- } 1.5}$	-	
$\mathrm{t}_{\text {v }}$ (A_NE)	FSMC_NEx low to FSMC_A valid	-	2	
$\mathrm{t}_{\mathrm{v} \text { (NADV_NE) }}$	FSMC_NEx low to FSMC_NADV low	0	1	
$\mathrm{t}_{\mathrm{w} \text { (NADV) }}$	FSMC_NADV low time	$\mathrm{T}_{\text {HCLK }}-0.5$	$\mathrm{T}_{\text {HCLK }} 0.5$	
$\mathrm{t}_{\mathrm{h} \text { (AD_NADV) }}$	FSMC_AD(adress) valid hold time after FSMC_NADV high)	$\mathrm{T}_{\text {HCLK }}$	-	
$t_{\text {h(A_NWE) }}$	Address hold time after FSMC_NWE high	THCLK ${ }^{-1.5}$	-	
$t_{\text {h(BL_NWE) }}$	FSMC_BL hold time after FSMC_NWE high	$\mathrm{T}_{\text {HCLK }}$	-	
$\mathrm{t}_{\mathrm{v} \text { (BL_NE) }}$	FSMC_NEx low to FSMC_BL valid	-	1.5	
$\mathrm{t}_{\mathrm{v} \text { (Data_NADV) }}$	FSMC_NADV high to Data valid	-	$\mathrm{T}_{\text {HCLK }}+2$	
$t_{\text {h(Data_NWE) }}$	Data hold time after FSMC_NWE high	$\mathrm{T}_{\text {HCLK }}+0.5$	-	

1. $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.
2. Based on characterization, not tested in production.

Table 90. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings ${ }^{(1)(2)}$

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\mathrm{w}(\text { NE })}$	FSMC_NE low time	$9 \mathrm{~T}_{\text {HCLK }}-1$	$9 \mathrm{~T}_{\text {HCLK }}+0.5$	
$\mathrm{t}_{\mathrm{w} \text { (NWE) }}$	FSMC_NWE low time	$7 \mathrm{~T}_{\text {HCLK }}-1$	$7 \mathrm{~T}_{\text {HCLK }}+0.5$	n ns
$\mathrm{t}_{\text {su(NWAIT_NE) }}$	FSMC_NWAIT valid before FSMC_NEx high	$6 \mathrm{~T}_{\text {HCLK }}-1$	-	
$\mathrm{t}_{\text {h(NE_NWAIT) }}$	FSMC_NEx hold time after FSMC_NWAIT invalid	$4 \mathrm{~T}_{\text {HCLK }}+1$	-	

1. $C_{L}=30 \mathrm{pF}$.
2. Based on characterization, not tested in production.

Synchronous waveforms and timings

Figure 54 through Figure 57 represent synchronous waveforms and Table 91 through Table 94 provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration:

- BurstAccessMode = FSMC_BurstAccessMode_Enable;
- MemoryType = FSMC_MemoryType_CRAM;
- WriteBurst = FSMC_WriteBurst_Enable;
- CLKDivision = 1; (0 is not supported, see the STM32F446 reference manual: RM0390)
- DataLatency $=1$ for NOR Flash; DataLatency $=0$ for PSRAM

In all timing tables, the $\mathrm{T}_{\text {HCLK }}$ is the HCLK clock period (with maximum FSMC_CLK $=90 \mathrm{MHz}$).

Figure 54. Synchronous multiplexed NOR/PSRAM read timings

Table 91. Synchronous multiplexed NOR/PSRAM read timings ${ }^{(1)(2)}$

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\mathrm{w} \text { (CLK) }}$	FSMC_CLK period	$2 \mathrm{~T}_{\text {HCLK }}-0.5$	-	ns
$\mathrm{t}_{\mathrm{d}(\mathrm{CLKL} \text {-NExL) }}$	FSMC_CLK low to FSMC_NEx low (x=0..2)	-	1	
$\mathrm{t}_{\mathrm{d} \text { (CLKH_NExH) }}$	FSMC_CLK high to FSMC_NEx high (x=0...2)	$\mathrm{T}_{\text {HCLK }}+0.5$	-	
$\mathrm{t}_{\mathrm{d}(\mathrm{CLKL} \text {-NADVL) }}$	FSMC_CLK low to FSMC_NADV low	-	1	
$\mathrm{t}_{\text {(CLKL-NADVH) }}$	FSMC_CLK low to FSMC_NADV high	0	-	
$\mathrm{t}_{\mathrm{d} \text { (CLKL-AV) }}$	FSMC_CLK low to FSMC_Ax valid (x=16...25)	-	2	
$\mathrm{t}_{\mathrm{d} \text { (CLKH-AIV) }}$	FSMC_CLK high to FSMC_Ax invalid (x=16...25)	T HCLK	-	
$\mathrm{t}_{\mathrm{d} \text { (CLKL-NOEL) }}$	FSMC_CLK low to FSMC_NOE low	-	1.5	
$\mathrm{t}_{\mathrm{d} \text { (CLKH-NOEH) }}$	FSMC_CLK high to FSMC_NOE high	$\mathrm{T}_{\text {HCLK }}$	-	
$\mathrm{t}_{\mathrm{d}(\mathrm{CLKL}-\mathrm{ADV})}$	FSMC_CLK low to FSMC_AD[15:0] valid	-	2.5	
$\mathrm{t}_{\mathrm{d} \text { (CLKL-ADIV) }}$	FSMC_CLK low to FSMC_AD[15:0] invalid	0	-	
$\mathrm{t}_{\mathrm{su}(\text { ADV-CLKH) }}$	FSMC_A/D[15:0] valid data before FSMC_CLK high	1	-	
$\mathrm{t}_{\mathrm{h} \text { (CLKH-ADV) }}$	FSMC_A/D[15:0] valid data after FSMC_CLK high	2	-	
$\mathrm{t}_{\text {su(NWAIT-CLKH) }}$	FSMC_NWAIT valid before FSMC_CLK high	2	-	
$\mathrm{t}_{\text {(CLKH-NWAIT) }}$	FSMC_NWAIT valid after FSMC_CLK high	2	-	

