Features

- Core: ARM ${ }^{\circledR} 32$-bit Cortex ${ }^{\circledR}$-M7 CPU with FPU, adaptive real-time accelerator (ART
Accelerator ${ }^{\text {TM }}$) and L1-cache: 8 Kbytes of data cache and 8 Kbytes of instruction cache, allowing 0-wait state execution from embedded Flash memory and external memories, frequency up to 216 MHz , MPU,
462 DMIPS/2.14 DMIPS/MHz (Dhrystone 2.1) and DSP instructions.
- Memories
- Up to 512 Kbytes of Flash memory with protection mechanisms (read and write protections, propriety code readout protection (PCROP))
- 528 bytes of OTP memory
- SRAM: 256 Kbytes (including 64 Kbytes of data TCM RAM for critical real-time data) + 16 Kbytes of instruction TCM RAM (for critical real-time routines) +4 Kbytes of backup SRAM (available in the lowest power modes)
- Flexible external memory controller with up to 32-bit data bus: SRAM, PSRAM, SDRAM/LPSDR SDRAM, NOR/NAND memories
- Dual mode Quad-SPI
- Clock, reset and supply management
- 1.7 V to 3.6 V application supply and I/Os
- POR, PDR, PVD and BOR
- Dedicated USB power
- 4-to-26 MHz crystal oscillator
- Internal 16 MHz factory-trimmed RC (1\% accuracy)
- 32 kHz oscillator for RTC with calibration
- Internal 32 kHz RC with calibration
- Low-power
- Sleep, Stop and Standby modes

- $\mathrm{V}_{\text {BAT }}$ supply for RTC, 32×32 bit backup registers +4 Kbytes of backup SRAM
- 3×12-bit, 2.4 MSPS ADC: up to 24 channels and 7.2 MSPS in triple interleaved mode
- 2×12-bit D/A converters
- Up to 18 timers: up to thirteen 16-bit ($1 \times$ lowpower 16-bit timer available in Stop mode) and two 32-bit timers, each with up to 4
IC/OC/PWMs or pulse counter and quadrature (incremental) encoder inputs. All 15 timers running up to 216 MHz . 2 x watchdogs, SysTick timer
- General-purpose DMA: 16-stream DMA controller with FIFOs and burst support
- Debug mode
- SWD \& JTAG interfaces
- Cortex ${ }^{\circledR}$-M7 Trace Macrocell ${ }^{\text {TM }}$
- Up to 140 I/O ports with interrupt capability
- Up to 136 fast I/Os up to 108 MHz
- Up to 1385 V-tolerant I/Os
- Up to 21 communication interfaces
- Up to $3 \times 1^{2} \mathrm{C}$ interfaces (SMBus/PMBus)
- Up to 4 USARTs/4 UARTs (27 Mbit/s, ISO7816 interface, LIN, IrDA, modem control)
- Up to 5 SPIs (up to $50 \mathrm{Mbit} / \mathrm{s}$), 3 with muxed simplex I^{2} Ss for audio class accuracy via internal audio PLL or external clock
- $2 \times$ SAls (serial audio interface)
- $1 \times \operatorname{CAN}$ (2.0B active)
- $2 \times$ SDMMCs
- Advanced connectivity
- USB 2.0 full-speed device/host/OTG controller with on-chip PHY
- USB 2.0 high-speed/full-speed device/host/OTG controller with dedicated DMA, on-chip full-speed PHY and on-chip Hi-speed PHY or ULPI depending on the product

Table 1. Device summary

Reference	Part number
STM32F722xx	STM32F722IE, STM32F722ZE, STM32F722VE, STM32F722RE, STM32F722IC, STM32F722ZC, STM32F722VC, STM32F722RC
STM32F723xx	STM32F723IE, STM32F723ZE, STM32F723VE, STM32F723IC, STM32F723ZC

Contents

1 Description 9
1.1 Full compatibility throughout the family 12
1.2 STM32F723xx versus STM32F722xx LQFP144/LQFP176 packages: 14
2 Functional overview 16
2.1 ARM $^{\circledR}$ Cortex $^{\circledR}$-M7 with FPU 16
2.2 Memory protection unit 16
2.3 Embedded Flash memory 17
2.4 CRC (cyclic redundancy check) calculation unit 17
2.5 Embedded SRAM 17
2.6 AXI-AHB bus matrix 18
2.7 DMA controller (DMA) 19
2.8 Flexible memory controller (FMC) 20
2.9 Quad-SPI memory interface (QUADSPI) 20
2.10 Nested vectored interrupt controller (NVIC) 21
2.11 External interrupt/event controller (EXTI) 21
2.12 Clocks and startup 21
2.13 Boot modes 22
2.14 Power supply schemes 22
2.15 Power supply supervisor 24
2.15.1 Internal reset ON 24
2.15.2 Internal reset OFF 24
2.16 Voltage regulator 26
2.16.1 Regulator ON 26
2.16.2 Regulator OFF 27
2.16.3 Regulator ON/OFF and internal reset ON/OFF availability 30
2.17 Real-time clock (RTC), backup SRAM and backup registers 30
2.18 Low-power modes 31
$2.19 \mathrm{~V}_{\text {BAT }}$ operation 32
2.20 Timers and watchdogs 32
2.20.1 Advanced-control timers (TIM1, TIM8) 34
2.20.2 General-purpose timers (TIMx) 34
2.20.3 Basic timers TIM6 and TIM7 34
2.20.4 Low-power timer (LPTIM1) 35
2.20.5 Independent watchdog 35
2.20.6 Window watchdog 35
2.20.7 SysTick timer 35
2.21 Inter-integrated circuit interface $\left(I^{2} \mathrm{C}\right)$ 36
2.22 Universal synchronous/asynchronous receiver transmitters (USART) 37
2.23 Serial peripheral interface (SPI)/inter- integrated sound interfaces (I2S) 38
2.24 Serial audio interface (SAI) 38
2.25 Audio PLL (PLLI2S) 39
2.26 Audio PLL (PLLSAI) 39
2.27 SD/SDIO/MMC card host interface (SDMMC) 39
2.28 Controller area network (bxCAN) 39
2.29 Universal serial bus on-the-go full-speed (OTG_FS) 40
2.30 Universal serial bus on-the-go high-speed (OTG_HS) 40
2.30.1 Universal Serial Bus controller on-the-go High-Speed PHY controller (USBPHYC) only on STM32F723xx devices. 41
2.31 Random number generator (RNG) 41
2.32 General-purpose input/outputs (GPIOs) 41
2.33 Analog-to-digital converters (ADCs) 41
2.34 Temperature sensor 42
2.35 Digital-to-analog converter (DAC) 42
2.36 Serial wire JTAG debug port (SWJ-DP) 42
2.37 Embedded Trace Macrocell ${ }^{\text {TM }}$ 43
3 Pinouts and pin description 44
4 Memory mapping 96
5 Package information 101
5.1 LQFP64-10× 10 mm , low-profile quad flat package information 101
5.2 LQFP100, $14 \times 14 \mathrm{~mm}$ low-profile quad flat package information 103
5.3 LQFP144, $20 \times 20 \mathrm{~mm}$ low-profile quad flat package information 105
5.4 LQFP176 $24 \times 24 \mathrm{~mm}$ low-profile quad flat package information 107
5.5 UFBGA144 package information 110
5.6 UFBGA 176+25, $10 \times 10,0.65 \mathrm{~mm}$ ultra thin-pitch ball grid array package information 112
5.7 WLCSP100-0.4 mm pitch wafer level chip scale package information 114
5.8 Thermal characteristics 117
6 Ordering information 118
Appendix A Recommendations when using internal reset OFF 119
A. 1 Operating conditions 119
Revision history 120

List of tables

Table 1. Device summary 2
Table 2. STM32F722xx and STM32F723xx features and peripheral counts 10
Table 3. Voltage regulator configuration mode versus device operating mode 27
Table 4. Regulator ON/OFF and internal reset ON/OFF availability. 30
Table 5. Voltage regulator modes in stop mode 31
Table 6. Timer feature comparison 33
Table 7. I2C implementation 36
Table 8. USART implementation 37
Table 9. Legend/abbreviations used in the pinout table 54
Table 10. STM32F722xx and STM32F723xx pin and ball definition 55
Table 11. FMC pin definition 82
Table 12. STM32F722xx and STM32F723xx alternate function mapping 85
Table 13. STM32F722xx and STM32F723xx register boundary addresses 97
Table 14. LQFP64-10×10 mm, low-profile quad flat package mechanical data. 101
Table 15. LQPF100, $14 \times 14 \mathrm{~mm}$ 100-pin low-profile quad flat package mechanical data 103
Table 16. LQFP144, $20 \times 20 \mathrm{~mm}, 144$-pin low-profile quad flat package mechanical data 105
Table 17. LQFP176, $24 \times 24 \mathrm{~mm}$, 176-pin low-profile quad flat package mechanical data 107
Table 18. UFBGA144-144-ball, $7 \times 7 \mathrm{~mm}, 0.50 \mathrm{~mm}$ pitch, ultra fine pitch ball grid array package mechanical data 110
Table 19. UFBGA144 recommended PCB design rules (0.50 mm pitch BGA) 111
Table 20. UFBGA176+25, $10 \times 10 \times 0.65 \mathrm{~mm}$ ultra thin fine-pitch ball grid array package mechanical data 112
Table 21. UFBGA176+25 recommended PCB design rules (0.65 mm pitch BGA) 113
Table 22. WLCSP100 - 100L, $4.166 \times 4.628 \mathrm{~mm} 0.4 \mathrm{~mm}$ pitch wafer level chip scale package mechanical data 115
Table 23. WLCSP100 recommended PCB design rules (0.4 mm pitch) 116
Table 24. Ordering information scheme 118
Table 25. Limitations depending on the operating power supply range 119
Table 26. Document revision history 120

List of figures

Figure 1. Compatible board design for LQFP100 package 12
Figure 2. Compatible board design for LQFP64 package 13
Figure 3. Compatible board design for LQFP144 package 14
Figure 4. Compatible board design for LQFP176 package 14
Figure 5. STM32F722xx and STM32F723xx block diagram 15
Figure 6. STM32F722xx and STM32F723xx AXI-AHB bus matrix architecture ${ }^{(1)}$ 18
Figure 7. VDDUSB connected to VDD power supply 23
Figure 8. VDDUSB connected to external power supply 23
Figure 9. Power supply supervisor interconnection with internal reset OFF 25
Figure 10. PDR_ON control with internal reset OFF 25
Figure 11. Regulator OFF 28
Figure 12. Startup in regulator OFF: slow $V_{D D}$ slope - power-down reset risen after $\mathrm{V}_{\mathrm{CAP} 1} 1 \mathrm{~V}_{\mathrm{CAP} \text { _2 }}$ stabilization 29
Figure 13. Startup in regulator OFF mode: fast $\bar{V}_{D D}$ slope - power-down reset risen before $\mathrm{V}_{\mathrm{CAP}}{ }^{1} / \mathrm{V}_{\mathrm{CAP}}$ 2 stabilization 29
Figure 14. STM32F722xx LQFP64 pinout 44
Figure 15. STM32F722xx LQFP100 pinout 45
Figure 16. STM32F723xx WLCSP100 ballout (with OTG PHY HS) 46
Figure 17. STM32F722xx LQFP144 pinout 47
Figure 18. STM32F723xx LQFP144 pinout 48
Figure 19. STM32F723xx UFBGA144 ballout (with OTG PHY HS) 49
Figure 20. STM32F722xx LQFP176 pinout 50
Figure 21. STM32F723xx LQFP176 pinout 51
Figure 22. STM32F723xx UFBGA176 ballout 52
Figure 23. STM32F723xx UFBGA176 ballout (with OTG PHY HS) 53
Figure 24. Memory map 96
Figure 25. LQFP64-10 $\times 10 \mathrm{~mm}$, low-profile quad flat package outline 101
Figure 26. LQFP64-10 10 mm , low-profile quad flat package recommended footprint 102
Figure 27. LQFP100, $14 \times 14 \mathrm{~mm} 100$-pin low-profile quad flat package outline 103
Figure 28. LQFP100, $14 \times 14 \mathrm{~mm}, 100$-pin low-profile quad flat package recommended footprint. 104
Figure 29. LQFP144, $20 \times 20 \mathrm{~mm}, 144$-pin low-profile quad flat package outline 105
Figure 30. LQFP144, $20 \times 20 \mathrm{~mm}$, 144-pin low-profile quad flat package recommended footprint 106
Figure 31. LQFP176, $24 \times 24 \mathrm{~mm}, 176$-pin low-profile quad flat package outline 107
Figure 32. LQFP176, $24 \times 24 \mathrm{~mm}, 176$-pin low-profile quad flat package recommended footprint 109
Figure 33. UFBGA144-144-ball, $7 \times 7 \mathrm{~mm}, 0.50 \mathrm{~mm}$ pitch, ultra fine pitch ball grid array package outline 110
Figure 34. UFBGA144-144-ball, $7 \times 7 \mathrm{~mm}, 0.50 \mathrm{~mm}$ pitch, ultra fine pitch ball grid array package recommended footprint 111
Figure 35. UFBGA $176+25,10 \times 10 \times 0.65 \mathrm{~mm}$ ultra thin fine-pitch ball grid array package outline. 112
Figure 36. UFBGA176+25, $10 \times 10 \mathrm{~mm} \times 0.65 \mathrm{~mm}$, ultra fine-pitch ball grid array package recommended footprint 113
Figure 37. WLCSP100 - 100L, $4.166 \times 4.628 \mathrm{~mm} 0.4 \mathrm{~mm}$ pitch wafer level chip scale package outline 114
Figure 38. WLCSP100 - 100L, $4.166 \times 4.628 \mathrm{~mm} 0.4 \mathrm{~mm}$ pitch wafer level chip scale
package recommended footprint116

1 Description

The STM32F722xx and STM32F723xx devices are based on the high-performance ARM ${ }^{\circledR}$ Cortex ${ }^{\circledR}$-M7 32-bit RISC core operating at up to 216 MHz frequency. The Cortex ${ }^{\circledR}$ - M 7 core features a single floating point unit (SFPU) precision which supports ARM ${ }^{\circledR}$ single-precision data-processing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances the application security.

The STM32F722xx and STM32F723xx devices incorporate high-speed embedded memories with a Flash memory up to 512 Kbytes, 256 Kbytes of SRAM (including 64 Kbytes of data TCM RAM for critical real-time data), 16 Kbytes of instruction TCM RAM (for critical real-time routines), 4 Kbytes of backup SRAM available in the lowest power modes, and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses, a 32-bit multi-AHB bus matrix and a multi layer AXI interconnect supporting internal and external memories access.
All the devices offer three 12-bit ADCs, two DACs, a low-power RTC, thirteen generalpurpose 16-bit timers including two PWM timers for motor control, two general-purpose 32bit timers, a true random number generator (RNG). They also feature standard and advanced communication interfaces.

- Up to three $I^{2} \mathrm{Cs}$
- Five SPIs, three $I^{2} S s$ in half duplex mode. To achieve the audio class accuracy, the $I^{2} S$ peripherals can be clocked via a dedicated internal audio PLL or via an external clock to allow synchronization.
- Four USARTs plus four UARTs
- An USB OTG full-speed and a USB OTG high-speed with full-speed capability (with the ULPI in the STM32F722xx devices and with the integrated HS PHY in the STM32F723xx devices)
- One CAN
- Two SAI serial audio interfaces
- Two SDMMC host interfaces

Advanced peripherals include two SDMMC interfaces, a flexible memory control (FMC) interface, a Quad-SPI Flash memory interface. Refer to Table 2: STM32F722xx and STM32F723xx features and peripheral counts for the list of peripherals available on each part number.

The STM32F722xx and STM32F723xx devices operate in the -40 to $+105^{\circ} \mathrm{C}$ temperature range from a 1.7 to 3.6 V power supply. Dedicated supply inputs for the USB (OTG_FS and OTG_HS) and the SDMMC2 (clock, command and 4-bit data) are available on all the packages except LQFP100 and LQFP64 for a greater power supply choice.

The supply voltage can drop to 1.7 V with the use of an external power supply supervisor (refer to Section 2.15.2: Internal reset OFF). A comprehensive set of power-saving mode allows the design of low-power applications.
The STM32F722xx and STM32F723xx devices offer devices in 7 packages ranging from 64 pins to 176 pins. The set of included peripherals changes with the device chosen.

These features make the STM32F722xx and STM32F723xx microcontrollers suitable for a wide range of applications:

- Motor drive and application control,
- Medical equipment,
- Industrial applications: PLC, inverters, circuit breakers,
- Printers, and scanners,
- Alarm systems, video intercom, and HVAC,
- Home audio appliances,
- Mobile applications, Internet of Things,
- Wearable devices: smartwatches.

Figure 5 shows the general block diagram of the device family
Table 2. STM32F722xx and STM32F723xx features and peripheral counts

Peripherals		STM32F72xRx		STM32F72xVx		STM32F72xZx		STM32F72xIx	
Flash memory in Kbytes		256	512	256	512	256	512	256	512
SRAM in Kbytes	System	256(176+16+64)							
	Instruction	16							
	Backup	4							
FMC memory controller		No		Yes ${ }^{(1)}$					
Quad-SPI		Yes							
Timers	General-purpose	$10^{(2)}$							
	Advanced-control	2							
	Basic	2							
	Low-power	No		1					
Random number generator		Yes							
Communication interfaces	SPI / $\mathrm{I}^{2} \mathrm{~S}$	3/3 (simplex) ${ }^{(3)}$		4/3 (simplex) ${ }^{(3)}$		5/3 (simplex) ${ }^{(3)}$			
	$1^{2} \mathrm{C}$	3							
	USART/UART	4/2		4/4					
	USB OTG FS	Yes							
	USB OTG HS ${ }^{(4)}$	Yes							
	USB OTG PHY HS controller (USBPHYC)	No		Yes ${ }^{(10)}$					
	CAN	1							
	SAI	2							
	SDMMC1	Yes							
	SDMMC2	No		Yes ${ }^{(5)(6)}$					
GPIOs		50		$\begin{aligned} & 82 \text { in STM32F722xx } \\ & 79 \text { in STM32F723xx } \end{aligned}$		$\begin{aligned} & 114 \text { in STM32F722xx } \\ & 112 \text { in STM32F723xx } \end{aligned}$		140 in STM32F722xx 138 in STM32F723xx	
12-bit ADC		3							
Number of channels		16				24			
12-bit DAC Number of channels		$\begin{gathered} \text { Yes } \\ 2 \end{gathered}$							
Maximum CPU frequency		216 MHz ${ }^{(7)}$							

Table 2. STM32F722xx and STM32F723xx features and peripheral counts (continued)

Peripherals	STM32F72xRx	STM32F72xVx	STM32F72xZx	STM32F72xIx
Operating voltage	1.7 to $3.6 \mathrm{~V}^{(8)}$			
	Ambient temperatures: -40 to $+85{ }^{\circ} \mathrm{C} /-40$ to $+105^{\circ} \mathrm{C}$			
	Junction temperature: -40 to $+125{ }^{\circ} \mathrm{C}$			
Package	LQFP64 ${ }^{(9)}$	$\begin{gathered} \text { LQFP100(9) } \\ \text { WLCSP100 }^{(10)} \end{gathered}$	$\begin{gathered} \text { LQFP144 } \\ \text { UFBGA144 } \end{gathered}$	UFBGA176 LQFP176

1. For the LQFP100 package, only FMC Bank1 is available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select.
2. On the STM32F723xx device packages, except the 176 -pin ones, the TIM12 is not available, so there are 9 generalpurpose timers.
3. The SPI1, SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I^{2} S audio mode.
4. USB OTG HS with the ULPI on the STM32F722xx devices and with integrated HS PHY on the STM32F723xx devices.
5. The SDMMC2 supports a dedicated power rail for clock, command and data $0 . .4$ lines, feature available starting from 144 pin package.
6. The SDMMC2 is not available on the STM32F723Vx devices.
7. 216 MHz maximum frequency for $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ambient temperature range $\left(200 \mathrm{MHz}\right.$ maximum frequency for $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ ambient temperature range).
8. $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{DDA}}$ minimum value of 1.7 V is obtained when the internal reset is OFF (refer to Section 2.15.2: Internal reset OFF).
9. Available only on the STM32F722xx devices.
10. Available only on the STM32F723xx devices.