1. $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.
2. Based on characterization, not tested in production.

Figure 55. Synchronous multiplexed PSRAM write timings

Table 92. Synchronous multiplexed PSRAM write timings ${ }^{(1)(2)}$

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\mathrm{w}(\mathrm{CLK})}$	FSMC_CLK period, $\mathrm{V}_{\text {DD }}$ range $=2.7$ to 3.6 V	$2 \mathrm{~T}_{\text {HCLK }}-0.5$	-	ns
$\mathrm{t}_{\mathrm{d} \text { (CLKL-NExL) }}$	FSMC_CLK low to FSMC_NEx low ($x=0 . . .2$)	-	1	
$\mathrm{t}_{\mathrm{d}(\mathrm{CLKH}}$-NExH)	FSMC_CLK high to FSMC_NEx high (x=0...2)	$\mathrm{T}_{\text {HCLK }}+0.5$	-	
$\mathrm{t}_{\mathrm{d}(\mathrm{CLKL} \text {-NADVL) }}$	FSMC_CLK low to FSMC_NADV low	-	1	
$\mathrm{t}_{\mathrm{d}(\text { CLKL-NADVH) }}$	FSMC_CLK low to FSMC_NADV high	0	-	
$\mathrm{t}_{\mathrm{d}(\text { CLKL-AV) }}$	FSMC_CLK low to FSMC_Ax valid ($\mathrm{x}=16 \ldots . .25$)	-	2	
$\mathrm{t}_{\mathrm{d}(\mathrm{CLKH}-\mathrm{AIV})}$	FSMC_CLK high to FSMC_Ax invalid (x=16...25)	$\mathrm{T}_{\text {HCLK }}$	-	
$\mathrm{t}_{\mathrm{d} \text { (CLKL-NWEL) }}$	FSMC_CLK low to FSMC_NWE low	-	1.5	
${ }^{\text {t }}$ (CLKH-NWEH)	FSMC_CLK high to FSMC_NWE high	$\mathrm{T}_{\text {HCLK }}+0.5$	-	
$\mathrm{t}_{\mathrm{d}(\mathrm{CLKL-ADV})}$	FSMC_CLK low to FSMC_AD[15:0] valid	-	2.5	
$\mathrm{t}_{\mathrm{d} \text { (CLKL-ADIV) }}$	FSMC_CLK low to FSMC_AD[15:0] invalid	0	-	
$\mathrm{t}_{\mathrm{d} \text { (CLKL-DATA) }}$	FSMC_A/D[15:0] valid data after FSMC_CLK low	-	4	
$\mathrm{t}_{\mathrm{d} \text { (CLKL-NBLL) }}$	FSMC_CLK low to FSMC_NBL low	-	3	
$\mathrm{t}_{\mathrm{d}(\mathrm{CLKH}}$-NBLH)	FSMC_CLK high to FSMC_NBL high	$\mathrm{T}_{\text {HCLK }}$	-	
$\mathrm{t}_{\text {su(}}$ (NWAIT-CLKH)	FSMC_NWAIT valid before FSMC_CLK high	2	-	
$\mathrm{t}_{\mathrm{h} \text { (CLKH-NWAIT) }}$	FSMC_NWAIT valid after FSMC_CLK high	2	-	

1. $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.
2. Based on characterization, not tested in production.