1.1 Full compatibility throughout the family

The STM32F722xx devices are fully pin-to-pin, compatible with the STM32F7x5xx, STM32F7x6xx, STM32F7x7xx devices.

The STM32F722xx devices are fully pin-to-pin, compatible with the STM32F4xxxx devices, allowing the user to try different peripherals, and reaching higher performances (higher frequency) for a greater degree of freedom during the development cycle.

Figure 1 and Figure 2 give compatible board designs between the STM32F722xx and STM32F4xx families.

Figure 1. Compatible board design for LQFP100 package

Figure 2. Compatible board design for LQFP64 package

The STM32F722xx LQFP144, UFBGA176 and LQFP176 packages are fully pin to pin compatible with the STM32F4xx devices.

1.2 STM32F723xx versus STM32F722xx LQFP144/LQFP176 packages:

Figure 3. Compatible board design for LQFP144 package

Figure 4. Compatible board design for LQFP176 package

Figure 5. STM32F722xx and STM32F723xx block diagram

1. The timers connected to APB2 are clocked from TIMxCLK up to 216 MHz , while the timers connected to APB1 are clocked from TIMxCLK either up to 108 MHz or 216 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR register.
2. Available only on the STM32F723xx devices.

2 Functional overview

2.1 ARM ${ }^{\circledR}$ Cortex $^{\circledR}-$ M7 with FPU

The ARM ${ }^{\circledR}$ Cortex ${ }^{\circledR}-M 7$ with FPU processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and low interrupt latency.

The Cortex ${ }^{\circledR}-\mathrm{M} 7$ processor is a highly efficient high-performance featuring:

- Six-stage dual-issue pipeline
- Dynamic branch prediction
- Harvard caches (8 Kbytes of I-cache and 8 Kbytes of D-cache)
- 64-bit AXI4 interface
- 64-bit ITCM interface
- 2x32-bit DTCM interfaces

The processor supports the following memory interfaces:

- Tightly Coupled Memory (TCM) interface.
- Harvard instruction and data caches and AXI master (AXIM) interface.
- Dedicated low-latency AHB-Lite peripheral (AHBP) interface.

The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution.

It supports single precision FPU (floating point unit), speeds up software development by using metalanguage development tools, while avoiding saturation.

Figure 5 shows the general block diagram of the STM32F722xx and STM32F723xx family.
Note: \quad Cortex ${ }^{\circledR}-M 7$ with FPU core is binary compatible with the Cortex ${ }^{\circledR}-M 4$ core.

2.2 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.

The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

2.3 Embedded Flash memory

The STM32F722xx and STM32F723xx devices embed a Flash memory of up to 512 Kbytes available for storing programs and data.

The flexible protections can be configured thanks to option bytes:

- Readout protection (RDP) to protect the whole memory. Three levels are available:
- Level 0: no readout protection
- Level 1: No access (read, erase, program) to the Flash memory or backup SRAM can be performed while the debug feature is connected or while booting from RAM or system memory bootloader
- Level 2: debug/chip read protection disabled.
- Write protection (WRP): the protected area is protected against erasing and programming.
- Proprietary code readout protection (PCROP): Flash memory user sectors (0 to 7) can be protected against D-bus read accesses by using the proprietary readout protection (PCROP). The protected area is execute-only.

2.4 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location.

2.5 Embedded SRAM

All the devices feature:

- System SRAM up to 256 Kbytes:
- SRAM1 on AHB bus Matrix: 176 Kbytes
- SRAM2 on AHB bus Matrix: 16 Kbytes
- DTCM-RAM on TCM interface (Tighly Coupled Memory interface): 64 Kbytes for critical real-time data.
- Instruction RAM (ITCM-RAM) 16 Kbytes:
- It is mapped on TCM interface and reserved only for CPU Execution/Instruction useful for critical real-time routines.

The Data TCM RAM is accessible by the GP-DMAs and peripheral DMAs through the specific AHB slave of the CPU.The instruction TCM RAM is reserved only for CPU. It is accessed at CPU clock speed with 0 wait states.

- 4 Kbytes of backup SRAM

This area is accessible only from the CPU. Its content is protected against possible unwanted write accesses, and is retained in Standby or VBAT mode.

2.6 AXI-AHB bus matrix

The STM32F722xx and STM32F723xx system architecture is based on 2 sub-systems:

- An AXI to multi AHB bridge converting AXI4 protocol to AHB-Lite protocol:
- $3 x$ AXI to 32-bit AHB bridges connected to AHB bus matrix
- $1 \times \mathrm{AXI}$ to 64-bit AHB bridge connected to the embedded Flash memory
- A multi-AHB Bus-Matrix
- The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, USB HS) and the slaves (Flash memory, RAM, FMC, Quad-SPI, AHB and APB peripherals) and ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously.

Figure 6. STM32F722xx and STM32F723xx AXI-AHB bus matrix architecture ${ }^{(1)}$

1. The above figure has large wires for 64 -bits bus and thin wires for 32 -bits bus.

2.7 DMA controller (DMA)

The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8 streams each. They are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB).

The two DMA controllers support circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code.
Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. The configuration is made by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals:

- $\quad S P I$ and $I^{2} S$
- $\quad I^{2} C$
- USART
- General-purpose, basic and advanced-control timers TIMx
- DAC
- SDMMC
- ADC
- SAI
- Quad-SPI

2.8 Flexible memory controller (FMC)

The Flexible memory controller (FMC) includes three memory controllers:

- The NOR/PSRAM memory controller
- The NAND/memory controller
- The Synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) controller

The main features of the FMC controller are the following:

- Interface with static-memory mapped devices including:
- Static random access memory (SRAM)
- NOR Flash memory/OneNAND Flash memory
- PSRAM (4 memory banks)
- NAND Flash memory with ECC hardware to check up to 8 Kbytes of data
- Interface with synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) memories
- 8-, 16-, 32-bit data bus width
- Independent Chip Select control for each memory bank
- Independent configuration for each memory bank
- Write FIFO
- Read FIFO for SDRAM controller
- The maximum FMC_CLK/FMC_SDCLK frequency for synchronous accesses is HCLK/2

LCD parallel interface

The FMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build costeffective graphic applications using LCD modules with embedded controllers or high performance solutions using external controllers with dedicated acceleration.

2.9 Quad-SPI memory interface (QUADSPI)

All the devices embed a Quad-SPI memory interface, which is a specialized communication interface targetting Single, Dual or Quad-SPI Flash memories. It can work in:

- Direct mode through registers
- External Flash status register polling mode
- Memory mapped mode.

Up to 256 Mbytes of external Flash are memory mapped, supporting 8, 16 and 32 -bit access. The code execution is supported.

The opcode and the frame format are fully programmable. Communication can be either in Single Data Rate or Dual Data Rate.

2.10 Nested vectored interrupt controller (NVIC)

The devices embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 110 maskable interrupt channels plus the 16 interrupt lines of the Cortex ${ }^{\circledR}$ M7 with FPU core.

- Closely coupled NVIC gives low-latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Allows early processing of interrupts
- Processing of late arriving, higher-priority interrupts
- Support tail chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimum interrupt latency.

2.11 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 24 edge-detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 140 GPIOs in the STM32F722xx devices (138 GPIOs in the STM32F723xx devices) can be connected to the 16 external interrupt lines.

2.12 Clocks and startup

On reset the 16 MHz internal HSI RC oscillator is selected as the default CPU clock. The 16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy. The application can then select as system clock either the RC oscillator or an external $4-26 \mathrm{MHz}$ clock source. This clock can be monitored for failure. If a failure is detected, the system automatically switches back to the internal RC oscillator and a software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing to increase the frequency up to 216 MHz . Similarly, a full interrupt management of the PLL clock entry is available when necessary (for example if an indirectly used external oscillator fails).

Several prescalers allow the configuration of the two AHB buses, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB buses is 216 MHz while the maximum frequency of the high-speed APB domains is 108 MHz . The maximum allowed frequency of the low-speed APB domain is 54 MHz .

The devices embed two dedicated PLL (PLLI2S and PLLSAI) which allow to achieve audio class performance. In this case, the $I^{2} S$ and SAI master clock can generate all standard sampling frequencies from 8 kHz to 192 kHz .
The STM32F723xx devices embed two PLLs inside the PHY HS controller: PHYPLL1 and PHYPLL2. The PHYPLL1 allows to output 60 MHz used as an input for PHYPLL2 which itself allows to generate the 480 Mbps in the USB OTG High Speed mode.

The PHYPLL1 has as input HSE clock.

2.13 Boot modes

At startup, the boot memory space is selected by the BOOT pin and BOOT_ADDx option bytes, allowing to program any boot memory address from 0×00000000 to 0x3FFF FFFF which includes:

- All Flash address space mapped on ITCM or AXIM interface
- All RAM address space: ITCM, DTCM RAMs and SRAMs mapped on AXIM interface
- The System memory bootloader

The boot loader is located in system memory. It is used to reprogram the Flash memory through a serial interface.

2.14 Power supply schemes

- $\quad \mathrm{V}_{\mathrm{DD}}=1.7$ to 3.6 V : external power supply for I/Os and the internal regulator (when enabled), provided externally through V_{DD} pins.
- $\quad V_{S S A}, V_{D D A}=1.7$ to 3.6 V : external analog power supplies for ADC, DAC, Reset blocks, RCs and PLL. $V_{D D A}$ and $V_{S S A}$ must be connected to $V_{D D}$ and $V_{S S}$, respectively.
- $\quad \mathrm{V}_{\text {BAT }}=1.65$ to 3.6 V : power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

Note: \quad The $V_{D D} V_{D D A}$ minimum value of 1.7 V is obtained when the internal reset is OFF (refer to Section 2.15.2: Internal reset OFF). Refer to Table 3: Voltage regulator configuration mode versus device operating mode to identify the packages supporting this option.

- The $\mathrm{V}_{\text {DDSDMMC }}$ can be connected either to V_{DD} or an external independent power supply (1.8 to 3.6 V) for the SDMMC2 pins (clock, command, and 4-bit data). For example, when the device is powered at 1.8 V , an independent power supply 2.7 V can be connected to $V_{\text {DDSDMMC }}$. When the $V_{\text {DDSDMMC }}$ is connected to a separated power supply, it is independent from $V_{D D}$ or $V_{D D A}$ but it must be the last supply to be provided and the first to disappear. The following conditions $V_{\text {DDSDMMC }}$ must be respected:
- During the power-on phase ($\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\mathrm{DD}}$ MIN $), \mathrm{V}_{\text {DDSDMMC }}$ should be always lower than $V_{D D}$
- During the power-down phase $\left(\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\mathrm{DD} \text { _MIN }}\right), \mathrm{V}_{\text {DDSDMMC }}$ should be always lower than $V_{D D}$
- The $\mathrm{V}_{\text {DDSDMMC }}$ rising and falling time rate specifications must be respected (see Table 20 and Table 21)
- In the operating mode phase, $\mathrm{V}_{\text {DDSDMMC }}$ could be lower or higher than V_{DD} : All associated GPIOs powered by $\mathrm{V}_{\text {DDSDMMC }}$ are operating between $V_{\text {DDSDMMC_MIN }}$ and $V_{\text {DDSDMMC_MAX }}$
- The $\mathrm{V}_{\text {DDUSB }}$ can be connected either to V_{DD} or an external independent power supply (3.0 to 3.6 V) for USB transceivers (refer to Figure 7 and Figure 8). For example, when the device is powered at 1.8 V , an independent power supply 3.3 V can be connected to the $\mathrm{V}_{\text {DDUSB }}$. When the $\mathrm{V}_{\text {DDUSB }}$ is connected to a separated power supply, it is independent from V_{DD} or $\mathrm{V}_{\mathrm{DDA}}$ but it must be the last supply to be provided and the first to disappear. The following conditions $V_{\text {DDUSB }}$ must be respected:
- During the power-on phase $\left(\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\mathrm{DD}} \mathrm{MIN}\right), \mathrm{V}_{\mathrm{DDUSB}}$ should be always lower than $V_{D D}$
- During the power-down phase $\left(\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\mathrm{DD}} \mathrm{MIN}\right), \mathrm{V}_{\mathrm{DDUSB}}$ should be always lower

than $V_{D D}$

- The $V_{\text {DDUSB }}$ rising and falling time rate specifications must be respected
- In the operating mode phase, $V_{\text {DDUSB }}$ could be lower or higher than $V_{D D}$:
- If the USB (USB OTG_HS/OTG_FS) is used, the associated GPIOs powered by $V_{\text {DDUSB }}$ are operating between $V_{\text {DDUSB_MIN }}^{-}$and $V_{\text {DDUSB_MAX. }}$
- The V ${ }_{\text {DDUSB }}$ supplies both USB transceiver (USB OTG_HS and USB OTG_FS). If only one USB transceiver is used in the application, the GPIOs associated to the other USB transceiver are still supplied by $V_{\text {DDUSB }}$.
- If the USB (USB OTG_HS/OTG_FS) is not used, the associated GPIOs powered by $\mathrm{V}_{\text {DDUSB }}$ are operating between $\mathrm{V}_{\text {DD_MIN }}$ and $\mathrm{V}_{\text {DD_MAX }}$.

Figure 7. $V_{\text {DDUSB }}$ connected to $V_{\text {DD }}$ power supply

Figure 8. $V_{\text {DDUSB }}$ connected to external power supply

On the STM32F7x3xx devices, the USB OTG HS sub-system uses an additional power supply pin:

- \quad The VDD12OTGHS pin is the output of PHY HS regulator (1.2V). An external capacitor of $2.2 \mu \mathrm{~F}$ must be connected on the VDD12OTGHS pin.

2.15 Power supply supervisor

2.15.1 Internal reset ON

On packages embedding the PDR_ON pin, the power supply supervisor is enabled by holding PDR_ON high. On the other packages, the power supply supervisor is always enabled.

The device has an integrated power-on reset (POR)/ power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and ensures proper operation starting from 1.8 V . After the 1.8 V POR threshold level is reached, the option byte loading process starts, either to confirm or modify default BOR thresholds, or to disable BOR permanently. Three BOR thresholds are available through option bytes. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{\text {POR/PDR }}$ or $V_{B O R}$, without the need for an external reset circuit.

The device also features an embedded programmable voltage detector (PVD) that monitors the $V_{D D} / V_{D D A}$ power supply and compares it to the $V_{P V D}$ threshold. An interrupt can be generated when $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{DDA}}$ drops below the $\mathrm{V}_{\mathrm{PVD}}$ threshold and/or when $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{DDA}}$ is higher than the $\mathrm{V}_{\text {PVD }}$ threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

2.15.2 Internal reset OFF

This feature is available only on packages featuring the PDR_ON pin. The internal power-on reset (POR) / power-down reset (PDR) circuitry is disabled through the PDR_ON pin.

An external power supply supervisor should monitor V_{DD} and NRST and should maintain the device in reset mode as long as V_{DD} is below a specified threshold. PDR_ON should be connected to V_{SS}. Refer to Figure 9: Power supply supervisor interconnection with internal reset OFF.

Figure 9. Power supply supervisor interconnection with internal reset OFF

The V_{DD} specified threshold, below which the device must be maintained under reset, is 1.7 V (see Figure 10).

A comprehensive set of power-saving mode allows to design low-power applications.
When the internal reset is OFF, the following integrated features are no more supported:

- The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled
- The brownout reset (BOR) circuitry must be disabled
- The embedded programmable voltage detector (PVD) is disabled
- $\quad \mathrm{V}_{\mathrm{BAT}}$ functionality is no more available and $\mathrm{V}_{\mathrm{BAT}}$ pin should be connected to V_{DD}. All packages, except for the LQFP100, allow to disable the internal reset through the PDR_ON signal when connected to $\mathrm{V}_{\text {Ss }}$.

Figure 10. PDR_ON control with internal reset OFF

2.16 Voltage regulator

The regulator has four operating modes:

- Regulator ON
- Main regulator mode (MR)
- Low power regulator (LPR)
- Power-down
- Regulator OFF

2.16.1 Regulator ON

On packages embedding the BYPASS_REG pin, the regulator is enabled by holding BYPASS_REG low. On all other packages, the regulator is always enabled.
There are three power modes configured by software when the regulator is ON:

- MR mode used in Run/sleep modes or in Stop modes
- In Run/Sleep modes

The MR mode is used either in the normal mode (default mode) or the over-drive mode (enabled by software). Different voltages scaling are provided to reach the best compromise between maximum frequency and dynamic power consumption. The over-drive mode allows operating at a higher frequency than the normal mode for a given voltage scaling.

- In Stop modes

The MR can be configured in two ways during stop mode:
MR operates in normal mode (default mode of MR in stop mode)
MR operates in under-drive mode (reduced leakage mode).

- LPR is used in the Stop modes:

The LP regulator mode is configured by software when entering Stop mode.
Like the MR mode, the LPR can be configured in two ways during stop mode:

- LPR operates in normal mode (default mode when LPR is ON)
- LPR operates in under-drive mode (reduced leakage mode).
- Power-down is used in Standby mode.

The Power-down mode is activated only when entering in Standby mode. The regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption. The contents of the registers and SRAM are lost.

Refer to Table 3 for a summary of voltage regulator modes versus device operating modes.
The $\mathrm{V}_{\text {CAP } 1}$ and $\mathrm{V}_{\text {CAP }} 2$ pins must be connected to $2 * 2.2 \mu \mathrm{~F}$, ESR $<2 \Omega$ (or $1 * 4.7 \mu \mathrm{~F}$, ESR between $\overline{0.1} \Omega$ and 0.2Ω if only the $\mathrm{V}_{\mathrm{CAP}_{-} 1}$ pin is provided (on LQFP64 package)).
All the packages have the regulator ON feature.

Table 3. Voltage regulator configuration mode versus device operating mode ${ }^{(1)}$

Voltage regulator configuration	Run mode	Sleep mode	Stop mode	Standby mode
Normal mode	MR	MR	MR or LPR	-
Over-drive mode	MR	MR	-	-
Under-drive mode	-	-	MR or LPR	-
Power-down mode	-	-	-	Yes

1. ' - ' means that the corresponding configuration is not available.
2. The over-drive mode is not available when $\mathrm{V}_{\mathrm{DD}}=1.7$ to 2.1 V .

2.16.2 Regulator OFF

This feature is available only on packages featuring the BYPASS_REG pin. The regulator is disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply externally a V_{12} voltage source through $\mathrm{V}_{\mathrm{CAP}} 1$ and $\mathrm{V}_{\mathrm{CAP}}$ 2 pins.
Since the internal voltage scaling is not managed internally, the external voltage value must be aligned with the targeted maximum frequency. The two $2.2 \mu \mathrm{~F}$ ceramic capacitors should be replaced by two 100 nF decoupling capacitors.
When the regulator is OFF, there is no more internal monitoring on V_{12}. An external power supply supervisor should be used to monitor the V_{12} of the logic power domain. The PA0 pin should be used for this purpose, and act as power-on reset on V_{12} power domain.

In regulator OFF mode, the following features are no more supported:

- PAO cannot be used as a GPIO pin since it allows to reset a part of the V_{12} logic power domain which is not reset by the NRST pin.
- As long as PAO is kept low, the debug mode cannot be used under power-on reset. As a consequence, PA0 and NRST pins must be managed separately if the debug connection under reset or pre-reset is required.
- The over-drive and under-drive modes are not available.
- The Standby mode is not available.

Figure 11. Regulator OFF

The following conditions must be respected:

- $V_{D D}$ should always be higher than $\mathrm{V}_{\mathrm{CAP}_{-} 1}$ and $\mathrm{V}_{\mathrm{CAP}_{2}}$ to avoid current injection between power domains.
- If the time for $V_{C A P _1}$ and $V_{C A P _2}$ to reach V_{12} minimum value is faster than the time for V_{DD} to reach $1.7 \mathrm{~V}^{-}$, then PA0 should be kept low to cover both conditions: until $\mathrm{V}_{\mathrm{CAP}}$ _1 and $\mathrm{V}_{\mathrm{CAP} _2}$ reach V_{12} minimum value and until V_{DD} reaches 1.7 V (see Figure 12).
- Otherwise, if the time for $\mathrm{V}_{\mathrm{CAP}_{-} 1}$ and $\mathrm{V}_{\mathrm{CAP}_{-2}}$ to reach V_{12} minimum value is slower than the time for V_{DD} to reach $\overline{1} .7 \mathrm{~V}$, then PA0 could be asserted low externally (see Figure 13).
- If $V_{C A P _1}$ and $V_{C A P _2}$ go below V_{12} minimum value and $V_{D D}$ is higher than 1.7 V , then a reset must be asserted on PAO pin.
Note: \quad The minimum value of V_{12} depends on the maximum frequency targeted in the application.
Note: \quad On the LQFP64 pin package, the $\mathrm{V}_{\mathrm{CAP}_{2} 2}$ is not available.

Figure 12. Startup in regulator OFF: slow V_{DD} slope - power-down reset risen after $\mathrm{V}_{\mathrm{CAP} 1} / \mathrm{V}_{\mathrm{CAP} \text { 2 }}$ stabilization

1. This figure is valid whatever the internal reset mode (ON or OFF).

Figure 13. Startup in regulator OFF mode: fast V_{DD} slope - power-down reset risen before $\mathrm{V}_{\mathrm{CAP}} 1 / \mathrm{V}_{\mathrm{CAP}}$ 2 stabilization

1. This figure is valid whatever the internal reset mode (ON or OFF).

2.16.3 Regulator ON/OFF and internal reset ON/OFF availability

Table 4. Regulator ON/OFF and internal reset ON/OFF availability

Package	Regulator ON	Regulator OFF	Internal reset ON	Internal reset OFF
LQFP64, LQFP100	Yes	No	Yes	No
LQFP144			$\begin{gathered} \text { Yes } \\ \text { PDR_ON set to } V_{D D} \end{gathered}$	$\begin{gathered} \text { Yes } \\ \text { PDR_ON set to } V_{S S} \end{gathered}$
LQFP176, UFBGA144, UFBGA176	Yes BYPASS_REG set to $V_{S S}$	Yes BYPASS_REG set to $V_{D D}$		

2.17 Real-time clock (RTC), backup SRAM and backup registers

The RTC is an independent BCD timer/counter. It supports the following features:

- Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format.
- Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
- Two programmable alarms.
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock.
- Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.
- Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal inaccuracy.
- Three anti-tamper detection pins with programmable filter.
- Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to $V_{\text {BAT }}$ mode.
- 17-bit auto-reload wakeup timer (WUT) for periodic events with programmable resolution and period.
The RTC and the 32 backup registers are supplied through a switch that takes power either from the V_{DD} supply when present or from the $\mathrm{V}_{\mathrm{BAT}}$ pin.

The backup registers are 32-bit registers used to store 128 bytes of user application data when VDD power is not present. They are not reset by a system or power reset, or when the device wakes up from Standby mode.
The RTC clock sources can be:

- A 32.768 kHz external crystal (LSE)
- An external resonator or oscillator(LSE)
- The internal low power RC oscillator (LSI, with typical frequency of 32 kHz)
- The high-speed external clock (HSE) divided by 32

The RTC is functional in $V_{B A T}$ mode and in all low-power modes when it is clocked by the LSE. When clocked by the LSI, the RTC is not functional in $V_{B A T}$ mode, but is functional in all low-power modes.

All the RTC events (Alarm, WakeUp Timer, Timestamp or Tamper) can generate an interrupt and wakeup the device from the low-power modes.

2.18 Low-power modes

The devices support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

- \quad Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

- Stop mode

The Stop mode achieves the lowest power consumption while retaining the contents of SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled.
The voltage regulator can be put either in main regulator mode (MR) or in low-power mode (LPR). Both modes can be configured as follows (see Table 5: Voltage regulator modes in stop mode):

- Normal mode (default mode when MR or LPR is enabled)
- Under-drive mode.

The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup / tamper / time stamp events, the USB OTG FS/HS wakeup and the LPTIM1 asynchronous interrupt).

Table 5. Voltage regulator modes in stop mode

Voltage regulator configuration	Main regulator (MR)	Low-power regulator (LPR)
Normal mode	MR ON	LPR ON
Under-drive mode	MR in under-drive mode	LPR in under-drive mode

- Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.2 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, the SRAM and register contents are lost except for registers in the backup domain and the backup SRAM when selected.
The device exits the Standby mode when an external reset (NRST pin), an IWDG reset, a rising or falling edge on one of the 6 WKUP pins (PA0, PA2, PC1, PC13, Pl8, PI11), or an RTC alarm / wakeup / tamper /time stamp event occurs.
The Standby mode is not supported when the embedded voltage regulator is bypassed and the 1.2 V domain is controlled by an external power.

$2.19 \quad \mathrm{~V}_{\mathrm{BAT}}$ operation

The $\mathrm{V}_{\text {BAT }}$ pin allows to power the device $\mathrm{V}_{\text {BAT }}$ domain from an external battery, an external supercapacitor, or from $V_{D D}$ when no external battery and an external supercapacitor are present.

The $V_{B A T}$ operation is activated when $V_{D D}$ is not present.
The $V_{\text {BAT }}$ pin supplies the RTC, the backup registers and the backup SRAM.
Note: \quad When the microcontroller is supplied from $V_{B A T}$, external interrupts and RTC alarm/events do not exit it from $V_{B A T}$ operation.
When PDR_ON pin is connected to $V_{S S}$ (Internal Reset OFF), the $V_{B A T}$ functionality is no more available and $V_{B A T}$ pin should be connected to VDD.

2.20 Timers and watchdogs

The devices include two advanced-control timers, eight general-purpose timers, two basic timers and two watchdog timers.

All timer counters can be frozen in debug mode.
Table 6 compares the features of the advanced-control, general-purpose and basic timers.

Table 6. Timer feature comparison

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complem entary output	Max interface clock (MHz)	$\begin{gathered} \text { Max } \\ \text { timer } \\ \text { clock } \\ (\mathrm{MHz})^{(1)} \end{gathered}$
Advanced -control	TIM1, TIM8	16-bit		Any integer between 1 and 65536	Yes	4	Yes	108	216
General purpose	$\begin{aligned} & \text { TIM2, } \\ & \text { TIM5 } \end{aligned}$	32-bit		Any integer between 1 and 65536	Yes	4	No	54	108/216
	TIM3, TIM4	16-bit		Any integer between 1 and 65536	Yes	4	No	54	108/216
	TIM9	16-bit	Up	Any integer between 1 and 65536	No	2	No	108	216
	TIM10, TIM11	16-bit	Up	Any integer between 1 and 65536	No	1	No	108	216
	TIM12	16-bit	Up	Any integer between 1 and 65536	No	2	No	54	108/216
	TIM13, TIM14	16-bit	Up	Any integer between 1 and 65536	No	1	No	54	108/216
Basic	TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No	54	108/216

1. The maximum timer clock is either 108 or 216 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR register.

2.20.1 Advanced-control timers (TIM1, TIM8)

The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete general-purpose timers. Their 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge- or center-aligned modes)
- One-pulse mode output

If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If configured as 16 -bit PWM generators, they have full modulation capability (0 100\%).

The advanced-control timer can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining.

The TIM1 and TIM8 support independent DMA request generation.

2.20.2 General-purpose timers (TIMx)

There are ten synchronizable general-purpose timers embedded in the STM32F722xx and STM32F723xx devices (see Table 6 for differences).

- TIM2, TIM3, TIM4, TIM5

The STM32F722xx and STM32F723xx include 4 full-featured general-purpose timers: TIM2, TIM5, TIM3, and TIM4.The TIM2 and TIM5 timers are based on a 32-bit autoreload up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input capture/output compare/PWMs on the largest packages.
The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the Timer Link feature for synchronization or event chaining.
Any of these general-purpose timers can be used to generate PWM outputs.
TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors.

- TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9 and TIM12 have two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases.

2.20.3 Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger and waveform generation. They can also be used as a generic 16-bit time base.

The TIM6 and TIM7 support independent DMA request generation.

2.20.4 Low-power timer (LPTIM1)

The low-power timer has an independent clock and is running also in Stop mode if it is clocked by LSE, LSI or an external clock. It is able to wakeup the devices from Stop mode.
This low-power timer supports the following features:

- 16-bit up counter with 16-bit autoreload register
- 16-bit compare register
- Configurable output: pulse, PWM
- Continuous / one-shot mode
- Selectable software / hardware input trigger
- Selectable clock source:
- Internal clock source: LSE, LSI, HSI or APB clock
- External clock source over LPTIM input (working even with no internal clock source running, used by the Pulse Counter Application)
- Programmable digital glitch filter
- Encoder mode

2.20.5 Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes.

2.20.6 Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

2.20.7 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard downcounter. It features:

- A 24-bit downcounter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source

2.21 Inter-integrated circuit interface $\left(I^{2} \mathrm{C}\right)$

The device embeds $3 I^{2} \mathrm{Cs}$. Refer to Table 7: I2C implementation for the features implementation.
The $I^{2} \mathrm{C}$ bus interface handles communications between the microcontroller and the serial $I^{2} \mathrm{C}$ bus. It controls all $I^{2} \mathrm{C}$ bus-specific sequencing, protocol, arbitration and timing.
The I2C peripheral supports:

- $\quad I^{2} \mathrm{C}$-bus specification and user manual rev. 5 compatibility:
- Slave and master modes, multimaster capability
- Standard-mode (Sm), with a bitrate up to $100 \mathrm{kbit/} / \mathrm{s}$
- Fast-mode (Fm), with a bitrate up to $400 \mathrm{kbit} / \mathrm{s}$
- Fast-mode Plus (Fm+), with a bitrate up to $1 \mathrm{Mbit} / \mathrm{s}$ and 20 mA output drive I/Os
- 7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
- Programmable setup and hold times
- Optional clock stretching
- System Management Bus (SMBus) specification rev 2.0 compatibility:
- Hardware PEC (Packet Error Checking) generation and verification with ACK control
- Address resolution protocol (ARP) support
- SMBus alert
- Power System Management Protocol (PMBus ${ }^{\text {TM }}$) specification rev 1.1 compatibility
- Independent clock: a choice of independent clock sources allowing the $\mathrm{I}^{2} \mathrm{C}$ communication speed to be independent from the PCLK reprogramming.
- Programmable analog and digital noise filters
- 1-byte buffer with DMA capability

Table 7. $\mathrm{I}^{2} \mathrm{C}$ implementation

I $^{\mathbf{2}}$ C features $^{(1)}$	I2C1	I2C2	I2C3
Standard-mode (up to 100 kbit/s)	X	X	X
Fast-mode (up to 400 kbit/s)	X	X	X
Fast-mode Plus with 20 mA output drive I/Os (up to 1 Mbit/s)	X	X	X
Programmable analog and digital noise filters	X	X	X
SMBus/PMBus hardware support	X	X	X
Independent clock	X	X	X

1. X : supported.

2.22 Universal synchronous/asynchronous receiver transmitters (USART)

The device embeds USARTs. Refer to Table 8: USART implementation for the features implementation.

The universal synchronous asynchronous receiver transmitter (USART) offers a flexible means of full-duplex data exchange with external equipment requiring an industry standard NRZ asynchronous serial data format.

The USART peripheral supports:

- Full-duplex asynchronous communications
- Configurable oversampling method by 16 or 8 to give flexibility between speed and clock tolerance
- Dual clock domain allowing convenient baud rate programming independent from the PCLK reprogramming
- A common programmable transmit and receive baud rate of up to $27 \mathrm{Mbit} / \mathrm{s}$ when USART clock source is system clock frequency (max is 216 MHz) and oversampling by 8 is used.
- Auto baud rate detection
- Programmable data word length (7 or 8 or 9 bits) word length
- Programmable data order with MSB-first or LSB-first shifting
- Progarmmable parity (odd, even, no parity)
- Configurable stop bits (1 or 1.5 or 2 stop bits)
- Synchronous mode and clock output for synchronous communications
- Single-wire half-duplex communications
- Separate signal polarity control for transmission and reception
- Swappable Tx/Rx pin configuration
- Hardware flow control for modem and RS-485 transceiver
- Multiprocessor communications
- LIN master synchronous break send capability and LIN slave break detection capability
- IrDA SIR encoder decoder supporting 3/16 bit duration for normal mode
- Smartcard mode (T=0 and T=1 asynchronous protocols for Smartcards as defined in the ISO/IEC 7816-3 standard)
- Support for Modbus communication

Table 8 summarizes the implementation of all U(S)ARTs instances
Table 8. USART implementation

features $^{(1)}$	USART1/2/3/6	UART4/5/7/8
Data Length	7,8 and 9 bits	
Hardware flow control for modem	X	X
Continuous communication using DMA	X	X
Multiprocessor communication	X	X
Synchronous mode	X	C

Table 8. USART implementation (continued)

features $^{(1)}$	USART1/2/3/6	UART4/5/7/8
Smartcard mode	X	-
Single-wire half-duplex communication	X	X
IrDA SIR ENDEC block	X	X
LIN mode	X	X
Dual clock domain	X	X
Receiver timeout interrupt	X	X
Modbus communication	X	X
Auto baud rate detection	X	X
Driver Enable	X	

1. X : supported.

2.23 Serial peripheral interface (SPI)/inter- integrated sound interfaces ($I^{2} \mathrm{~S}$)

The devices feature up to five SPIs in slave and master modes in full-duplex and simplex communication modes. SPI1, SPI4, and SPI5 can communicate at up to $50 \mathrm{Mbit} / \mathrm{s}$, SPI2 and SPI3 can communicate at up to $25 \mathrm{Mbit} / \mathrm{s}$. The 3 -bit prescaler gives 8 master mode frequencies and the frame is configurable from 4 to 16 bits. The SPI interfaces support NSS pulse mode, TI mode and Hardware CRC calculation. All the SPIs can be served by the DMA controller.
Three standard ${ }^{2}$ S interfaces (multiplexed with SPI1, SPI2 and SPI3) are available. They can be operated in master or slave mode, in simplex communication modes, and can be configured to operate with a $16-/ 32$-bit resolution as an input or output channel. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the $I^{2} S$ interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.
All $I^{2} S x$ can be served by the DMA controller.

2.24 Serial audio interface (SAI)

The devices embed two serial audio interfaces.
The serial audio interface is based on two independent audio subblocks which can operate as transmitter or receiver with their FIFO. Many audio protocols are supported by each block: ${ }^{2}$ S standards, LSB or MSB-justified, PCM/DSP, TDM, AC'97 and SPDIF output, supporting audio sampling frequencies from 8 kHz up to 192 kHz . Both subblocks can be configured in master or in slave mode.
In master mode, the master clock can be output to the external DAC/CODEC at 256 times of the sampling frequency.

The two sub-blocks can be configured in synchronous mode when full-duplex mode is required.

SAl1 and SAI2 can be served by the DMA controller

2.25 Audio PLL (PLLI2S)

The devices feature an additional dedicated PLL for audio I^{2} S and SAI applications. It allows to achieve an error-free $\mathrm{I}^{2} \mathrm{~S}$ sampling clock accuracy without compromising on the CPU performance, while using USB peripherals.

The PLLI2S configuration can be modified to manage an I^{2} S/SAI sample rate change without disabling the main PLL (PLL) used for CPU and USB interfaces.

The audio PLL can be programmed with very low error to obtain sampling rates ranging from 8 KHz to 192 KHz .

In addition to the audio PLL, a master clock input pin can be used to synchronize the $I^{2} S / S A I$ flow with an external PLL (or Codec output).

2.26 Audio PLL (PLLSAI)

An additional PLL dedicated to audio is used for the SAI1 peripheral in case the PLLI2S is programmed to achieve another audio sampling frequency (49.152 MHz or 11.2896 MHz) and the audio application requires both sampling frequencies simultaneously.

2.27 SD/SDIO/MMC card host interface (SDMMC)

SDMMC host interfaces are available, that support MultiMediaCard System Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.

The interface allows data transfer at up to 50 MHz , and is compliant with the SD Memory Card Specification Version 2.0.

The SDMMC Card Specification Version 2.0 is also supported with two different databus modes: 1-bit (default) and 4-bit.

The current version supports only one SD/SDMMC/MMC4.2 card at any one time and a stack of MMC4.1 or previous.