Figure 56. Synchronous non-multiplexed NOR/PSRAM read timings

Table 93. Synchronous non-multiplexed NOR/PSRAM read timings ${ }^{(1)(2)}$

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\mathrm{w} \text { (CLK) }}$	FSMC_CLK period	$2 \mathrm{~T}_{\text {HCLK }}-0.5$	-	ns
${ }^{\text {t }}$ (CLKL-NExL)	FSMC_CLK low to FSMC_NEx low (x=0..2)	-	1	
$\mathrm{t}_{\text {d(CLKH-NExH) }}$	FSMC_CLK high to FSMC_NEx high ($\mathrm{x}=0 . . .2$)	$\mathrm{T}_{\text {HCLK }}+0.5$	-	
$\mathrm{t}_{\mathrm{d}(\mathrm{CLKL} \text {-NADVL) }}$	FSMC_CLK low to FSMC_NADV low	-	1	
$\mathrm{t}_{\text {d(CLKL-NADVH) }}$	FSMC_CLK low to FSMC_NADV high	0	-	
$\mathrm{t}_{\mathrm{d} \text { (CLKL-AV) }}$	FSMC_CLK low to FSMC_Ax valid ($\mathrm{x}=16 . . .25$)	-	2	
$\mathrm{t}_{\mathrm{d} \text { (CLKH-AIV) }}$	FSMC_CLK high to FSMC_Ax invalid (x=16...25)	$\mathrm{T}_{\text {HCLK }}$	-	
$\mathrm{t}_{\mathrm{d} \text { (CLKL-NOEL) }}$	FSMC_CLK low to FSMC_NOE low	-	1.5	
$\mathrm{t}_{\mathrm{d} \text { (CLKH-NOEH) }}$	FSMC_CLK high to FSMC_NOE high	$\mathrm{T}_{\text {HCLK }}$	-	
$\mathrm{t}_{\text {su(DV-CLKH) }}$	FSMC_D[15:0] valid data before FSMC_CLK high	1	-	
$\mathrm{t}_{\text {(}}$ (CLKH-DV)	FSMC_D[15:0] valid data after FSMC_CLK high	2	-	
$\mathrm{t}_{\text {su(NWAIT-CLKH) }}$	FSMC_NWAIT valid before FSMC_CLK high	2	-	
$\mathrm{t}_{\text {(}}$ (CLKH-NWAIT)	FSMC_NWAIT valid after FSMC_CLK high	2	-	

1. $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.
2. Based on characterization, not tested in production.

Figure 57. Synchronous non-multiplexed PSRAM write timings

Table 94. Synchronous non-multiplexed PSRAM write timings ${ }^{(1)(2)}$

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\mathrm{w} \text { (CLK) }}$	FSMC_CLK period	$2 \mathrm{~T}_{\text {HCLK }}-0.5$	-	ns
$\mathrm{t}_{\mathrm{d}(\mathrm{CLKL}}$ (NExL)	FSMC_CLK low to FSMC_NEx low (x=0..2)	-	1	
$\mathrm{t}_{\mathrm{d}(\text { CLKH-NExH) }}$	FSMC_CLK high to FSMC_NEx high (x=0...2)	$\mathrm{T}_{\text {HCLK }}+0.5$	-	
$\mathrm{t}_{\mathrm{d} \text { (CLKL-NADVL) }}$	FSMC_CLK low to FSMC_NADV low	-	1	
$\mathrm{t}_{\text {d(CLKL-NADVH) }}$	FSMC_CLK low to FSMC_NADV high	0	-	
$\mathrm{t}_{\mathrm{d}(\mathrm{CLKL}}$-AV)	FSMC_CLK low to FSMC_Ax valid ($\mathrm{x}=16 . . .25$)	-	2	
$\mathrm{t}_{\mathrm{d} \text { (CLKH-AIV) }}$	FSMC_CLK high to FSMC_Ax invalid ($\mathrm{x}=16 \ldots 25$)	$\mathrm{T}_{\text {HCLK }}$	-	
$\mathrm{t}_{\mathrm{d} \text { (CLKL-NWEL) }}$	FSMC_CLK low to FSMC_NWE low	-	1.5	
$\mathrm{t}_{\mathrm{d}(\mathrm{CLKH}}$-NWEH)	FSMC_CLK high to FSMC_NWE high	$\mathrm{T}_{\text {HCLK }}+0.5$	-	
$\mathrm{t}_{\text {d(CLKL-Data) }}$	FSMC_D[15:0] valid data after FSMC_CLK low	-	4	
$\mathrm{t}_{\mathrm{d} \text { (CLKL-NBLL) }}$	FSMC_CLK low to FSMC_NBL low	-	3	
$\mathrm{t}_{\mathrm{d} \text { (CLKH-NBLH) }}$	FSMC_CLK high to FSMC_NBL high	$\mathrm{T}_{\text {HCLK }}$	-	
$\mathrm{t}_{\text {su(NWAIT- }}$ CLKH)	FSMC_NWAIT valid before FSMC_CLK high	2	-	
$\mathrm{t}_{\text {(}}$ CLKH-NWAIT)	FSMC_NWAIT valid after FSMC_CLK high	2	-	

1. $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.
2. Based on characterization, not tested in production.

6.3.26 SD/SDIO MMC/eMMC card host interface (SDIO) characteristics

Unless otherwise specified, the parameters given in Table 95 for the SDIO are derived from tests performed under the ambient temperature, $\mathrm{f}_{\text {PCLK2 }}$ frequency and V_{DD} supply voltage conditions summarized in Table 15, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load $\mathrm{C}=30 \mathrm{pF}$
- Measurement points are done at CMOS levels: $0.5 \mathrm{~V}_{\mathrm{DD}}$

Refer to Section 6.3.16: I/O port characteristics for more details on the input/output characteristics.