The SDMMC can be served by the DMA controller

2.28 Controller area network (bxCAN)

The CAN is compliant with the 2.0A and B (active) specifications with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. The CAN has three transmit mailboxes, two receive FIFOs with 3 stages and 28 shared scalable filter banks (all of them can be used even if one CAN is used). 256 bytes of SRAM are allocated to the CAN.

2.29 Universal serial bus on-the-go full-speed (OTG_FS)

The device embeds an USB OTG full-speed device/host/OTG peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and with the OTG 2.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator.

The major features are:

- Combined Rx and Tx FIFO size of 1.28 Kbytes with dynamic FIFO sizing
- \quad Supports the session request protocol (SRP) and host negotiation protocol (HNP)
- 1 bidirectional control endpoint +5 IN endpoints +5 OUT endpoints
- 12 host channels with periodic OUT support
- Software configurable to OTG1.3 and OTG2.0 modes of operation
- USB 2.0 LPM (Link Power Management) support
- Internal FS OTG PHY support
- HNP/SNP/IP inside (no need for any external resistor)
- BCD support

For the OTG/Host modes, a power switch is needed in case bus-powered devices are connected

2.30 Universal serial bus on-the-go high-speed (OTG_HS)

The device embeds an USB OTG high-speed (up to $480 \mathrm{Mbit} / \mathrm{s}$) device/host/OTG peripheral. The USB OTG HS supports both full-speed and high-speed operations. It integrates the transceivers for full-speed operation ($12 \mathrm{Mbit} / \mathrm{s}$).

The STM32F722xx devices feature a UTMI low-pin interface (ULPI) for high-speed operation ($480 \mathrm{Mbit} / \mathrm{s}$). When using the USB OTG HS in HS mode, an external PHY device connected to the ULPI is required.

The STM32F723xx devices feature an integrated PHY HS.
The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG 2.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator.

The major features are:

- Combined Rx and Tx FIFO size of 4 Kbytes with dynamic FIFO sizing
- \quad Supports the session request protocol (SRP) and host negotiation protocol (HNP)
- 8 bidirectional endpoints
- 16 host channels with periodic OUT support
- Software configurable to OTG1.3 and OTG2.0 modes of operation
- USB 2.0 LPM (Link Power Management) support
- For the STM32F722xx devices: External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is connected to the microcontroller ULPI port through 12 signals. It can be clocked using the 60 MHz output.
- For the STM32F723xx devices: Internal HS OTG PHY support.
- Internal USB DMA
- HNP/SNP/IP inside (no need for any external resistor)
- For OTG/Host modes, a power switch is needed in case bus-powered devices are connected

2.30.1 Universal Serial Bus controller on-the-go High-Speed PHY controller (USBPHYC) only on STM32F723xx devices.

The USB HS PHY controller:

- \quad Sets the PHYPLL1/2 values for the PHY HS
- Sets the other controls on the PHY HS
- Controls and monitors the USB PHY's LDO

2.31 Random number generator (RNG)

All the devices embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit.

2.32 General-purpose input/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-capable and have speed selection to better manage internal noise, power consumption and electromagnetic emission.

The I/O configuration can be locked if needed by following a specific sequence in order to avoid spurious writing to the I/Os registers.

Fast I/O handling allowing maximum I/O toggling up to 108 MHz .

2.33 Analog-to-digital converters (ADCs)

Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16 external channels, performing conversions in the single-shot or scan mode. In the scan mode, an automatic conversion is performed on a selected group of analog inputs.

Additional logic functions embedded in the ADC interface allow:

- Simultaneous sample and hold
- Interleaved sample and hold

The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1, TIM2, TIM3, TIM4, TIM5, or TIM8 timer.

2.34 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with the temperature. The conversion range is between 1.7 V and 3.6 V . The temperature sensor is internally connected to the same input channel as $\mathrm{V}_{\mathrm{BAT}}$, ADC1_IN18, which is used to convert the sensor output voltage into a digital value. When the temperature sensor and $\mathrm{V}_{\text {BAT }}$ conversion are enabled at the same time, only $\mathrm{V}_{\mathrm{BAT}}$ conversion is performed.

As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used.

2.35 Digital-to-analog converter (DAC)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs.

This dual digital Interface supports the following features:

- Two DAC converters: one for each output channel
- 8-bit or 12-bit monotonic output
- Left or right data alignment in 12-bit mode
- Synchronized update capability
- Noise-wave generation
- Triangular-wave generation
- Dual DAC channel independent or simultaneous conversions
- DMA capability for each channel
- External triggers for conversion
- Input voltage reference $\mathrm{V}_{\mathrm{REF}}+$

Eight DAC trigger inputs are used in the device. The DAC channels are triggered through the timer update outputs that are also connected to different DMA streams.

2.36 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

The debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

2.37 Embedded Trace Macrocell ${ }^{\text {TM }}$

The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F722xx and STM32F723xx through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using the USB or any other high-speed channel. The real-time instruction and data flow activity can be recorded and then formatted for display on the host computer that runs the debugger software. The TPA hardware is commercially available from common development tool vendors.

The Embedded Trace Macrocell operates with third party debugger software tools.

3 Pinouts and pin description

Figure 14. STM32F722xx LQFP64 pinout

1. The above figure shows the package top view.

Figure 15. STM32F722xx LQFP100 pinout

1. The above figure shows the package top view.

Figure 16. STM32F723xx WLCSP100 ballout (with OTG PHY HS)
PACA

1. The above figure shows the package top view.

Figure 17. STM32F722xx LQFP144 pinout

1. The above figure shows the package top view.

Figure 18. STM32F723xx LQFP144 pinout

1. The above figure shows the package top view.

Figure 19. STM32F723xx UFBGA144 ballout (with OTG PHY HS)

1. The above figure shows the package top view.

Figure 20. STM32F722xx LQFP176 pinout

1. The above figure shows the package top view.

Figure 21. STM32F723xx LQFP176 pinout

1. The above figure shows the package top view.

Figure 22. STM32F723xx UFBGA176 ballout

1. The above figure shows the package top view.

Figure 23. STM32F723xx UFBGA176 ballout (with OTG PHY HS)

1. The above figure shows the package top view.

Table 9. Legend/abbreviations used in the pinout table

Name	Abbreviation	Definition
Pin name	Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name	
Pin type	S	Supply pin
	1	Input only pin
	I/O	Input / output pin
I/O structure	FT	5 V tolerant I/O
	TTa	3.3 V tolerant I/O directly connected to ADC
	B	Dedicated BOOT pin
	RST	Bidirectional reset pin with weak pull-up resistor
Notes	Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset	
Alternate functions	Functions selected through GPIOx_AFR registers	
Additional functions	Functions directly selected/enabled through peripheral registers	

Pin Number										Pin name (function after reset) ${ }^{(1)}$	$\underset{\underset{\sim}{2}}{\stackrel{0}{2}}$	003000000	$\begin{aligned} & \text { 』 } \\ & \text { ¢ } \\ & \mathbf{Z} \end{aligned}$	Alternate functions	Additional functions
STM32F722xx					STM32F723xx										
$\begin{aligned} & \text { む̀ } \\ & \text { OU } \\ & \hline \mathbf{U} \end{aligned}$	$\begin{aligned} & 8 \\ & \frac{0}{2} \\ & \frac{1}{4} \end{aligned}$		$\stackrel{\circ}{\stackrel{1}{4}}$ $\stackrel{0}{0}$ $\stackrel{1}{\Xi}$	$\begin{aligned} & 0 \\ & \stackrel{0}{\lambda} \\ & \stackrel{1}{0} \end{aligned}$	음 0 3 3 3			$\begin{aligned} & \underset{\sim}{\underset{1}{4}} \\ & \underset{0}{1} \end{aligned}$							
-	1	1	A2	1	C9	A2	A3	1	1	PE2	I/O	FT	-	```TRACECLK, SPI4_SCK, SAI1_MCLK_A, QUADSPI_BK1_IO2, FMC_A23, EVENTOUT```	-
-	2	2	A1	2	A10	A1	A2	2	2	PE3	I/O	FT	-	TRACEDO, SAI1_SD_B, FMC_A19, EVENTTOUT	-
-	3	3	B1	3	D9	B1	B2	3	3	PE4	I/O	FT	-	TRACED1, SPI4_NSS, SAI1_FS_A, FMC_A20, EVENTOUT	-
-	4	4	B2	4	E8	B2	B3	4	4	PE5	1/O	FT	-	TRACED2, TIM9_CH1, SPI4_MISO, SAI1_SCK_A, FMC_A21, EVENTOUT	-
-	5	5	B3	5	B10	B3	B4	5	5	PE6	I/O	FT	-	TRACED3, TIM1_BKIN2, TIM9_CH2, SPI4_MOSI, SAl1_SD_A, SAI2_MCK_B, FMC_A22, EVENTOUT	-

Table 10．STM32F722xx and STM32F723xx pin and ball definition（continued）

						$\begin{aligned} & \underline{Z} \\ & \widetilde{N}^{\prime} \\ & \mathscr{0} \end{aligned}$		＇	＇	0 2 $\frac{1}{3}$ $\frac{1}{3}$
			＇	$\begin{aligned} & \stackrel{5}{\square} \\ & \stackrel{\rightharpoonup}{2} \\ & \underset{\sim}{\underset{\sim}{3}} \end{aligned}$	$\begin{aligned} & \stackrel{5}{2} \\ & \stackrel{0}{2} \\ & \underset{\sim}{\underset{\sim}{2}} \end{aligned}$	$\begin{aligned} & \stackrel{5}{O} \\ & \stackrel{0}{2} \\ & \stackrel{\rightharpoonup}{Z} \end{aligned}$	$\begin{aligned} & \stackrel{5}{O} \\ & \stackrel{\rightharpoonup}{2} \\ & \stackrel{\rightharpoonup}{\mathrm{Z}} \end{aligned}$			
		səł）	＇	ล	ล	ล న్ర	ล న్ర	＇	＇	
		nıs O／I	＇	ㄴ	เ	เ	เ	ヶ	เ	ㄴ
		dKı u！d	∞	\bigcirc						
			$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{C}} \\ & \mathrm{~m} \end{aligned}$	$\underline{\infty}$	ভ			$\frac{\square}{\square}$	$\frac{ㅇ ㅡ ㅁ ~}{\square}$	츰
	$\begin{aligned} & \times \\ & \stackrel{\times}{0} \\ & \stackrel{N}{N} \\ & \underset{N}{N} \\ & \sum_{\omega}^{m} \end{aligned}$	921dJ07	\bigcirc	N	∞	の	은	F	$\stackrel{ }{\sim}$	$\stackrel{\square}{\square}$
		tャrdjol	\bigcirc	＇	\checkmark	∞	∞	＇	＇	＇
		カャレヒソ日コก	ก	＇	ז	$\bar{\infty}$	$\bar{\top}$	＇	＇	1
		9LレVOgコก	$\bar{\circlearrowright}$	ก	$\bar{\square}$	$\bar{山}$	ז	®	セ๊	山゙
		001dS37M	$\stackrel{\circ}{0}$	＇	$\stackrel{\circ}{\square}$	®	은	＇	＇	＇
		92ldj07	\bigcirc	入	∞	の	안	F	$\stackrel{ }{\sim}$	$\stackrel{\square}{\square}$
		9LレVO8コก	$\bar{\circlearrowright}$	ก	$\bar{\square}$	$\bar{\Psi}$	ז	ก	巴ี	$\stackrel{\text { 山 }}{ }$
		tildsol	\bigcirc	＇	\wedge	∞	σ	＇	＇	＇
		001dJ07	\bullet	＇	\checkmark	∞	の	＇	＇	＇
		79d－17	\checkmark	＇	N	m	－	＇	＇	＇

Table 10．STM32F722xx and STM32F723xx pin and ball definition（continued）

				，	＇	＇	＇				＇	＇	
			＇	＇							－	＇	
		əı0N	＇	＇	＇	＇	＇	＇	＇	＇	＇	＇	
		nuls O／l	＇	＇	ㄴ		ᄂ	ヶ	䘮	迷	＇	＇	เ
		Kı uld	の	の	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc	の	\cdots	\bigcirc
		$\begin{aligned} & \text { (function after } \\ & \text { reset) }{ }^{(1)} \end{aligned}$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \\ & \hline \end{aligned}\right.$	号	$\frac{\text { 음 }}{}$	$\frac{\bar{u}}{\square}$	$\stackrel{N}{\mathrm{~N}}$	$\stackrel{\stackrel{M}{1}}{\square}$	$\frac{\underset{\sim}{1}}{1}$	$\underset{\text { ! }}{\stackrel{4}{\mathrm{a}}}$	$\begin{aligned} & \infty \\ & \end{aligned}$	$\stackrel{\circ}{\mathrm{Q}}$	안
	$\begin{aligned} & \times \\ & \stackrel{\times}{N} \\ & \underset{N}{N} \\ & \underset{N}{N} \\ & \sum_{\omega}^{m} \end{aligned}$	94ldJ07	\pm	$\stackrel{\square}{\sim}$	$\stackrel{\bigcirc}{\bullet}$	$\stackrel{\rightharpoonup}{*}$	$\stackrel{\infty}{\square}$	$\stackrel{\square}{\square}$	은	$\bar{\sim}$	N	\cdots	＋
		¢trdjol	＇	＇	은	F	$\stackrel{ }{\sim}$	$\stackrel{\square}{\square}$	\pm	$\stackrel{\sim}{\sim}$	$\stackrel{-}{\circ}$	\wedge	$\stackrel{\infty}{\sim}$
		カカレVO日コก	＇	＇	O	J	\pm	บิ	®	㞧	N	ก	ゼ
		9LレVOgan		ก	บี	$\stackrel{m}{\square}$	ㄲ	N	\cdots	$\underset{\sim}{\square}$	N	O	צ
		001dSכาM	＇	＇	＇	＇	＇	＇	＇	＇	안	은	＇
	$\underset{\sim}{x}$$\underset{\sim}{N}$$\stackrel{N}{4}$$\underset{\omega}{m}$$\sum_{n}$	9LIdJO7	\pm	$\stackrel{10}{\square}$	$\stackrel{\square}{\bullet}$	$\stackrel{\rightharpoonup}{*}$	$\stackrel{\square}{\square}$	\bigcirc	$\stackrel{\sim}{\sim}$	$\bar{\sim}$	N	\cdots	N
		9LLVO日	ํ	セ	กี	꼬	$\xrightarrow{\text { N }}$	N	$\stackrel{\square}{\sim}$	$\underset{\sim}{\text { ® }}$	ก	O	צ
		カtrdj07	＇	＇	은	F	$\stackrel{\text { }}{ }$	$\stackrel{\sim}{\square}$	\pm	$\stackrel{10}{\sim}$	\bigcirc	$\stackrel{\sim}{*}$	$\stackrel{\sim}{\square}$
		001dJ07	＇	＇	＇	＇	＇	＇	＇	＇	은	F	＇
		†9d－707	＇	＇	＇	，		＇	＇	＇	＇	＇	＇

Table 10. STM32F722xx and STM32F723xx pin and ball definition (continued)

Table 10．STM32F722xx and STM32F723xx pin and ball definition（continued）

							＇	＇	＇	＇
							＇	＇	＇	＇
		әı0N	®	®	๒ 厄	๒®	＇	＇	＇	＇
		nuls O／I	上	上	上	上	＇	＇	＇	＇
		Kı uld	\bigcirc	\bigcirc	\bigcirc	\bigcirc	の	の	の	ω
			O	¢	N	O	$\stackrel{\circ}{\circ}$	$\begin{aligned} & \mathbb{6} \\ & \underset{\sim}{N} \end{aligned}$	$\stackrel{\stackrel{1}{\underset{\sim}{\underset{\sim}{\sim}}}}{ }$	$\begin{aligned} & \frac{+}{山} \\ & \stackrel{1}{\stackrel{r}{s}} \end{aligned}$
	$\begin{aligned} & \times \\ & \stackrel{\times}{N} \\ & \underset{N}{N} \\ & \underset{N}{N} \\ & \sum_{\omega}^{m} \end{aligned}$	921dJO7	N／	ल	－	¢	$\stackrel{0}{0}$	ल	＇	∞
		カtrdJ07	$\stackrel{\sim}{\sim}$	N	$\stackrel{\sim}{\sim}$	N	－	\bar{m}	＇	N
		カカレVO日コก	포	$\underset{\sim}{N}$	$\stackrel{m}{1}$	洔	은	「	\bar{y}	Σ
		9LレVOgan	N	\sum^{m}	\pm	\sum^{10}	＇	Σ	Σ	$\bar{\square}$
		001dS37M	ャ	오중	윽	¢	今	읓	＇	の
		921dJO7	N	ल	－	๗	$\stackrel{0}{0}$	ल	＇	∞
		9LレVOgコก	N	\sum^{m}	\pm	\sum^{10}	＇	Σ	Σ	Σ
		ttldJ07	$\stackrel{\odot}{\sim}$	へ	$\stackrel{\infty}{\sim}$	N	아	¢	＇	N
		001dJ07	$\stackrel{\square}{\sim}$	$\stackrel{\square}{\bullet}$	$\stackrel{ }{*}$	$\stackrel{\infty}{\sim}$	＇	\bigcirc	＇	산
		t9d•7	∞	σ	은	F	＇	$\stackrel{ }{\sim}$	＇	$\stackrel{\square}{\square}$

Table 10. STM32F722xx and STM32F723xx pin and ball definition (continued)

Table 10．STM32F722xx and STM32F723xx pin and ball definition（continued）

			＇	＇	＇		＇	＇	＇		
							＇	＇	＇		
		әృ0N	＇	き	＇	¢ 厄	＇	＇	＇	¢	¢ 厄
		nups O／I	上	上	上	上	＇	上	＇	$\stackrel{\pi}{F}$	$\stackrel{\text { ® }}{\stackrel{1}{*}}$
		Kı uld	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\cdots	－	∞	\bigcirc	\bigcirc
			$\frac{\mathrm{M}}{\mathrm{a}}$	$\frac{\underset{1}{a}}{\frac{1}{2}}$	$\frac{10}{1}$	$\frac{M}{1}$	$\stackrel{\infty}{9}$		$\stackrel{\circ}{\mathrm{O}}$	－	$\stackrel{18}{2}$
	$\begin{aligned} & \times \\ & \stackrel{\times}{0} \\ & \stackrel{N}{N} \\ & \underset{N}{N} \\ & \sum_{\omega}^{m} \end{aligned}$	92lds07	\ddagger	$\stackrel{8}{8}$	$\stackrel{\circ}{\square}$	$\hat{}$	＇	$\stackrel{\infty}{+}$	7	18	5
		ttlds07	＇	＇	＇	ल	∞	＇	®	ㅇ	$\bar{\gamma}$
		カカレVナ8コก	1	＇	＇	N	¢	$\frac{60}{1}$	＋	$\stackrel{\sim}{\sim}$	$\underset{\sim}{\square}$
		9LレVOgコก	¢	$\stackrel{ \pm}{\text { }}$	\pm	ั	＇	\pm	\pm	Z	ロ
		001dSコาM	＇	＇	＇	N	$\stackrel{\infty}{\otimes}$	＇	＇	O	$\stackrel{\circ}{4}$
		92ldJ07	F	$\stackrel{\square}{8}$	$\stackrel{\circ}{\circ}$	\hat{F}	＇	$\stackrel{\infty}{\circ}$	\％	옹	ธ
		9LレVO8コก	$\stackrel{+}{0}$	$\stackrel{ \pm}{\text { }}$	\％	๙	＇	\pm	\pm	\pm	ロ
		tildsol	＇	＇	＇	ल	¢	＇	¢	안	$\overline{\text { F }}$
		001dJ07	＇	＇	＇	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	＇	N	$\stackrel{\sim}{\sim}$	N
		†9d－707	＇	＇	＇	$\stackrel{ }{\sim}$	$\stackrel{\infty}{\sim}$	＇	$\stackrel{\square}{\square}$	－	$\bar{\sim}$