Figure 58. SDIO high-speed mode

Figure 59. SD default mode

Table 95. Dynamic characteristics: SD / MMC characteristics ${ }^{(1)(2)}$

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{f}_{\text {PP }}$	Clock frequency in data transfer mode	-	0	-	50	MHz
-	SDIO_CK/fPCLK2 frequency ratio	-	-	-	$8 / 3$	-
$\mathrm{t}_{\mathrm{W}(\mathrm{CKL})}$	Clock low time	$\mathrm{fpp}=50 \mathrm{MHz}$	9.5	10.5	-	ns
$\mathrm{t}_{\mathrm{W}(\mathrm{CKH})}$	Clock high time	$\mathrm{fpp}=50 \mathrm{MHz}$	8.5	9.5	-	

CMD, D inputs (referenced to CK) in MMC and SD HS mode

$\mathrm{t}_{\text {ISU }}$	Input setup time HS	fpp $=50 \mathrm{MHz}$	4	-	-	ns
t_{IH}	Input hold time HS	fpp $=50 \mathrm{MHz}$	2.5	-	-	

CMD, D outputs (referenced to CK) in MMC and SD HS mode

t_{OV}	Output valid time HS	$\mathrm{fpp}=50 \mathrm{MHz}$	-	13	13.5	ns
t_{OH}	Output hold time HS	$\mathrm{fpp}=50 \mathrm{MHz}$	11	-	-	

Table 95. Dynamic characteristics: SD / MMC characteristics ${ }^{(1)(2)}$ (continued)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
CMD, D inputs (referenced to CK) in SD default mode						
tISUD	Input setup time SD	$\mathrm{fpp}=25 \mathrm{MHz}$	2.5	-	-	ns
$\mathrm{t}_{\text {IHD }}$	Input hold time SD	$\mathrm{fpp}=25 \mathrm{MHz}$	2.5	-	-	
CMD, D outputs (referenced to CK) in SD default mode						
$\mathrm{t}_{\text {OVD }}$	Output valid default time SD	$\mathrm{fpp}=25 \mathrm{MHz}$	-	1.5	2	ns
$\mathrm{t}_{\text {OHD }}$	Output hold default time SD	$\mathrm{fpp}=25 \mathrm{MHz}$	0.5	-	-	

1. Guaranteed by characterization results, not tested in production.
2. $V_{D D}=2.7$ to 3.6 V .

Table 96. Dynamic characteristics: eMMC characteristics $\mathrm{V}_{\mathrm{DD}}=1.7 \mathrm{~V}$ to $1.9 \mathrm{~V}^{(1)(2)}$

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
f_{PP}	Clock frequency in data transfer mode	-	0	-	50	MHz
-	SDIO_CK/fPCLK2 frequency ratio	-	-	-	$8 / 3$	-
$\mathrm{t}_{\mathrm{W}(\mathrm{CKL})}$	Clock low time	$\mathrm{fpp}=50 \mathrm{MHz}$	9.5	10.5	-	ns
$\mathrm{t}_{\mathrm{W}(\mathrm{CKH})}$	Clock high time	$\mathrm{fpp}=50 \mathrm{MHz}$	8.5	9.5	-	

CMD, D inputs (referenced to CK) in eMMC mode

$\mathrm{t}_{\text {ISU }}$	Input setup time HS	$\mathrm{fpp}=50 \mathrm{MHz}$	3.5	-	-	ns
t_{H}	Input hold time HS	$\mathrm{fpp}=50 \mathrm{MHz}$	4	-	-	
CMD, D outputs (referenced to CK) in eMMC mode						
tov	Output valid time HS	$\mathrm{fpp}=50 \mathrm{MHz}$	-	13.5	15	ns
t_{OH}	Output hold time HS	fpp $=50 \mathrm{MHz}$	12	-	-	

1. Guaranteed by characterization results, not tested in production.
2. $\mathrm{C}_{\text {LOAD }}=20 \mathrm{pF}$.

6.3.27 RTC characteristics

Table 97. RTC characteristics

Symbol	Parameter	Conditions	Min	Max
-	$f_{\text {PCLK1 }} /$ RTCCLK frequency ratio	Any read/write operation from/to an RTC register	4	-

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

7.1 WLCSP64 package information

Figure 60. WLCSP64-64-pin, $3.658 \times 3.686 \mathrm{~mm}, 0.4 \mathrm{~mm}$ pitch wafer level chip scale package outline

[^3]Table 98. WLCSP64-64-pin, $3.658 \times 3.686 \mathrm{~mm}, 0.4 \mathrm{~mm}$ pitch wafer level chip scale package mechanical data

Symbol	millimeters			inches $^{(1)}$		
	Min	Typ	Max	Min	Typ	Max
A	0.525	0.555	0.585	0.0207	0.0219	0.0230
A1	-	0.170	-	-	0.0067	-
A2	-	0.380	-	-	0.0150	-
A3 $^{(2)}$	-	0.025	-	-	0.0010	-
b $^{(3)}$	0.220	0.250	0.280	0.0087	0.0098	0.0110
D	3.588	3.623	3.658	0.1413	0.1426	0.1440
E	3.616	3.651	3.686	0.1424	0.1437	0.1451
e	-	0.400	-	-	0.0157	-
e1	-	2.800	-	-	0.1102	-
e2	-	2.800	-	-	0.1102	-
F	-	0.4115	-	-	0.0162	-
G	-	0.4255	-	-	0.0168	-
aaa	-	-	0.100	-	-	0.0039
bbb	-	-	0.100	-	-	0.0039
ccc	-	-	0.100	-	-	0.0039
ddd	-	-	0.050	-	-	0.0020
eee	-	-	0.050	-	-	0.0020