Table 10．STM32F722xx and STM32F723xx pin and ball definition（continued）

		®ə¢N	®	ก	®	®	๒®	๒®
		Onı3 O／I	เ	난	เ	난	ㄴ	เ
		Kı u！d	○	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			$\stackrel{0}{1}$	¢	J オ	0	은	$\bar{\sim}$
	$\begin{aligned} & \times \\ & \underset{\sim}{x} \\ & \underset{N}{N} \\ & \underset{N}{N} \\ & \sum_{n}^{\prime} \end{aligned}$	92ldjol	ก	ก	发	\＆	\bigcirc	－
		ttlds07	₹	$\stackrel{\square}{7}$	\％	$\stackrel{\square}{8}$	$\stackrel{\circ}{+}$	F
		カセレVO日コก	9	\sum^{m}	\pm	\pm	\pm	\pm
		9LL＊O日コก	ณ	๕	2	¢	$\stackrel{\sim}{\sim}$	$\stackrel{\square}{\square}$
		001dSอาM	¢	צ	$\stackrel{\text { 운 }}{ }$	$\stackrel{\square}{\circ}$	$\stackrel{\sim}{4}$	¢0
	$\begin{aligned} & \underset{\sim}{x} \\ & \underset{\sim}{N} \\ & \underset{\sim}{N} \\ & \sum_{i}^{\mathbf{N}} \end{aligned}$	92ldJ07	ก	กู	\＄	ถ	\bigcirc	N
		9LL＊O8コก	ח	๕	¢	ก	$\stackrel{\sim}{\Upsilon}$	$\stackrel{\square}{\square}$
		カセldsO7	フ	ั	\％	$\stackrel{1}{8}$	$\stackrel{\square}{+}$	F
		001dJ07	－	\bar{m}	ल	ल	¢	¢0
		†9d＝07	N	N	$\stackrel{\text { N }}{ }$	＇	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$

Table 10．STM32F722xx and STM32F723xx pin and ball definition（continued）

			＇	＇	，	＇	＇	＇	＇	＇	＇	＇	＇	1
						＇	，							
		əı0N		＇	＇	＇	＇	＇	＇	＇	＇	＇	＇	
		－nıs O／I	๒	上	立	＇	＇	上	ヶ	贞	เ	ヶ	上	ヶ
		K uld	\bigcirc	\bigcirc	\bigcirc	ω	の	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\underline{O}	\bigcirc	\bigcirc
		$\begin{aligned} & \text { (function after } \\ & \text { reset) }{ }^{(1)} \end{aligned}$	~~		$\underset{\stackrel{N}{\mathrm{~L}}}{\stackrel{N}{2}}$	$\begin{aligned} & \infty \\ & \end{aligned}$	$\stackrel{\mathrm{Q}}{\mathrm{O}}$	$\frac{m}{\stackrel{m}{2}}$		$\frac{\stackrel{5}{4}}{\stackrel{1}{2}}$	$\begin{aligned} & \hline \text { O } \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \overline{0} \\ & \hline \end{aligned}$	N	吕
	$\begin{aligned} & \times \\ & \underset{N}{x} \\ & \underset{N}{N} \\ & \underset{N}{N} \\ & \sum_{k}^{M} \end{aligned}$	9LIdJ07	i	옹	\bigcirc	$\bar{\square}$	ก	\bigcirc	¢	$\stackrel{\square}{6}$	\odot	$\hat{¢}$	∞	8
		¢trdjol	$\stackrel{\infty}{+}$	$\stackrel{7}{7}$	앙	is	N	$\stackrel{\sim}{0}$	边	$\stackrel{1}{6}$	$\stackrel{\circ}{\circ}$	is	∞	용
		カカレVO日コก	$\stackrel{10}{\square}$	\sum^{10}	0	＇	$\begin{aligned} & 10 \\ & 0 \end{aligned}$	$\stackrel{10}{2}$	\sum	\bigcirc	$\underline{\square}$	$\stackrel{\square}{\circ}$	$\hat{\Sigma}$	\checkmark
		9LL＊O日コก	\sum°	$\stackrel{\odot}{¢}$	0	\sum_{\sum}^{∞}	$\underset{\sim}{\infty}$	\because	¢	へ	之	$\hat{\Sigma}$	$\stackrel{\infty}{๕}$	©
		001dS37M	$\stackrel{9}{ }$	＇	＇	＇	＇	＇	＇	＇	＇	＇	$\stackrel{\square}{\square}$	$\underline{1}$
	$\begin{aligned} & \text { 㐅} \\ & \text { N } \\ & \text { N̦ } \\ & \text { N } \\ & \sum_{i}^{M} \end{aligned}$	92اdJO7	i	옹	8	$\bar{\square}$	ก	\bigcirc	¢	$\stackrel{4}{6}$	\bigcirc	$\hat{\circ}$	\otimes	8
		9LLVO日	\sum°	$\stackrel{\circ}{\Upsilon}$	0	\sum_{\sum}^{∞}	$\stackrel{\infty}{\sim}$	$\stackrel{1}{2}$	¢	へ	之	$\hat{\Sigma}$	$\stackrel{\sim}{\Upsilon}$	\bigcirc
		カtrdj07	$\stackrel{\infty}{+}$	$\stackrel{8}{7}$	앙	is	N	$\stackrel{\sim}{\circ}$	\％	$\stackrel{\sim}{\circ}$	$\stackrel{\circ}{\circ}$	is	\bigcirc	8
		001dJ07	¢	＇	＇	，	＇	＇	＇	＇	＇	＇	ले	∞
		†9d－07	N	，	＇	＇	＇	＇	＇	＇	＇	＇	＇	＇

Table 10．STM32F722xx and STM32F723xx pin and ball definition（continued）

			＇	，	＇	＇	1	＇	＇	－	＇
				－	＇						
		selon	＇	＇	＇	＇	＇	＇			＇
		onats O／I	上	＇	＇	上	上	上	上	上	上
		dKı u！d	\bigcirc	∞	の	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			$\stackrel{\text { ®® }}{\square}$	$\begin{aligned} & \infty \\ & \end{aligned}$	$\stackrel{\circ}{\mathrm{O}}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{u}}}{2}$	$\underset{\sim}{\underset{\sim}{4}}$	$\stackrel{N}{\underset{\sim}{\mathrm{~L}}}$	$\stackrel{m}{\underset{\sim}{\sim}}$	$\stackrel{ \pm}{ \pm}$	$\stackrel{\text { n }}{\stackrel{1}{4}}$
	$\begin{aligned} & \times \\ & \stackrel{\times}{0} \\ & \stackrel{N}{N} \\ & \underset{N}{N} \\ & \sum_{\omega}^{m} \end{aligned}$	9LldJ07	\bigcirc	ন	N	\cdots	N	$\stackrel{\sim}{\sim}$	$\stackrel{\circ}{\sim}$	N	$\stackrel{\infty}{\sim}$
		カtrds07	\bigcirc	$\overline{6}$	ก	๕	¢	$\stackrel{6}{6}$	\odot	$\widehat{*}$	$\stackrel{\infty}{\circ}$
		カャレーツ日コก	צ	$\stackrel{\bigcirc}{\top}$	O	今		$\stackrel{ }{\square}$	$\underset{\Upsilon}{\infty}$	$\stackrel{\infty}{\sim}$	\sum^{∞}
		9LL＊⿹勹コก	8	\sum	\％	$\stackrel{\text { \％}}{ }$	음	읒	$\underset{\text { F }}{ }$	$\overline{\mathrm{a}}$	$\underset{\sim}{\text { ¢ }}$
		001dSכาM	$\stackrel{10}{ }$	＇	＇	㞧	O	\pm	\pm	\pm	$\stackrel{+}{4}$
	$\begin{aligned} & \times \\ & \underset{\sim}{x} \\ & \underset{N}{N} \\ & \stackrel{N}{N} \\ & \sum_{i}^{N} \end{aligned}$	921dJ07	\bigcirc	「	N	\cdots	N	$\stackrel{\llcorner }{\sim}$	$\stackrel{1}{1}$	N	$\stackrel{\sim}{\sim}$
		9LレVO8Jก	8	$\stackrel{\square}{2}$	\％	$\stackrel{\square}{\square}$	음	$\frac{\stackrel{\rightharpoonup}{x}}{}$	$\underset{\text { F }}{ }$	$\stackrel{\rightharpoonup}{\square}$	$\underset{\sim}{\text { г }}$
		カtrdsol	8	$\bar{¢}$	§	\％	¢	¢	\odot	$\hat{6}$	$\%$
		001dJ07	®	＇	＇	앙	$\bar{\gamma}$	\％	$\stackrel{\sim}{7}$	J	$\stackrel{1}{\square}$
		79d－707	＇	＇	＇	＇	＇	＇	＇	＇	＇

Table 10．STM32F722xx and STM32F723xx pin and ball definition（continued）

			＇	1	，	＇	＇	＇	＇	＇	＇
					－	－	－				
		əəon		\pm	＇	＇	＇	＇	＇	＇	
		nuts O／I	๒	上	＇	＇	＇	上	๒	上	เ
		Kı uld	\bigcirc	\bigcirc	∞	の	の	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			$\frac{0}{\mathrm{~m}}$	$\stackrel{\Gamma}{\mathrm{p}}$	$\begin{aligned} & \Gamma \\ & \frac{a}{\prime} \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \infty \\ & \end{aligned}$	$\stackrel{\mathrm{Q}}{\mathrm{O}}$	$\frac{\circ}{1}$	$\frac{\mathrm{N}}{\mathrm{a}}$	$\frac{\infty}{\square}$	옴
	$\begin{aligned} & \times \\ & \underset{N}{x} \\ & \underset{N}{L} \\ & \sum_{n}^{N} \\ & \sum_{n} \end{aligned}$	92ldjol	$\stackrel{\square}{\sim}$	∞	$\bar{\infty}$	＇	か	∞	\pm	\＆	$毋$
		ttidJ07	8	\bigcirc	「	＇	N	＇	＇	＇	＇
		カtレVO日コ	${ }^{\circ}$	$\stackrel{\circ}{\Sigma}$	소	＇	O	＇	＇	＇	＇
		9Lレ＊O日コก	$\stackrel{\sim}{\sim}$	$\frac{m}{\square}$	$\frac{0}{\Sigma}$	－	$\frac{0}{z}$	$\bar{\Sigma}$	$\underset{\sim}{\sim}$	$\underset{\Sigma}{N}$	\sum_{Σ}^{m}
		001dS51M	O	$\stackrel{\text { T }}{ }$	$\stackrel{\square}{\square}$	$\stackrel{9}{\square}$	ฐ	＇	＇	＇	＇
		92LdJO7	$\stackrel{9}{\sim}$	∞	$\bar{\infty}$	＇	¢	∞	\pm	$\stackrel{\square}{\infty}$	\varnothing
		9Lレ＊ロgコก	$\stackrel{N}{\underset{\sim}{x}}$	$\frac{m}{\dot{q}}$	$\stackrel{O}{\Sigma}$	＇	$\frac{0}{z}$	$\bar{\Sigma}$	$\underset{\mathcal{Z}}{N}$	$\underset{N}{N}$	${ }^{m}$
		ttldJ07	8	\bigcirc	「	＇	N	＇	＇	＇	＇
		001dJ07	$\stackrel{\circ}{+}$	＊	$\stackrel{\infty}{+}$	\％	io	＇	，	＇	＇
		t9d－107	N	～	아	¢	N	＇	＇	＇	＇

Table 10. STM32F722xx and STM32F723xx pin and ball definition (continued)

Pin Number										Pin name (function after reset) ${ }^{(1)}$		0.00000000	$\begin{aligned} & \text { 』 } \\ & \text { ¢ } \\ & \mathbf{2} \end{aligned}$		
STM32F722xx					STM32F723xx										
	$\begin{aligned} & \text { 음 } \\ & \text { ㅁ } \\ & \text { O } \end{aligned}$	$\begin{aligned} & J \\ & \underset{\sim}{i} \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & \stackrel{0}{\top} \\ & \stackrel{\lambda}{4} \\ & \underset{0}{4} \end{aligned}$	음 03 3 3			$\begin{aligned} & \underset{寸}{J} \\ & \stackrel{1}{U} \\ & \underset{\sim}{4} \end{aligned}$						Alternate functions	Additional functions
-	-	-	L13	87	-	L13	-	-	87	PH10	I/O	FT	-	TIM5_CH1, FMC_D18, EVENTOUT	-
-	-	-	L12	88	-	L12	-	-	88	PH11	I/O	FT	-	TIM5_CH2, FMC_D19, EVENTOUT	-
-	-	-	K12	89	-	K12	-	-	89	PH12	I/O	FT	-	TIM5_CH3, FMC_D20, EVENTOUT	-
-	-	-	H12	90	-	H12	-	-	90	VSS	S	-	-	-	-
-	-	-	J12	91	K2	J12	-	-	91	VDD	S	-	-	-	-
33	51	73	P12	92	J2	P12	M11	73	92	PB12	I/O	FT	(4)	TIM1_BKIN, I2C2_SMBA, SPI2_NSS/I2S2_WS, USART3_CK, OTG_HS_ULPI_D5, OTG_HS_ID, EVENTOUT	-
34	52	74	P13	93	H2	P13	M12	74	93	PB13	I/O	FT	(4)	$\begin{gathered} \text { TIM1_CH1N, } \\ \text { SPI2_SCK/I2S2_CK, } \\ \text { USART3_CTS, } \\ \text { OTG_HS_ULPI_D6, EVENTOUT } \end{gathered}$	OTG_HS_VBUS
-	-	-	-	-	G2	J15	H11	75	94	OTG_HS_REXT	-	-	-	USB HS OTG PHY calibrat	on resistor
-	-	-	-	-	G1	J14	H10	76	95	VDD12OTGHS	-	-	-	-	-

Table 10. STM32F722xx and STM32F723xx pin and ball definition (continued)

Table 10．STM32F722xx and STM32F723xx pin and ball definition（continued）

			1	＇	＇	＇	＇	＇	＇	＇
						－	，			
		əıoN	＇	＇	＇	＇	＇	＇	＇	＇
		nıs O／I	เ	เ	เ－	＇	＇	เ	เ	나
		Kı u！d	\bigcirc	\bigcirc	\bigcirc	の	∞	\bigcirc	\bigcirc	\bigcirc
		$\begin{aligned} & \text { (function after } \\ & \text { reset) }{ }^{(1)} \end{aligned}$	$\stackrel{\underset{\sim}{x}}{ }$	$\stackrel{N}{\mathrm{~N}}$	$\stackrel{m}{\square}$	$\underset{\sim}{\infty}$	○	$\stackrel{\pi}{\mathrm{a}}$	$\stackrel{6}{6}$	N
	$\begin{aligned} & \times \\ & \stackrel{\times}{㐅} \\ & \underset{N}{u} \\ & \stackrel{N}{N} \\ & \sum_{\omega}^{\infty} \end{aligned}$	921dJO7	$\stackrel{\square}{\square}$	N	$\stackrel{\bigcirc}{\circ}$	t	응	안	슨	$\stackrel{\text { ® }}{\circ}$
		ttldJ07	N	∞	\pm	∞	∞	$\widehat{\infty}$	∞	®
		カカレVツ日コก	오	$\stackrel{\bigcirc}{\square}$	$\frac{0}{\mathbf{y}}$	∞	$\stackrel{\infty}{4}$	$\overline{\text { צ }}$	$\underset{\bar{y}}{N}$	$\stackrel{N}{5}$
		9LL＊ロ日コก	$\stackrel{\rightharpoonup}{z}$	$\frac{m}{z}$	\sum_{Σ}^{n}	，	$\stackrel{m}{5}$	$\stackrel{J}{\Sigma}$	$\stackrel{ \pm}{\square}$	$\stackrel{\square}{\square}$
		00LdS37M	セึ	ㄲ	巴	＇	＇	ז	ก	＇
	$\underset{\sim}{x}$$\underset{N}{N}$$\stackrel{\rightharpoonup}{N}$$\sum_{n}^{N}$$\omega$	92lds07	8	은	$\stackrel{\square}{\square}$	응	응	$\stackrel{\square}{\square}$	$\stackrel{\square}{\circ}$	\bigcirc
		9Lレ＊ロgコก	$\stackrel{\forall}{\Sigma}$	$\frac{m}{z}$	\sum_{Σ}°	，	$\stackrel{m}{5}$	\sum_{Σ}^{J}	$\stackrel{ \pm}{\square}$	$\stackrel{10}{\square}$
		7trdsol	∞	$\bar{\infty}$	N	∞	－	∞	©	¢
		001dJ07	$\stackrel{\infty}{\circ}$	8	8	＇	＇	$\bar{\sigma}$	\％	＇
		79d－07	＇	＇	＇	＇	＇	＇	＇	＇

Table 10. STM32F722xx and STM32F723xx pin and ball definition (continued)

Table 10．STM32F722xx and STM32F723xx pin and ball definition（continued）

			＇	1	＇	＇	0 0 0 0 0 0 0 0	＇
		səłoN	＇	，	＇			
		nıis O／I	๒	๒	上	ᄂ	เ	๒
		Kı u！d	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			No	$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{\infty}{\complement}$	$\stackrel{8}{\square}$	$\frac{\text { 운 }}{\text { ¢ }}$
		92IdJO7	$\stackrel{\ominus}{\Gamma}$	$\stackrel{N}{F}$	$\stackrel{\infty}{\sim}$	$\stackrel{\circ}{\Gamma}$	$\stackrel{\text { N}}{\sim}$	$\stackrel{\text { N}}{\sim}$
		ttlḋO7	へ	\％	8	은	$\bar{\square}$	\％
		カセレVO日コก	$\stackrel{\text { N }}{\text { }}$	$\stackrel{\Gamma}{\Psi}$	$\stackrel{\rightharpoonup}{ \pm}$	$\stackrel{N}{ \pm}$	$\stackrel{\sim}{\square}$	$\stackrel{\Sigma}{\square}$
		9Lレ＊O日コก	$\frac{10}{\pi}$	$\stackrel{\underset{\sigma}{\sigma}}{ }$	$\stackrel{\rightharpoonup}{\underset{~}{4}}$	$\stackrel{10}{4}$	$\stackrel{\sim}{\text { ¢ }}$	$\stackrel{10}{\square}$
		001dS37M	\pm	N	$\bar{\square}$	®	\bigcirc	N
		92lḋO7	$\stackrel{\circ}{\leftarrow}$	$\stackrel{N}{\gtrless}$	$\stackrel{\infty}{\leftarrow}$	$\stackrel{\circ}{\square}$	운	$\stackrel{\text { ָ }}{ }$
		9Lレ＊O日コก	$\frac{\pi}{\sigma}$	$\stackrel{ষ}{\overleftarrow{\prime}}$	$\stackrel{ \pm}{ \pm}$	$\stackrel{10}{\square}$	$\stackrel{\sim}{\square}$	$\stackrel{\circ}{\square}$
		ttrds07	ब	\％	8	은	$\stackrel{\square}{\square}$	\％
		001dJO7	G	$\stackrel{\square}{6}$	\odot	$\hat{6}$	∞	8
		t9dJ07	∞	\％	ㅇ	「	テ	$\stackrel{\square}{7}$

Table 10. STM32F722xx and STM32F723xx pin and ball definition (continued)

Table 10．STM32F722xx and STM32F723xx pin and ball definition（continued）

			＇	＇	＇	＇	＇	＇	＇	＇
							＇			
		sołoN		＇	＇	＇	＇	＇	＇	
		nıl $\mathrm{O} / 1$	ㄴ	ㄴ	เ	เ	＇	＇	เ	เ
		Kı u！d	\bigcirc	\bigcirc	\bigcirc	\bigcirc	∞	∞	\bigcirc	\bigcirc
			음	$\bar{\square}$	$\frac{\mathrm{N}}{\mathrm{L}}$	$\frac{m}{\square}$	$\begin{aligned} & \infty \\ & \infty \end{aligned}$	$\stackrel{\circ}{9}$		$\begin{aligned} & \stackrel{\bar{O}}{\stackrel{N}{n}} \\ & \frac{\pi}{0} \end{aligned}$
	$\begin{aligned} & \times \\ & \underset{N}{x} \\ & \underset{N}{L} \\ & N_{N}^{N} \\ & \sum_{n}^{\prime} \end{aligned}$	9LIdJO7	$\stackrel{\bar{m}}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{m}{\Gamma}$	$\stackrel{\text { m }}{\sim}$	$\begin{array}{\|l\|l\|l\|} \hline \mathbf{N} \\ \hline \end{array}$	$\stackrel{0}{+}$	$\stackrel{N}{\square}$	$\stackrel{\infty}{\sim}$
		ttlds07	＇	＇	＇	＇	＇	＇	안	음
		カセレVO日コก	1	1	＇	＇	＇	＇	$\stackrel{\ulcorner }{¢}$	을
		9LL＊O日コก	$\stackrel{ \pm}{ \pm}$	$\stackrel{\rightharpoonup}{\square}$	$\stackrel{J}{ভ}$	$\stackrel{m}{\grave{u}}$	$\stackrel{8}{\square}$	8	$\frac{ \pm}{4}$	$\stackrel{m}{<}$
		001dS57M	＇	＇	＇	1	＇	＇	J	$\stackrel{ \pm}{\text { ¢ }}$
		92ldjol	$\stackrel{\text { m}}{ }$	N	$\stackrel{m}{\sim}$	¢	$\underset{\sim}{\mathbf{N}}$	$\stackrel{\ominus}{¢}$	$\stackrel{N}{\square}$	$\stackrel{\sim}{\sim}$
		9Lレ＊O日コก	$\underset{\underset{\sim}{*}}{\stackrel{\rightharpoonup}{2}}$	$\stackrel{\rightharpoonup}{\Delta}$	$\stackrel{\rightharpoonup}{\circlearrowleft}$	$\stackrel{m}{ভ}$	8	8	$\frac{ \pm}{4}$	$\frac{m}{<}$
		¢trdsol	＇	＇	＇	＇	＇	＇	－	$\stackrel{\text { 앋 }}{ }$
		001dJ07	＇	＇	＇	＇	＇	＇	$\stackrel{\circ}{\sim}$	N
		t9d－07	＇	＇	＇	＇	＇	＇	\％	웅

Table 10．STM32F722xx and STM32F723xx pin and ball definition（continued）

			，	1	1	＇	＇	－	＇
		selon	＇	＇	＇	＇			
		onıts O／I	๒	ㄴ	上	๒	上	上	上
		dKı u！d	\bigcirc						
			O	\bar{Z}	N	음	$\bar{\alpha}$	N	ก
		921dJO7	¢	$\stackrel{\text { 안 }}{ }$	$\underset{\sim}{\sim}$	$\stackrel{\text { N }}{\text { }}$	$\stackrel{\sim}{\sim}$	$\underset{\sim}{\square}$	$\stackrel{\square}{\square}$
		カtrds07	F	$\stackrel{\text { N }}{\text { }}$	$\stackrel{m}{\Gamma}$	$\stackrel{ \pm}{r}$	$\stackrel{10}{\sim}$	$\stackrel{\circ}{\sim}$	$\stackrel{N}{r}$
		カセレVロ日コก	$\stackrel{\Gamma}{\square}$	$\frac{0}{\infty}$	\div	$\frac{0}{\dot{w}}$	운	®	®
		9LレVO8コก	$\stackrel{\rightharpoonup}{\infty}$	$\frac{m}{\infty}$	$\stackrel{N}{<}$	$\stackrel{N}{\infty}$	$\stackrel{N}{\circlearrowleft}$	$\stackrel{\sim}{\sim}$	$\stackrel{\Sigma}{\square}$
		001dSכาM	\％	¢3	\bigcirc	$\stackrel{\sim}{0}$	\＆	$\stackrel{\square}{4}$	0
	$\begin{aligned} & \times \\ & \underset{\sim}{x} \\ & \underset{N}{\mathbf{N}} \\ & \underset{\sim}{N} \\ & \sum_{幺} \end{aligned}$	92ldjol	－	$\stackrel{\text { 악 }}{ }$	$\stackrel{\checkmark}{\ulcorner }$	ブ	$\stackrel{\underset{\sim}{*}}{ }$	$\stackrel{\square}{\square}$	$\stackrel{8}{\square}$
		9LLVO日コก	$\stackrel{\rightharpoonup}{\infty}$	$\frac{m}{\infty}$	$\stackrel{N}{\mathbb{~}}$	$\stackrel{N}{\infty}$	$\stackrel{N}{\mathrm{~N}}$	$\stackrel{\sim}{\square}$	$\stackrel{\text { 「 }}{ }$
		ttrds07	$\stackrel{F}{F}$	$\stackrel{\text { N }}{\text { ¢ }}$	$\stackrel{m}{\ulcorner }$	$\stackrel{ \pm}{\text { ¢ }}$	$\stackrel{\sim}{\square}$	$\stackrel{\oplus}{\leftarrow}$	$\stackrel{\text { F}}{\text { F }}$
		001dJ07	$\stackrel{\sim}{\sim}$	$\stackrel{9}{\sim}$	∞	$\bar{\infty}$	毋	∞	\pm
		79d－707	is	ก	ก็	＇	＇	$\stackrel{4}{6}$	＇

Table 10．STM32F722xx and STM32F723xx pin and ball definition（continued）

			＇	＇	＇	＇	＇	＇	1	＇
					＇	＇				
		210N	＇	＇	＇	＇	＇			
		nups $0 / 1$	上	上	＇	＇	上	上	上	上
		Kı uld	\bigcirc	\bigcirc	\cdots	ω	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			茄	م	$\begin{aligned} & \infty \\ & \end{aligned}$	$\begin{aligned} & 0 \\ & \sum_{0}^{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	©	$\hat{\alpha}$	$\begin{aligned} & \text { O} \\ & \hline 1 \end{aligned}$	$\frac{\bigcirc}{\square}$
		921dJO7	$\underset{\sim}{\mathscr{\circ}}$	$\stackrel{\rightharpoonup}{\sigma}$	$\underset{\sim}{\infty}$	$\underset{\sim}{\text { g }}$	$\stackrel{\circ}{\circ}$	$\stackrel{5}{\square}$	N	กٌ
		カtrds07	$\stackrel{\infty}{\Gamma}$	$\stackrel{\circ}{5}$	운	$\overline{\underset{N}{N}}$	N	$\stackrel{\sim}{\sim}$	$\stackrel{\text { N }}{\sim}$	$\stackrel{\sim}{\sim}$
		カャレーツ日コก	8	¢8	岗	介	¢	$\stackrel{8}{8}$	®	\bigcirc
		9LレVO8コก	\bigcirc	$\bar{\jmath}$	©	0°	$\stackrel{\Gamma}{\square}$	$\bar{\gtrless}$	\div	$\frac{\circ}{\infty}$
		001dSכาM	\bigcirc	$\stackrel{8}{4}$	＇	＇	\bigcirc	¢	＇	＇
		92ldjol	$\stackrel{̣}{\dot{q}}$	\hat{F}	$\begin{aligned} & \infty \\ & \underset{\downarrow}{\circ} \end{aligned}$	g	$\stackrel{\circ}{\circ}$	$\stackrel{5}{\square}$	N	$\stackrel{\sim}{\sim}$
		9LレVO8コก	\circ	$\bar{\jmath}$	$\stackrel{\infty}{\circ}$	0_{0}°	$\stackrel{\Gamma}{\square}$	$\underset{\gtrless}{\dot{<}}$	$\stackrel{\square}{ভ}$	$\frac{0}{\infty}$
		カセlds07	$\stackrel{\infty}{\sim}$	$\stackrel{\circ}{\Gamma}$	$\stackrel{\text { 난 }}{ }$	$\stackrel{\text { ® }}{ }$	N	$\stackrel{\sim}{\sim}$	$\stackrel{\text { N }}{\sim}$	$\stackrel{\sim}{\sim}$
		001dJ07	\bigcirc	∞	＇	＇	$\stackrel{\sim}{\infty}$	∞	＇	，
		79d－707	＇	＇	＇	＇	＇	＇	＇	＇

Table 10．STM32F722xx and STM32F723xx pin and ball definition（continued）

			＇	＇	＇	＇	
		${ }^{\text {® }}$－${ }^{\text {N }}$	＇				
		nus $\mathrm{O} / 1$	を	を	を	ヶ	
		K_{7} uld	\bigcirc	\bigcirc	\bigcirc	\bigcirc	∞
			F	$\stackrel{N}{\aleph}$	$\stackrel{M}{0}$	$\underset{\sim}{\underset{Q}{2}}$	$\stackrel{\oplus}{>}$
	$\times$$\underset{\sim}{x}$$\stackrel{N}{N}$$\sum_{\omega}^{\omega}$$\vdots$	921dJ07	＋	－	$\stackrel{\circ}{\sim}$	ก	$\stackrel{\infty}{\sim}$
		カャレḋ07	$\stackrel{\circ}{\sim}$	N	$\stackrel{\sim}{\sim}$	$\stackrel{\text { ® }}{\sim}$	욷
		カセレVOsun	\bigcirc	®	へ	へ	
		92LVO日	®	®	¢	§	ล
		00ldSכ7M	＇	＇	＇		
	$\begin{aligned} & \times \\ & \underset{\sim}{x} \\ & \underset{N}{4} \\ & \stackrel{N}{N} \\ & \sum_{幺}^{\infty} \end{aligned}$	921ḋ07	＋	$\stackrel{\sim}{\sim}$	$\stackrel{\circ}{\sim}$	ก	$\stackrel{\infty}{\sim}$
		9＜レVO日	®	®	¢	¢	－
		カャrḋO7	$\stackrel{\circ}{\stackrel{\circ}{\circ}}$	$\stackrel{\text { N}}{ }$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	운
		001dJ07	，	，	＇		
		ャ9 9 ± 07	，	，	＇		

Table 10. STM32F722xx and STM32F723xx pin and ball definition (continued)

Table 10．STM32F722xx and STM32F723xx pin and ball definition（continued）

			＇	＇	$\stackrel{0}{8}$	＇	＇
					，		
		əృ0N	＇	＇	＇	＇	
		nuls $0 / 1$	๒	上	ゅ	上	上
		Kı u！d	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc
			$\stackrel{\circ}{\mathrm{Q}}$	$\widehat{\mathrm{a}}$	$\begin{array}{\|l} \stackrel{-}{\mathrm{O}} \\ \mathrm{O} \end{array}$	$\stackrel{\infty}{\infty}$	$\stackrel{\otimes}{\square}$
	$\begin{aligned} & \times \\ & \stackrel{\times}{0} \\ & \stackrel{N}{N} \\ & \underset{N}{N} \\ & \sum_{\omega}^{m} \end{aligned}$	9LldJ07	¢	$\stackrel{6}{6}$	$\stackrel{\square}{\bullet}$	$\hat{6}$	$\stackrel{\otimes}{\bullet}$
		カtrds07	$\stackrel{\odot}{\sim}$	へ－	$\underset{\sim}{\infty}$	¢	앋
		カカレVO日コก	8	\bigcirc	$\stackrel{\circ}{0}$	0	$\stackrel{\sim}{0}$
		9LレVO8コก	\bigcirc	$\stackrel{\square}{0}$	\bigcirc	$\stackrel{1}{4}$	$\stackrel{ \pm}{\infty}$
		001dSכาM	へ	$\stackrel{\sim}{\odot}$	§	\bigcirc°	$\stackrel{\square}{\circ}$
	$\begin{aligned} & \times \\ & \underset{\sim}{x} \\ & \underset{N}{\mathbf{N}} \\ & \underset{\sim}{N} \\ & \sum_{幺} \end{aligned}$	92LdJ07	$\stackrel{\square}{6}$	$\stackrel{\square}{\square}$	$\stackrel{\square}{\circ}$	$\stackrel{\text { ¢ }}{ }$	$\stackrel{\infty}{\square}$
		9LL＊O日コก	\bigcirc	$\stackrel{\square}{0}$	\bigcirc	$\stackrel{10}{4}$	\pm
		ttrdjol	$\stackrel{\odot}{-}$	$\stackrel{\sim}{r}$	$\stackrel{\sim}{\square}$	$\stackrel{\text { ® }}{\sim}$	$\stackrel{\text { 악 }}{ }$
		001dJ07	N	®	あ	\bigcirc	¢
		79d－707	∞	\％	8	$\bar{\sigma}$	\％

Table 10. STM32F722xx and STM32F723xx pin and ball definition (continued)

Table 10. STM32F722xx and STM32F723xx pin and ball definition (continued)

Table 10. STM32F722xx and STM32F723xx pin and ball definition (continued)

Pin Number										Pin name (function after reset) ${ }^{(1)}$					
STM32F722xx					STM32F723xx										
$\begin{aligned} & \mathbb{O} \\ & \text { Dị } \\ & \text { OU } \end{aligned}$	$\begin{aligned} & \text { 음 } \\ & \text { 문 } \\ & \text { O} \end{aligned}$	$\begin{aligned} & G \\ & \underset{\sim}{i} \\ & \underset{O}{U} \end{aligned}$		$\begin{aligned} & 0 \\ & \stackrel{0}{\top} \\ & \stackrel{1}{0} \end{aligned}$	8 \vdots 0 3 3			$\begin{aligned} & J \\ & \underset{\sim}{i} \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{\circ}{ }$ $\stackrel{\rightharpoonup}{4}$ $\stackrel{1}{0}$			$\begin{aligned} & \text { J } \\ & \text { D2 } \\ & \text { N0 } \\ & 0 \end{aligned}$	$\begin{aligned} & \boldsymbol{y} \\ & \stackrel{ \pm}{0} \\ & \mathbf{2} \end{aligned}$	Alternate functions	Additional functions
-	-	-	H7	-	-	H7	-	-	-	VSS	S	-	-	-	-
-	-	-	H8	-	-	H8	-	-	-	VSS	S	-	-	-	-
-	-	-	H9	-	-	H9	-	-	-	VSS	S	-	-	-	-
-	-	-	H10	-	-	H10	-	-	-	VSS	S	-	-	-	-
-	-	-	J6	-	-	J6	-	-	-	VSS	S	-	-	-	-
-	-	-	J7	-	-	J7	-	-	-	VSS	S	-	-	-	-
-	-	-	J8	-	-	J8	-	-	-	VSS	S	-	-	-	-
-	-	-	J9	-	-	J9	-	-	-	VSS	S	-	-	-	-
-	-	-	J10	-	-	J10	-	-	-	VSS	S	-	-	-	-
-	-	-	K6	-	-	K6	-	-	-	VSS	S	-	-	-	-
-	-	-	K7	-	-	K7	-	-	-	VSS	S	-	-	-	-
-	-	-	K8	-	-	K8	-	-	-	VSS	S	-	-	-	-
-	-	-	K9	-	-	K9	-	-	-	VSS	S	-	-	-	-
-	-	-	K10	-	-	K10	-	-	-	VSS	S	-	-	-	-

[^0]2. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to

[^1]Table 11. FMC pin definition

Pin name	NOR/PSRAM/SR AM	NOR/PSRAM Mux	NAND16	SDRAM
PF0	A0	-	-	A0
PF1	A1	-	-	A1
PF2	A2	-	-	A2
PF3	A3	-	-	A3
PF4	A4	-	-	A4
PF5	A5	-	-	A5
PF12	A6	-	-	A6
PF13	A7	-	-	A7
PF14	A8	-	-	A8
PF15	A9	-	-	A9
PG0	A10	-	-	A10
PG1	A11	-	-	A11
PG2	A12	-	-	A12
PG3	A13	-	-	-
PG4	A14	-	-	BAO
PG5	A15	-	-	BA1
PD11	A16	A16	CLE	-
PD12	A17	A17	ALE	-
PD13	A18	A18	-	-
PE3	A19	A19	-	-
PE4	A20	A20	-	-
PE5	A21	A21	-	-
PE6	A22	A22	-	-
PE2	A23	A23	-	-
PG13	A24	A24	-	-
PG14	A25	A25	-	-
PD14	D0	DA0	D0	D0
PD15	D1	DA1	D1	D1
PDO	D2	DA2	D2	D2
PD1	D3	DA3	D3	D3
PE7	D4	DA4	D4	D4
PE8	D5	DA5	D5	D5
PE9	D6	DA6	D6	D6

Table 11. FMC pin definition (continued)