1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Back side coating.
3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

Figure 61. WLCSP64-64-pin, $3.658 \times 3.686 \mathrm{~mm}, 0.4 \mathrm{~mm}$ pitch wafer level chip scale recommended footprint

Table 99. WLCSP64 recommended PCB design rules (0.4 mm pitch)

Dimension	Recommended values
Pitch	0.4 mm
Dpad	0.225 mm

Table 99. WLCSP64 recommended PCB design rules (0.4 mm pitch) (continued)

Dimension	Recommended values
Dsm	0.290 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.250 mm
Stencil thickness	0.100 mm

Device marking for WLCSP64

The following figure gives an example of topside marking and pin 1 position identifier location.

Figure 62. WLCSP64 marking example (package top view)

1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

7.2 UFQFPN48 package information

Figure 63. UFQFPN48-48-lead, $7 \times 7 \mathrm{~mm}$, 0.5 mm pitch, ultra thin fine pitch quad flat package outline

1. Drawing is not to scale.
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground.

Table 100. UFQFPN48-48-lead, $7 \times 7 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch, ultra thin fine pitch quad flat package mechanical data

Symbol	millimeters			inches ${ }^{(1)}$		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A	0.500	0.550	0.600	0.0197	0.0217	0.0236
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020
D	6.900	7.000	7.100	0.2717	0.2756	0.2795
E	6.900	7.000	7.100	0.2717	0.2756	0.2795
D2	5.500	5.600	5.700	0.2165	0.2205	0.2244

Table 100. UFQFPN48-48-lead, $7 \times 7 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch, ultra thin fine pitch quad flat package mechanical data (continued)

Symbol	millimeters			inches $^{(1)}$		
	Min.	Typ.	Max.	Min.	Typ.	Max.
E2	5.500	5.600	5.700	0.2165	0.2205	0.2244
L	0.300	0.400	0.500	0.0118	0.0157	0.0197
T	-	0.152	-	-	0.0060	-
b	0.200	0.250	0.300	0.0079	0.0098	0.0118
e	-	0.500	-	-	0.0197	-
ddd	-	-	0.080	-	-	0.0031

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 64. UFQFPN48 recommended footprint

1. Dimensions are in millimeters.

Device marking for UFQFPN48

The following figure gives an example of topside marking and pin 1 position identifier location.

Figure 65. UFQFPN48 marking example (package top view)

1. Parts marked as "ES", " E " or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

7.3 LQFP64 package information

Figure 66. LQFP64-64-pin, $10 \times 10 \mathrm{~mm}$ low-profile quad flat package outline

1. Drawing is not to scale.

Table 101. LQFP64-64-pin, $10 \times 10 \mathrm{~mm}$ low-profile quad flat package mechanical data

Symbol	millimeters			inches ${ }^{(1)}$		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
c	0.090	-	0.200	0.0035	-	0.0079
D	-	12.000	-	-	0.4724	-
D1	-	10.000	-	-	0.3937	-
D3	-	7.500	-	-	0.2953	-
E	-	12.000	-	-	0.4724	-
E1	-	10.000	-	-	0.3937	-
E3	-	7.500	-	-	0.2953	-
e	-	0.500	-	-	0.0197	-
K	0°	3.5°	7°	0°	3.5°	7°
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
Ccc	-	-	0.080	-	-	0.0031

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 67. LQFP64 recommended footprint

1. Dimensions are in millimeters.

Device marking for LQFP64

The following figure gives an example of topside marking and pin 1 position identifier location.

Figure 68. LQFP64 marking example (package top view)

1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

7.4 LQFP100 package information

Figure 69. LQFP100-100-pin, $14 \times 14 \mathrm{~mm}$ low-profile quad flat package outline

1. Drawing is not to scale. Dimensions are in millimeters.

Table 102. LQPF100-100-pin, $14 \times 14 \mathrm{~mm}$ low-profile quad flat package mechanical data

Symbol	millimeters			inches ${ }^{(1)}$		
	Min	Typ	Max	Min	Typ	Max
A	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
c	0.090	-	0.200	0.0035	-	0.0079
D	15.800	16.000	16.200	0.6220	0.6299	0.6378
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591

Table 102. LQPF100-100-pin, $14 \times 14 \mathrm{~mm}$ low-profile quad flat package mechanical data (continued)

Symbol	millimeters			inches $^{(1)}$		
	Min	Typ	Max	Min	Typ	Max
D3	-	12.000	-	-	0.4724	-
E	15.800	16.000	16.200	0.6220	0.6299	0.6378
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591
E3	-	12.000	-	-	0.4724	-
e	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°
ccc	-	-	0.080	-	-	0.0031

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 70. LQFP100-100-pin, $14 \times 14 \mathrm{~mm}$ low-profile quad flat recommended footprint

1. Dimensions are in millimeters.

Device marking for LQFP100

The following figure gives an example of topside marking and pin 1 position identifier location.