Pin name	NOR/PSRAM/SR AM	NOR/PSRAM Mux	NAND16	SDRAM
PE10	D7	DA7	D7	D7
PE11	D8	DA8	D8	D8
PE12	D9	DA9	D9	D9
PE13	D10	DA10	D10	D10
PE14	D11	DA11	D11	D11
PE15	D12	DA12	D12	D12
PD8	D13	DA13	D13	D13
PD9	D14	DA14	D14	D14
PD10	D15	DA15	D15	D15
PH8	D16	-	-	D16
PH9	D17	-	-	D17
PH10	D18	-	-	D18
PH11	D19	-	-	D19
PH12	D20	-	-	D20
PH13	D21	-	-	D21
PH14	D22	-	-	D22
PH15	D23	-	-	D23
PIO	D24	-	-	D24
PI1	D25	-	-	D25
PI2	D26	-	-	D26
PI3	D27	-	-	D27
PI6	D28	-	-	D28
PI7	D29	-	-	D29
P19	D30	-	-	D30
PI10	D31	-	-	D31
PD7	NE1	NE1	-	-
PG9	NE2	NE2	NCE	-
PG10	NE3	NE3	-	-
PG11	-	-	-	-
PG12	NE4	NE4	-	-
PD3	CLK	CLK	-	-
PD4	NOE	NOE	NOE	-
PD5	NWE	NWE	NWE	-
PD6	NWAIT	NWAIT	NWAIT	-

Table 11. FMC pin definition (continued)

Pin name	NOR/PSRAM/SR AM	NOR/PSRAM Mux	NAND16	SDRAM
PB7	NADV	NADV	-	-
PF6	-	-	-	-
PF7	-	-	-	-
PF8	-	-	-	-
PF9	-	-	-	-
PF10	-	-	-	-
PG6	-	-	-	-
PG7	-	-	INT	-
PE0	NBLO	NBLO	-	NBLO
PE1	NBL1	NBL1	-	NBL1
PI4	NBL2	-	-	NBL2
PI5	NBL3	-	-	NBL3
PG8	-	-	-	SDCLK
PC0	-	-	-	SDNWE
PF11	-	-	-	SDNRAS
PG15	-	-	-	SDNCAS
PH2	-	-	-	SDCKE0
PH3	-	-	-	SDNE0
PH6	-	-	-	SDNE1
PH7	-	-	-	SDCKE1
PH5	-	-	-	SDNWE
PC2	-	-	-	SDNE0
PC3	-	-	-	SDCKE0
PB5	-	-	-	SDCKE1
PB6	-	-	-	SDNE1

Port		AFO	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF15
		SYS	TIM1/2	TIM3/4/5	TIM8/9/10/1	I2C1/2/3/U SART1	SP11/2S1/ ${ }_{\text {SPli3/2S3 }}$ SPI4/5	SPI2/I2S2 SPI3/I2S3/ SPI3/I2S3/ SAI1/ UART4	$\begin{gathered} \text { SPI2/12S2/S } \\ \text { PI3/12S3/US } \\ \text { ARTI12/3/UA } \\ \text { RT5 } \end{gathered}$	SAI2/USART 6/UART4/5/7/ 8/OTG1_FS	CAN1/TIM1 2/13/14/QU ADSPI/ FMC/ OTG2_HS	SAI2/QUAD SPI/SDMM C2/OTG2 HS/OTG1_ FS	SDMMC2	UART7/F MC/SDM MC1/ OTG2_FS	SYS
Port A	PAO	-	$\begin{gathered} \text { TIM2_CH1 } \\ \text { /TIM2_ET } \\ R \end{gathered}$	TIM5_CH1	TIM8_ETR	-	-	-	$\underset{\mathrm{S}}{\mathrm{USART}} \mathrm{CT}$	UART4_TX	-	SAI2_SD_B	-	-	$\begin{aligned} & \text { EVEN } \\ & \text { TOUT } \end{aligned}$
	PA1	-	TIM2_CH2	TIM5_CH2	-	-	-	-	$\underset{\mathrm{S}}{\mathrm{USART}}$	UART4_RX	QUADSPI_ BK1_IO3	$\underset{-\mathrm{B}}{\mathrm{SAl2} \mathrm{MCK}}$	-	-	$\begin{aligned} & \text { EVEN } \\ & \text { TOUT } \end{aligned}$
	PA2	-	TIM2_CH3	TIM5_CH3	TIM9_CH1	-	-	-	USART2_TX	SAI2_SCK_B	-	-	-	-	EVEN
	PA3	-	TIM2_CH4	TIM5_CH4	TIM9_CH2	-	-	-	USART2_RX	-	-	$\underset{\text { OTG_HS_U USI_DO }}{\substack{\text { OPI }}}$	-	-	$\begin{aligned} & \text { EVEN } \\ & \text { TOUT } \end{aligned}$
	PA4	-	-	-	-	-	SPI1_NSS /I2S1_WS	$\begin{aligned} & \text { SPI3_NSS } \\ & \text { /I2S3_WS } \end{aligned}$	USART2_CK	-	-	-	-	$\begin{aligned} & \text { OTG_HS_ } \\ & \text { SOOF } \end{aligned}$	$\begin{aligned} & \text { EVEN } \\ & \text { TOUT } \end{aligned}$
	PA5	-	$\begin{aligned} & \text { TIM2_CH1 } \\ & \text { /TIM2_ET } \\ & R_{-} \end{aligned}$	-	${ }_{\mathrm{N}}^{\mathrm{TIM}} \mathrm{CH} 1$	-	SPI1 SCK /I2S1_CK	-	-	-	-	$\underset{\text { LPI_CK }}{\text { OTG_HS_U }}$	-	-	$\begin{aligned} & \text { EVEN } \\ & \text { TOUT } \end{aligned}$
	PA6	-	${ }_{N}^{\text {TIM1_BKI }}$	TIM3_CH1	TIM8_BKIN	-	${\underset{\mathrm{O}}{ }}_{\text {SPI1_MIS }}$	-	-	-	TIM13_CH1	-	-	-	$\begin{aligned} & \text { EVEN } \\ & \text { TOUT } \end{aligned}$
	PA7	-	${ }_{\mathrm{N}}^{\mathrm{TIM} 1 _\mathrm{CH} 1}$	TIM3_CH2	$\underset{\mathrm{N}}{\mathrm{TIM}} \mathrm{CH} 1$	-	$\begin{gathered} \text { SPI1_MO } \\ \text { SI//2 } 121 _S \\ D \end{gathered}$	-	-	-	TIM14_CH1	-	-	$\begin{gathered} \text { FMC_SDN } \\ \text { WE } \end{gathered}$	$\begin{aligned} & \text { EVEN } \\ & \text { TOUT } \end{aligned}$
	PA8	MCO1	TIM1_CH1	-	$\mathrm{TIM8}_{\overline{2}} \mathrm{BKIN}$	12C3_SCL	-	-	USART1_CK	-	-	$\begin{aligned} & \text { OTG_FS_S_S } \\ & \hline \text { OF } \end{aligned}$	-	-	$\begin{aligned} & \text { EVEN } \\ & \text { TOUT } \end{aligned}$
	PA9	-	TIM1_CH2	-	-	${ }^{12 C 3} \underset{A}{\text { A SMB }}$	SPI2_SCK /I2S2_CK	-	USART1_TX	-	-	-	-	-	$\begin{aligned} & \text { EVEN } \\ & \text { TOUT } \end{aligned}$
	PA10	-	TIM1_CH3	-	-	-	-	-	USART1_RX	-	-	OTG_FS_I	-	-	$\begin{aligned} & \text { EVEN } \\ & \text { TOUIT } \end{aligned}$
	PA11	-	TIM1_CH4	-	-	-	-	-	$\underset{\mathrm{S}}{\mathrm{USART} 1 _C T}$	-	CAN1_RX	OTG_FS_D	-	-	$\begin{aligned} & \text { EVEN } \\ & \text { TOUIT } \end{aligned}$

$\begin{array}{\|l\|l} \hline \frac{n}{4} \\ \hline \end{array}$	ω	\|를는	를은	乲5	永与	$\underset{\sim}{2} \underset{\sim}{2}$	\|를은	穹与	穹っ은	穹与	発准	를흔	垫垫	를흔	
$\stackrel{N}{\dot{4}}$		＇	，	，	，	，	，	，	，				$\begin{aligned} & {\underset{N}{1}}_{1}^{\sum_{\\|}} \\ & e_{1} \end{aligned}$	$\sum_{0}^{\overline{0}} \sum_{0}$	
$\underset{\underset{4}{4}}{\underset{\sim}{7}}$	No	＇	，	，	＇	，	＇	＇	，	，	＇	＇	，	＇	
은		$\begin{array}{\|l\|} \hline Q^{\prime} \\ \omega^{\prime} \\ \omega_{10} \\ 0_{1} \\ \hline 0 \end{array}$	＇	－	，	$\begin{aligned} & J_{1} \\ & \omega_{1}^{\prime} \\ & \mathbf{N}_{1}^{\prime} \mathbf{n}_{1}^{\prime} \\ & 0-1 \end{aligned}$		，	$\sum_{0}^{\sum_{0}^{\prime}}{ }_{0}^{\prime}$	$\sum_{\sum_{0}}^{\sum_{0}^{\prime}}$			，	$\sum_{\sum_{0}^{N}}^{N_{0}^{\prime}}$	
안			＇	，	，				＇	＇	＇	，	，	倞	
$\stackrel{\text { }}{4}$		$\begin{aligned} & \infty_{1} \\ & \omega_{1} \\ & \stackrel{\sim}{\sim} \\ & \underset{\infty}{4} \end{aligned}$	＇	＇			＇		，	＇	＇	＇	＇	，	
$\frac{\mathrm{k}}{\mathbf{\alpha}}$			，	，		，	－		，		，			＇	
$\frac{0}{4}$				＇		，	，			$\begin{array}{\|l\|} \hline \frac{\infty}{\sum_{10}} \\ \frac{m}{\omega} \\ \hline \infty \\ \hline \end{array}$		＇	＇	＇	
$\frac{6!}{4}$		＇	，	，		，	，	，		$\begin{array}{\|l} \sum_{i}^{\infty} \\ \bar{\Gamma}_{1}^{0} \end{array}$		＇	＇	＇	
先		＇	＇	－		，	，	，	，	＇	$\begin{aligned} & \sum_{\omega}^{\infty} \\ & \bar{N}^{1} \end{aligned}$	$\begin{aligned} & \overline{0} \\ & \mathcal{N}_{1} \\ & \underset{\sim}{n} \end{aligned}$			
$\frac{\text { m }}{4}$	득ㄷ․․		，	＇				－	，	＇	＇	＇	＇		
$\frac{\text { N }}{4}$	$\begin{aligned} & \stackrel{N}{N} \\ & \stackrel{y}{N} \\ & \stackrel{y}{N} \end{aligned}$	＇	＇	＇	，		$\begin{aligned} & \text { 亲 } \\ & 0 \\ & \sum_{i}^{\prime \prime} \\ & \end{aligned}$	，	，	$\begin{aligned} & \overline{I_{O}^{\prime}} \\ & { }_{1}^{\prime} \\ & \sum_{i}^{M} \end{aligned}$	$\begin{aligned} & {\underset{N}{N}}_{1} \\ & \sum_{i}^{\prime} \\ & \sum_{1} \end{aligned}$				
\bar{x}	$\stackrel{N}{\stackrel{N}{L}}$		＇	－			$\begin{array}{\|l\|} \hline \frac{M}{工} \\ \sum_{1 z} \\ \sum_{i} \\ \hline \end{array}$	＇		，	＇	＇	＇	，	
$\frac{10}{4}$	$\stackrel{\infty}{\omega}$	＇	$\sum_{5}^{\infty} \sum_{5}^{\infty}$		亏	，	＇	－	毕号	$\begin{aligned} & \text { b } \\ & \text { 蒾 } \\ & \text { z } \end{aligned}$	＇	，	＇	＇	
\bigcirc		$\underset{\sim}{\underset{a}{N}}$	$\frac{m}{\grave{a}}$	$\overline{\underset{\Delta}{\lambda}}$	$\frac{0}{4}$	\％	$\overline{\mathrm{m}}$	®	®	罥	\％	\％	¢ ${ }_{\text {¢ }}$	®	
		$\begin{aligned} & \text { 『 } \\ & \stackrel{y}{\circ} \end{aligned}$				$\begin{aligned} & \hline \infty \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$									

Table 12．STM32F722xx and STM32F723xx alternate function mapping（continued）

$\frac{n}{\dot{4}}$	$\stackrel{0}{6}$	岂岀	永各	乲霛	永年	永年	永っ	$\underset{\sim}{\text { za }}$	$\underset{\text { zin }}{\text { z. }}$			
$\stackrel{N}{\sqrt{4}}$		$\sum_{0}^{\infty} \sum_{0}^{5} 0_{1}$	，	，	$\begin{aligned} & \infty^{\prime} \\ & \mathbf{N}_{10} \\ & 0_{0} \end{aligned}$					＇		
$\underset{\stackrel{\rightharpoonup}{4}}{\stackrel{7}{4}}$	$\sum_{\substack{N}}^{N}$		＇	，	＇	＇	，	＇	，	＇	＇	＇
은		$\sum_{i=1}^{N_{0}^{\prime}} \sum_{0}^{\prime}$		$\begin{aligned} & J_{1} \\ & 0_{1}^{\prime} \\ & 0_{1}^{\prime} \\ & \sigma_{1}^{\prime} \end{aligned}$	$\begin{aligned} & J_{1}{ }_{n}^{n} \\ & \omega_{1}^{\circ}{ }_{1}^{\prime} \\ & 0_{0}^{1} \end{aligned}$		$\sum_{\sum_{0}^{\prime}}^{N_{0}^{\prime}}$	$\sum_{00}^{\sum_{0}^{\prime}}$		＇		
$\frac{\ddot{4}}{4}$			，	，	＇	，			＇	，	，	＇
$\stackrel{\infty}{4}$			＇	＇	＇	＇	，	＇	$\begin{aligned} & \infty_{1} \\ & \stackrel{\omega}{1}^{\stackrel{1}{4}} \\ & \stackrel{\sim}{\widetilde{1}} \end{aligned}$	＇	＇	＇
㐫								＇	＇	＇	，	＇
$\frac{00}{4}$			＇	＇	＇	＇	＇	＇	＇		，	＇
$\stackrel{6}{4}$				＇			$\begin{array}{\|l} \hline \frac{\infty}{2} \\ \frac{N_{1}}{\infty} \\ \infty \end{array}$		＇		$\begin{aligned} & \left\lvert\, \begin{array}{l} \infty \\ \sum_{10} \\ \frac{N^{\prime}}{\infty} \end{array}\right. \\ & \hline{ }^{2} \end{aligned}$	
殅		$\begin{aligned} & \text { s} \\ & \hat{S}_{1} \\ & \bar{\sim} \end{aligned}$	$\begin{aligned} & \underset{\sim}{u} \\ & \underset{\sim}{\prime} \\ & \underset{N}{\prime} \end{aligned}$	区 © N N	$\begin{aligned} & \sum_{N=0}^{\infty} \\ & \mathcal{N}^{\top} \end{aligned}$	＇	，	＇	，	，	＇	＇
哤		$\begin{aligned} & \overline{I_{0}^{\prime}} \\ & \bar{S}_{1}^{\prime} \end{aligned}$	＇	＇	＇	＇		$\begin{aligned} & \text { M } \\ & \stackrel{m}{J} \\ & \sum_{i}^{\infty} z \end{aligned}$	，	＇	，	＇
N			＇	＇	＇	＇	，	＇	＇	＇	＇	＇
친	\sum_{i}^{N}		$\begin{aligned} & \text { M M } \\ & \text { M } \\ & N_{\underline{\prime}}^{\prime} \end{aligned}$		$\begin{aligned} & \overline{\bar{L}}_{1} \\ & \sum_{i}^{\stackrel{\rightharpoonup}{n}^{\prime} z} \end{aligned}$	$\begin{aligned} & \bar{I}_{0} \\ & \sum_{i} z \end{aligned}$	$\begin{aligned} & \underline{N} \\ & \tilde{N}_{1 z} \\ & \sum_{\underline{I}}^{\sum_{i}} \end{aligned}$	$\begin{aligned} & \hline \stackrel{M}{د} \\ & \sum_{i z} \\ & \sum_{i}^{I} \\ & \hline \end{aligned}$	＇	＇	，	＇
인	$\stackrel{\omega}{\omega}$		＇	＇	＇	＇	＇		，	¢	，	，
$\stackrel{\square}{\circ}$		\％	$\begin{aligned} & \hline \stackrel{\circ}{\mathrm{o}} \\ & \hline \end{aligned}$	$\overline{\bar{m}}$	$\begin{aligned} & \mathrm{N} \\ & \stackrel{\mathrm{n}}{2} \end{aligned}$	$\frac{m}{\dot{\infty}}$	$\begin{aligned} & \stackrel{\mathrm{J}}{\mathrm{D}} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \frac{\varrho}{\infty} \\ & \frac{1}{2} \end{aligned}$	8	¢	กั	\％
		$\begin{aligned} & \hline \infty \\ & \text { t} \\ & \text { 口 } \end{aligned}$							$\begin{aligned} & \text { 님 } \end{aligned}$			

	$\stackrel{\infty}{\omega}$				\|를흔	学5						学5	
			$\begin{array}{\|l\|} \hline 0 \\ 0 \\ \hat{\omega}_{1} \\ \sum_{i}^{0} \bar{y} \\ \hline \end{array}$	$\begin{aligned} & \overline{0} \\ & \sum_{00}^{0} o_{1} \\ & \omega \end{aligned}$	$\sum_{0}^{\infty} \sum_{0}^{\overline{0}} \widehat{o}_{1}$	$\sum_{i}^{\overline{0}} \sum_{i}$	$\sum_{i=1}^{\overline{0}} \bar{o}_{1}$	$\sum_{0}^{\overline{0}}{ }_{0}^{\circ}$	$\sum_{0}^{\overline{0}} \sum_{0}^{0}{ }_{0}$	$\sum_{0}^{\overline{0}} \check{O}_{1}$	，	，	＇
	No	，	＇	，	，	，	，	，	，	，	，	，	，
		，	＇	$\sum_{i}^{N} \sum_{\infty}^{N} \circ$	管品	＇	，	，	，	，	，	＇	，
		，	＇	，	，	＇				，	，	＇	＇
		＇	＇				＇				，	，	＇
		，	＇	，	，	$\begin{aligned} & \frac{0}{2} \\ & \frac{6}{4} \\ & \frac{6}{6} \\ & \frac{6}{5} \end{aligned}$					，	，	，
		＇	＇	＇		＇	＇		$\begin{array}{\|l\|} \hline \sum_{n} \\ \frac{m}{0} \\ \omega \end{array}$		＇	＇	＇
		$\begin{aligned} & \text { 㘗 } \\ & \dot{N} \end{aligned}$	＇	$\begin{aligned} & \text { ভ } \\ & \sum_{1} \\ & \underset{\sim}{N} \end{aligned}$	，	，	z z O On N	，	＇	，	，	，	，
		＇	＇	＇	，	＇		，	＇	，	，	＇	＇
		＇	＇	돈 \sum_{i}^{\prime} $\stackrel{\infty}{i}$			$\begin{aligned} & \stackrel{\rightharpoonup}{I_{0}^{\prime}} \\ & \sum_{i}^{\infty} \\ & \sum_{1}^{\prime} \end{aligned}$	＇	＇	＇	，	，	＇
		＇	＇	$\begin{aligned} & \text { 동 } \\ & \sum_{1}^{\prime} \\ & \sum_{i}^{\prime} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & N_{1}^{\prime} \\ & \sum_{i}^{\prime} \end{aligned}$	$\begin{aligned} & \text { M } \\ & M_{工}^{\prime} \\ & \sum_{i}^{\prime} \end{aligned}$		＇	＇	＇	，	＇	＇
	$\underset{\underset{i}{N}}{\stackrel{N}{c}}$	＇	＇	＇	＇	，	＇	＇	，	，	，	，	＇
	$\stackrel{\omega}{\omega}$	＇	＇	，	＇		$\begin{aligned} & \text { N} \\ & \text { U } \end{aligned}$	，	，	O	，	，	，
		J	\％	Oi	N	¢	O	음	$\overline{\bar{J}}$	N	$\begin{aligned} & \text { m } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { J } \\ & \hline \end{aligned}$	$\stackrel{\llcorner }{\square}$
	¿	$\begin{aligned} & 0 \\ & \vdots \\ & \frac{1}{2} \end{aligned}$											