Figure 71. LQFP100 marking example (package top view)

1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

7.5 LQFP144 package information

Figure 72. LQFP144-144-pin, $20 \times 20 \mathrm{~mm}$ low-profile quad flat package outline

1. Drawing is not to scale.

Table 103. LQFP144-144-pin, $20 \times 20 \mathrm{~mm}$ low-profile quad flat package mechanical data

Symbol	millimeters			inches $^{(1)}$		
	Min	Typ	Max	Min	Typ	Max
A	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
c	0.090	-	0.200	0.0035	-	0.0079
D	21.800	22.000	22.200	0.8583	0.8661	0.8740
D1	19.800	20.000	20.200	0.7795	0.7874	0.7953
D3	-	17.500	-	-	0.6890	-
E	21.800	22.000	22.200	0.8583	0.8661	0.8740
E1	19.800	20.000	20.200	0.7795	0.7874	0.7953
E3	-	17.500	-	-	0.6890	-
e	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
ccc	-	-	0.080	-	-	0.0031

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 73. LQFP144-144-pin,20 x 20 mm low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

Device marking for LQFP144

The following figure gives an example of topside marking and pin 1 position identifier location.

Figure 74. LQFP144 marking example (package top view)

1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

7.6 UFBGA100 package information

Figure 75. UFBGA100-100-pin, $7 \times 7 \mathrm{~mm}, 0.50 \mathrm{~mm}$ pitch, ultra fine pitch ball grid array package outline

1. Drawing is not to scale.

Table 104. UFBGA100-100-pin, $7 \times 7 \mathrm{~mm}, 0.50 \mathrm{~mm}$ pitch, ultra fine pitch ball grid array package mechanical data

Symbol	millimeters			inches ${ }^{(1)}$		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A	0.460	0.530	0.600	0.0181	0.0209	0.0236
A1	0.050	0.080	0.110	0.0020	0.0031	0.0043
A2	0.400	0.450	0.500	0.0157	0.0177	0.0197
A3	-	0.130	-	-	0.0051	-
A4	0.270	0.320	0.370	0.0106	0.0126	0.0146
b	0.200	0.250	0.300	0.0079	0.0098	0.0118
D	6.950	7.000	7.050	0.2736	0.2756	0.2776
D1	5.450	5.500	5.550	0.2146	0.2165	0.2185
E	6.950	7.000	7.050	0.2736	0.2756	0.2776
E1	5.450	5.500	5.550	0.2146	0.2165	0.2185
e	-	0.500	-	-	0.0197	-
F	0.700	0.750	0.800	0.0276	0.0295	0.0315

Table 104. UFBGA100-100-pin, $7 \times 7 \mathrm{~mm}, 0.50 \mathrm{~mm}$ pitch, ultra fine pitch ball grid array package mechanical data (continued)

Symbol	millimeters			inches $^{(1)}$		
	Min.	Typ.	Max.	Min.	Typ.	Max.
ddd	-	-	0.100	-	-	0.0039
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 76. UFBGA100-100-pin, $7 \times 7 \mathrm{~mm}, 0.50 \mathrm{~mm}$ pitch, ultra fine pitch ball grid array package recommended footprint

A0C2_FP_V1

Table 105. UFBGA100 recommended PCB design rules (0.5 mm pitch BGA)

Dimension	Recommended values
Pitch	0.5
Dpad	0.280 mm
Dsm	0.370 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.280 mm
Stencil thickness	Between 0.100 mm and 0.125 mm

Device marking for UFBGA100

The following figure gives an example of topside marking and ball 1 position identifier location.

Figure 77. UFBGA100 marking example (package top view)

1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

7.7 UFBGA144 package information

Figure 78. UFBGA144-144-pin, $10 \times 10 \mathrm{~mm}, 0.80 \mathrm{~mm}$ pitch, ultra fine pitch ball grid array package outline

1. Drawing is not to scale.

Table 106. UFBGA144-144-pin, $10 \times 10 \mathrm{~mm}, \mathbf{0 . 8 0} \mathrm{~mm}$ pitch, ultra fine pitch ball grid array package mechanical data

Symbol	millimeters			inches ${ }^{(1)}$		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A	0.460	0.530	0.600	0.0181	0.0209	0.0236
A1	0.050	0.080	0.110	0.0020	0.0031	0.0043
A2	0.400	0.450	0.500	0.0157	0.0177	0.0197
A3	0.050	0.080	0.110	-	0.0051	-
A4	0.270	0.320	0.370	0.0106	0.0126	0.0146
b	0.360	0.400	0.440	0.0091	0.0110	0.0130
D	9.950	10.000	10.050	0.2736	0.2756	0.2776
D1	8.750	8.800	8.850	0.2343	0.2362	0.2382
E	9.950	10.000	10.050	0.2736	0.2756	0.2776
E1	8.750	8.800	8.850	0.2343	0.2362	0.2382
e	0.750	0.800	0.850	-	0.0197	-

Table 106. UFBGA144-144-pin, $10 \times 10 \mathrm{~mm}, 0.80 \mathrm{~mm}$ pitch, ultra fine pitch ball grid array package mechanical data (continued)

Symbol	millimeters			inches $^{(1)}$		
	Min.	Typ.	Max.	Min.	Typ.	Max.
F	0.550	0.600	0.650	0.0177	0.0197	0.0217
ddd	-	-	0.080	-	-	0.0039
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.080	-	-	0.0020

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 79. UFBGA144-144-pin, $10 \times 10 \mathrm{~mm}, 0.80 \mathrm{~mm}$ pitch, ultra fine pitch ball grid array recommended footprint

Table 107. UFBGA144 recommended PCB design rules (0.80 mm pitch BGA)

Dimension	Recommended values
Pitch	0.80 mm
Dpad	0.400 mm
Dsm	0.550 mm typ. (depends on the soldermask registration tolerance)

Note: \quad Non solder mask defined (NSMD) pads are recommended.
4 to 6 mils solder paste screen printing process.
Stencil opening is 0.400 mm .
Stencil thickness is between 0.100 mm and 0.125 mm .
Pad trace width is 0.120 mm .

Device marking for UFBGA144

The following figure gives an example of topside marking and ball A1 position identifier location.

Figure 80. UFBGA144 marking example (package top view)

1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

7.8 Thermal characteristics

The maximum chip junction temperature ($T_{j} \max$) must never exceed the values given in Table 15: General operating conditions on page 76.

The maximum chip-junction temperature, T_{J} max., in degrees Celsius, may be calculated using the following equation:
$T_{J} \max =T_{A} \max +\left(P D \max x \Theta_{J A}\right)$
Where:

- T_{A} max is the maximum ambient temperature in ${ }^{\circ} \mathrm{C}$,
- $\quad \Theta_{\mathrm{JA}}$ is the package junction-to-ambient thermal resistance, in ${ }^{\circ} \mathrm{C} / \mathrm{W}$,
- $\quad P D$ max is the sum of $P_{I N T} \max$ and $P_{I / O} \max \left(P D \max =P_{I N T} \max +P_{I / O} m a x\right)$,
- $\quad P_{\text {INT }}$ max is the product of $I_{D D}$ and $V_{D D}$, expressed in Watts. This is the maximum chip internal power.
$\mathrm{P}_{\text {I/O }} \max$ represents the maximum power dissipation on output pins where:

$$
\mathrm{P}_{\mathrm{I} / \mathrm{O}} \max =\Sigma\left(\mathrm{V}_{\mathrm{OL}} \times \mathrm{I}_{\mathrm{OL}}\right)+\Sigma\left(\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{OH}}\right) \times \mathrm{I}_{\mathrm{OH}}\right),
$$

taking into account the actual $\mathrm{V}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OL}}$ and $\mathrm{V}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OH}}$ of the I / Os at low and high level in the application.

Table 108. Package thermal characteristics

Symbol	Parameter	Value	Unit
$\Theta_{J A}$	Thermal resistance junction-ambient LQFP144-20 x 20 mm	35	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	Thermal resistance junction-ambient LQFP100-14 x 14 mm	43	
	Thermal resistance junction-ambient LQFP64-10 x 10 mm	47	
	Thermal resistance junction-ambient UFBGA144-10×10 mm / 0.8 mm pitch	48	
	Thermal resistance junction-ambient UFBGA100-7x7mm	57	
	Thermal resistance junction-ambient WLCSP64-3.623 x 3.651 mm	51	
	Thermal resistance junction-ambient UFQFPN48-7x 7 mm	32	

7.8.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.

8 Part numbering

Table 109. Ordering information scheme
Example:

Device family
STM32 $=$ ARM $^{\circledR}$-based 32-bit microcontroller

Product type
F = General-purpose

Device subfamily
412 = 412 line

Pin count
$C=48$ pins
$\mathrm{R}=64$ pins
$V=100$ pins
$Z=144$ pins

Flash memory size
$\mathrm{E}=512$ Kbytes of Flash memory
G = 1024 Kbytes of Flash memory

Package
$\mathrm{H}=$ UFBGA $7 \times 7 \mathrm{~mm}$
$\mathrm{J}=\mathrm{UFBGA} 10 \times 10 \mathrm{~mm}$
T = LQFP
U = UFQFPN
Y = WLCSP

Temperature range
$6=$ Industrial temperature range, -40 to $85^{\circ} \mathrm{C}$

Packing
TR = tape and reel
No character = tray or tube

Appendix A Recommendations when using the internal reset OFF

When the internal reset is OFF, the following integrated features are no longer supported:

- The integrated power-on-reset (POR)/power-down reset (PDR) circuitry is disabled.
- The brownout reset (BOR) circuitry must be disabled. By default BOR is OFF.
- The embedded programmable voltage detector (PVD) is disabled.
- $\quad V_{B A T}$ functionality is no more available and VBAT pin should be connected to $V_{D D}$.