Table 12. STM32F722xx and STM32F723xx alternate function mapping (continued)

Port		AFO	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF15
		SYS	TIM $1 / 2$	TIM3/4/5	TIM8/9/10/1 1/LPTIM1	${ }^{12 C 1 / 2 / 3 / 4}$ SART1	SP1/12S1/ SP13/12S3/ SPI4/5	SPI2/I2S2/ SPI3/2S3/ SPI3/12S3 SAI1/ UART4	SP12/12S2/S PI3/2S3/US ART1/2/3/UA RT5	SAI2/USART 6/UART4/5/7/ 8/OTG1_FS	CAN1/TIM1 2/13/14/QU ADSPI/ FMC/ OTG2_HS	SAI2/QUAD SPI/SDMM C2/OTG2 HS/OTG1_ FS	SDMMC2	$\begin{aligned} & \text { UARTT/F } \\ & \text { MC/SDM } \\ & \text { MC1/1 } \\ & \text { OTG2_FS } \end{aligned}$	SYS
Port D	PD0	-	-	-	-	-	-	-	-	-	CAN1_RX	-	-	FMC_D2	$\begin{aligned} & \text { EVEN } \\ & \text { TOUT } \end{aligned}$
	PD1	-	-	-	-	-	-	-	-	-	CAN1_TX	-	-	FMC_D3	$\begin{aligned} & \text { EVEN } \\ & \text { TOUT } \end{aligned}$
	PD2	TRACED2	-	TIM3_ETR	-	-	-	-	-	UART5_RX	-	-	-	$\begin{aligned} & \text { SDMMC1 } \\ & \text { _CMD } \end{aligned}$	$\begin{aligned} & \text { EVEN } \\ & \text { TOUT } \end{aligned}$
	PD3	-	-	-	-	-	SPI2_SCK /I2S2_CK	-	$\underset{\mathrm{S}}{\mathrm{USART} \text { _CT }}$	-	-	-	-	FMC_CLK	EVEN TOUT
	PD4	-	-	-	-	-	-	-	$\underset{\mathrm{S}}{\text { USART2_RT }}$	-	-	-	-	$\underset{\mathrm{E}}{\mathrm{FMC}}$	EVEN TOUT
	PD5	-	-	-	-	-	-	-	USART2_TX	-	-	-	-	FMC_NW	EVEN TOUT
	PD6	-	-	-	-	-	$\begin{gathered} \text { SPI3_MO } \\ \text { SI/I2S3_S } \\ D \end{gathered}$	$\mathrm{SAl1}_{\mathrm{A}}^{\mathrm{A}} \mathrm{SD}_{-}$	USART2_RX	-	-	-	$\underset{\text { _CK }}{\substack{\text { SDMMC2 }}}$	$\underset{\text { AIT }}{\substack{\text { FMC_NW }}}$	$\begin{aligned} & \text { EVEN } \\ & \text { TOUT } \end{aligned}$
	PD7	-	-	-	-	-	-	-	USART2_CK	-	-	-	$\begin{gathered} \text { SDMMC2 } \\ \text { _CMD } \end{gathered}$	FMC_NE1	EVEN TOUT
	PD8	-	-	-	-	-	-	-	USART3_TX	-	-	-	-	FMC_D13	EVEN TOUT
	PD9	-	-	-	-	-	-	-	USART3_RX	-	-	-	-	FMC_D14	EVEN TOUT
	PD10	-	-	-	-	-	-	-	USART3_CK	-	-	-	-	FMC_D15	EVEN TOUT
	PD11	-	-	-	-	-	-	-	$\begin{gathered} \text { USART3_CT } \\ \mathrm{S} \end{gathered}$	-	QUADSPI BK1_IO0	SAI2_SD_A	-	FMC_A16/ FMC_CLE	EVEN TOUT
	PD12	-	-	TIM4_CH1	$\underset{1}{\text { LPTIM1_IN }}$	-	-	-	$\begin{gathered} \text { USART3_RT } \\ \mathrm{S} \end{gathered}$	-	QUADSPI BK1_IO1-	SAI2_FS_A	-	FMC_A17/ FMC_ALE	$\begin{aligned} & \text { EVEN } \\ & \text { TOUT } \end{aligned}$
	PD13	-	-	TIM4_CH2	$\begin{gathered} \text { LPTIM1_O } \\ \text { UT } \end{gathered}$	-	-	-	-	-	$\begin{gathered} \text { QUADSPI_ } \\ \text { BK1_IO3 } \end{gathered}$	$\mathrm{SAl}_{-\mathrm{A}}^{2} \mathrm{SCK}$	-	FMC_A18	EVEN TOUT
Port D	PD14	-	-	TIM4_CH3	-	-	-	-	-	UART8_CTS	-	-	-	FMC_D0	EVEN TOUT
	PD15	-	-	TIM4_CH4	-	-	-	-	-	UART8_RTS	-	-	-	FMC_D1	$\begin{aligned} & \text { EVEN } \\ & \text { TOUT } \end{aligned}$

Table 12．STM $32 F 722 x x$ and STM32F723xx alternate function mapping（continued）

$\begin{array}{\|l\|l} \hline \frac{n}{4} \\ \hline \end{array}$	$\stackrel{0}{\omega}$	\|를을	永っ	永っ든	永っ	를는	永っ	华霛	永っ	永っ	를군	嫘与	発占合	$\underset{\sim}{\underset{u}{u}}$	$\underset{\sim}{\mathrm{z}} \stackrel{2}{\mathrm{u}} \mathrm{~L}$		
$\stackrel{N}{\underset{4}{4}}$		$\begin{array}{\|l\|} \hline \stackrel{\rightharpoonup}{\sum_{10}} \\ \sum_{\underset{U}{\prime 0}} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \vec{m}_{2}^{\prime} \\ \sum_{L}^{\prime} \\ \sum_{L} \end{array}$		$\begin{aligned} & \hline \stackrel{9}{\overleftarrow{~}} \\ & \sum_{4}^{\prime} \end{aligned}$		$\begin{aligned} & \overline{{\underset{y}{y}}_{1}^{\prime}} \\ & \sum_{\bar{\prime}}^{1} \end{aligned}$	$\begin{aligned} & \tilde{N}_{1}^{\prime} \\ & \sum_{U}^{\prime} \end{aligned}$		$\begin{aligned} & L_{0}^{\prime} \\ & \sum_{\Perp}^{0} \end{aligned}$	$\begin{aligned} & \circ_{1} \\ & \sum_{\Perp}^{\prime} \end{aligned}$	$\begin{aligned} & \hat{D}_{1} \\ & \sum_{\Perp}^{0} \end{aligned}$	$\begin{aligned} & \infty \\ & O_{1}^{\prime} \\ & \sum_{H}^{0} \end{aligned}$		$\begin{aligned} & \text { 으́ } \\ & \sum_{L}^{\prime} \\ & \sum_{1} \end{aligned}$	$\begin{aligned} & \overline{\bar{O}_{1}^{\prime}} \\ & \sum_{L}^{\prime} \end{aligned}$	
		＇	＇	，	＇	＇	，	，	＇	，	，	，	，	，	＇	，	，
$\frac{\stackrel{\circ}{4}}{4}$		$\begin{array}{\|l\|} \hline \frac{y}{u} \\ \sum_{1} \\ \frac{1}{x} \\ \frac{1}{x} \end{array}$	，	，	，		，										
$\frac{80}{4}$		，	，		＇	，	，	，	，	，	，	，	，	，	＇	＇	＇
$\stackrel{\infty}{4}$				＇	，	，	，	，	$\begin{aligned} & \times \\ & \stackrel{x}{x} \\ & \stackrel{y}{x} \\ & \stackrel{y}{5} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{x} \\ & \stackrel{\rightharpoonup}{k} \\ & \stackrel{\rightharpoonup}{s} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{n}{k} \\ & \stackrel{\rightharpoonup}{k} \\ & \stackrel{\rightharpoonup}{x} \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{E} \\ & \stackrel{1}{\prime} \\ & \stackrel{e}{4} \end{aligned}$	，	，	，	＇	＇
砏		，	，	－	＇	－	，	，	＇	，	＇	＇	，	，	＇	，	
$\frac{00}{4}$		，	＇						＇	，	＇	＇	＇	，	＇	＇	＇
$\frac{!6}{4}$		，	＇	$\begin{aligned} & \hline \frac{y}{0} \\ & 0 \\ & \frac{1}{0} \\ & 0 \\ & \hline \end{aligned}$	＇	$\begin{aligned} & \infty \\ & \Sigma_{1} \\ & \frac{1}{0} \\ & \infty \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \sum_{j} \\ {\underset{j}{0}}^{0} \\ \hline \end{array}$		＇	，	＇	＇	$\begin{aligned} & \infty \\ & \aleph_{1} \\ & \frac{\square}{0} \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \frac{7}{0} \\ & 0, \\ & \frac{\square}{0} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \sum_{\sum_{1}} \\ & \grave{0}_{\infty}^{\circ} \end{aligned}$		＇
誌		＇	，	＇	，	，	＇	，	＇	＇	＇	＇	＇	＇	＇	＇	＇
$\frac{\dddot{4}}{4}$				，	＇	＇		$\begin{aligned} & \text { N } \\ & \text { N } \\ & \stackrel{O}{1}_{1}^{\circ} \end{aligned}$	，	，	＇	，	，	＇	＇	＇	，
$\frac{N}{4}$			．	＇	＇	＇	＇	．	＇	＇	＇	＇	＇	＇	＇	＇	
砏	$\underset{\underset{V}{N}}{\underset{V}{N}}$	＇	＇	，	＇	＇	＇			$\begin{array}{\|l\|} \hline \bar{S}_{1} \\ \sum_{1} \\ \sum_{1} \\ \hline \end{array}$	$\begin{aligned} & \text { 도 } \\ & \sum_{1} \\ & \sum_{i}^{\prime} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { N } \\ & \mathbf{N}_{1} \\ & \sum_{卜} \end{aligned}$		$\begin{aligned} & \hline \stackrel{M}{工} \\ & \vdots \\ & \stackrel{\rightharpoonup}{I} \\ & \hline \end{aligned}$		
$\frac{0}{4}$	ω	，	＇	$\begin{array}{\|l\|} \hline \stackrel{\rightharpoonup}{u} \\ \stackrel{U}{u} \\ \underset{\sim}{\varkappa} \\ \hline \end{array}$	$\begin{aligned} & \hline \stackrel{\circ}{u} \\ & \stackrel{U}{\overleftarrow{4}} \\ & \stackrel{\widetilde{F}}{ } \\ & \hline \end{aligned}$				＇	＇	＇	＇	＇	，	＇	＇	＇
$\stackrel{\text { ² }}{\substack{\circ}}$		쓸	喵	ญี	管	岗	吕	足	合	쑨	辰	$\begin{aligned} & \text { 을 } \end{aligned}$	$\underset{\sim}{\underset{a}{\mid}}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{山 己} \end{aligned}$	$\begin{aligned} & \stackrel{\mathrm{J}}{\underset{\sim}{4}} \end{aligned}$	$\stackrel{\stackrel{n}{4}}{\stackrel{\sim}{\square}}$
		$\begin{aligned} & \stackrel{1}{山} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$														$\begin{aligned} & \text { ய } \\ & \stackrel{\rightharpoonup}{\square} \end{aligned}$	

Table 12．STM32F722xx and STM32F723xx alternate function mapping（continued）

$\begin{aligned} & \frac{0}{2} \\ & \frac{1}{4} \end{aligned}$	$\stackrel{\omega}{\omega}$	穹霛	穹霛	를눈	를흔	를믕	穹霛	准霛	穹霛	爻岂은	를ㄴㅇㄴ			를릉	$\underset{\sim}{2 \times 3}$		$\begin{aligned} & \text { 热5 } \\ & \hline \end{aligned}$	
$\stackrel{N}{\stackrel{N}{4}}$		$\begin{aligned} & \underset{\substack{1 \\ 1 \\ \sum_{4}^{\prime}}}{ } \end{aligned}$	$\begin{aligned} & \underset{\substack{1}}{0_{U}^{\prime}} \end{aligned}$	$\begin{aligned} & \mathbb{N}_{1} \\ & \sum_{i}^{\prime} \end{aligned}$		$\begin{aligned} & \mathbb{U}_{1}^{\prime} \\ & \sum_{\\|}^{0} \end{aligned}$	$\begin{aligned} & \stackrel{8}{4} \\ & \sum_{4}^{0} \end{aligned}$	，	＇	－	＇	＇		$\begin{aligned} & \text { 인 } \\ & \sum_{L}^{0} \end{aligned}$	$\begin{aligned} & {\underset{X}{1}}_{1}^{\prime} \\ & \sum_{H}^{0} \end{aligned}$		® 1 \sum_{4}^{\prime}	
$\underset{\text { 군 }}{\text { F }}$	$\begin{aligned} & \text { N } \\ & \sum_{00}^{N} \\ & \text { Non } \end{aligned}$	＇	＇	＇	＇	，	，	＇	＇	－	＇	＇	，	＇	，	，	，	
$\frac{\stackrel{\circ}{4}}{\frac{1}{4}}$		＇	＇	＇	，	－	，	，	－			＇	$\begin{aligned} & \omega_{1} \\ & \omega_{1} \\ & \stackrel{N}{6} \end{aligned}$	，	＇	，	＇	
$\frac{\ddot{4}}{4}$		，	，	－	－	，	，			드́ \sum_{i}^{m} \sum_{i}^{m}	$\begin{aligned} & \overline{I_{0}^{\prime}} \\ & { }_{1}^{\prime} \\ & \sum_{i}^{\prime} \end{aligned}$	＇	，	＇	，	，	＇	
$\stackrel{\infty}{4}$		＇	，	，	．	＇	＇		$\begin{aligned} & \text { 㐅⿸厂 } \\ & \stackrel{y}{\prime} \\ & \stackrel{w}{s} \end{aligned}$			＇	，	＇	，	，	，	
交		＇	－	，	＇	＇	，	，	＇	，	，	，	，	＇	＇	＇	＇	
$\frac{\circ 0}{4}$		＇	－	，	＇	，	＇					＇	，	＇	，	，	，	
$\stackrel{4}{4}$		，	＇	＇	＇	＇	，	$\begin{aligned} & \infty \\ & \sum_{1} \\ & \frac{\varrho}{0} \\ & \hline \infty \end{aligned}$		$\begin{aligned} & \sum_{\sum_{1}} \\ & \frac{\infty}{0} \end{aligned}$	$\left\lvert\, \begin{aligned} & \sum_{\frac{0}{0}}^{\substack{0 \\ \infty}} \end{aligned}\right.$	＇		＇	，	，	，	
妾			$\begin{aligned} & \overrightarrow{0} \\ & \tilde{N}^{\prime} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{array}{\|l\|} \hline \infty \\ \sum_{N} \\ N^{1} \\ \underset{N}{2} \end{array}$	＇	，	，	，	－	－	＇	，	．	－	＇	，	＇	
枈		，	，	＇	＇	，	＇	$\begin{array}{\|l\|} \hline I_{0}^{\prime} \\ O_{1} \\ \sum_{i} \end{array}$	$\begin{aligned} & \overline{I_{j}^{\prime}} \\ & \sum_{1} \\ & \sum_{i}^{\prime} \end{aligned}$	＇	＇	＇	，	，	，	，	＇	
尔	$\begin{aligned} & \frac{n}{2} \\ & \stackrel{N}{N} \\ & \sum_{i}^{m} \end{aligned}$	＇	＇	＇	－	－	＇	＇	＇	＇	＇	＇	＇	＇	＇	，	＇	
$\overline{\frac{u}{4}}$	\sum_{i}^{N}	＇	，	＇	，	－	，	＇	＇	＇	＇	＇	＇	＇	＇	＇	＇	
$\stackrel{0}{4}$	$\stackrel{\sim}{\omega}$	＇	＇		＇	＇	＇	＇	＇	＇	＇	＇	＇	＇	＇	＇	，	
$\stackrel{\square}{\circ}$		암	䓘	츤	媲	告	告	遍	或	$\stackrel{\infty}{\stackrel{\infty}{2}}$	$\stackrel{\text { 판 }}{ }$	은	$\underset{\text { 든 }}{\bar{I}}$	$\begin{aligned} & \text { N } \\ & \stackrel{1}{2} \end{aligned}$	$\stackrel{m}{\stackrel{m}{L}}$	$\overline{\frac{\mathrm{J}}{\mathrm{~L}}}$	咎	
		$\begin{aligned} & \hline \stackrel{4}{2} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$													$\begin{aligned} & \hline \text { u } \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$			

	$\stackrel{\infty}{\omega}$	\|를을	学5		学5		学5		\|를흔		隻它	\|를흔
			$\begin{aligned} & \underset{K}{\underset{N}{\prime}} \\ & \sum_{X}^{0} \end{aligned}$	$\begin{aligned} & N \\ & \underset{\sim}{N} \\ & \sum_{U}^{\prime} \end{aligned}$	$\begin{aligned} & \hline \stackrel{m}{\overleftarrow{N}} \\ & \sum_{u}^{\prime} \end{aligned}$							
	No	＇	，	＇	，	，	，	，	，	＇		$\sum_{\text {Nod }}^{\text {N }}$
		＇	＇	，	＇	，	，	，	，	＇		$\begin{aligned} & \omega_{1} \\ & 0_{1} \\ & \stackrel{\rightharpoonup}{\overleftarrow{\prime}} \end{aligned}$
		＇	＇	＇	＇	＇	，	，	，	，		＇
		＇	，	＇	＇	＇	，	，				＇
		＇	＇	＇	＇	＇	＇	，	，	，	＇	＇
		＇	