Appendix B Application block diagrams

B. 1 USB OTG full speed (FS) interface solutions

Figure 81. USB controller configured as peripheral-only and used in Full speed mode

1. External voltage regulator only needed when building a $\mathrm{V}_{\mathrm{B} U S}$ powered device.

Figure 82. USB peripheral-only Full speed mode with direct connection for VBUS sense

1. External voltage regulator only needed when building a V_{B}, powered device.

Figure 83. USB peripheral-only Full speed mode, VBUS detection using GPIO

1. External voltage regulator only needed when building a $\mathrm{V}_{\mathrm{B} U S}$ powered device.

Figure 84. USB controller configured as host-only and used in full speed mode

1. The current limiter is required only if the application has to support a $V_{B U S}$ powered device. A basic power switch can be used if 5 V are available on the application board.

Figure 85. USB controller configured in dual mode and used in full speed mode

1. External voltage regulator only needed when building a V_{B}, powered device.
2. The current limiter is required only if the application has to support a $V_{B U S}$ powered device. A basic power switch can be used if 5 V are available on the application board.
3. The ID pin is required in dual role only.

B. 2 Sensor Hub application example

Figure 86. Sensor Hub application example

B. 3 Display application example

Figure 87. Display application example

Note: 16 bit displays interfaces can be addressed with 100 and 144 pins packages.

Revision history

Table 110. Document revision history

Date	Revision	Changes
10-Nov-2015	1	Initial release.
01-Feb-2016	2	Added - Table 3: Embedded bootloader interfaces - Figure 3: Compatible board design for LQFP144 package - Figure 62: WLCSP64 marking example (package top view) - Figure 77: UFBGA100 marking example (package top view) Updated - Section 3.17: Power supply schemes - Section 3.23: Timers and watchdogs - Section 3.32: Universal serial bus on-the-go full-speed (USB_OTG_FS) - Figure 1: Compatible board design for LQFP100 package - Figure 2: Compatible board design for LQFP64 package - Figure 14: STM32F412xE/G LQFP100 pinout - Figure 16: STM32F412xE/G UFBGA100 pinout - Figure 17: STM32F412xE/G UFBGA144 pinout - Figure 20: Input voltage measurement - Figure 80: UFBGA144 marking example (package top view) - Table 2: STM32F412xE/G features and peripheral counts - Table 9: STM32F412xE/G pin definition - Table 12: Voltage characteristics - Table 13: Current characteristics - Table 15: General operating conditions - Table 36: Peripheral current consumption - Table 51: EMS characteristics for LQFP144 package - Table 63: FMPI2C characteristics

Table 110. Document revision history

Date	Revision	Changes
25-Mar-2016	3	Added: - Figure 82: USB peripheral-only Full speed mode with direct connection for VBUS sense - Figure 83: USB peripheral-only Full speed mode, VBUS detection using GPIO Updated: - Figure 15: STM32F412xE/G LQFP144 pinout - Section 6.3.6: Supply current characteristics - Table 9: STM32F412xE/G pin definition - Table 10: STM32F412xE/G alternate functions - Table 11: STM32F412xE/G register boundary addresses - Table 15: General operating conditions - Table 36: Peripheral current consumption - Table 96: Dynamic characteristics: eMMC characteristics VDD $=1.7 \mathrm{~V}$ to 1.9 V
27-May-2016	4	Updated: - Section 3.23.2: General-purpose timers (TIMx) - Table 21: Typical and maximum current consumption, code with data processing (ART accelerator disabled) running from SRAM - VDD $=1.7 \mathrm{~V}$ - Table 22: Typical and maximum current consumption, code with data processing (ART accelerator disabled) running from SRAM - VDD $=3.6 \mathrm{~V}$ - Table 23: Typical and maximum current consumption in run mode, code with data processing (ART accelerator enabled except prefetch) running from Flash memory- VDD = 1.7 V - Table 24: Typical and maximum current consumption in run mode, code with data processing (ART accelerator enabled except prefetch) running from Flash memory - VDD $=3.6 \mathrm{~V}$ - Table 25: Typical and maximum current consumption in run mode, code with data processing (ART accelerator disabled) running from Flash memory - VDD $=3.6 \mathrm{~V}$ - Table 26: Typical and maximum current consumption in run mode, code with data processing (ART accelerator disabled) running from Flash memory - VDD $=1.7 \mathrm{~V}$ - Table 27: Typical and maximum current consumption in run mode, code with data processing (ART accelerator enabled with prefetch) running from Flash memory $V D D=3.6 \mathrm{~V}$ - Table 28: Typical and maximum current consumption in Sleep mode - VDD $=3.6 \mathrm{~V}$ - Table 29: Typical and maximum current consumption in Sleep mode - VDD $=1.7 \mathrm{~V}$ - Table 37: Low-power mode wakeup timings(1) - Figure 38: I2C bus AC waveforms and measurement circuit - Figure 39: FMPI2C timing diagram and measurement circuit

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

$$
\text { © } 2016 \text { STMicroelectronics - All rights reserved }
$$

[^0]: 1. To reset the internal logic at power-down, a reset must be applied on pin PAO when $V_{D D}$ reach below 1.08 V.
[^1]: 1. Based on characterization, not tested in production.
[^2]: 1. Guaranteed by characterization, not tested in production.
[^3]: 1. Drawing is not to scale.
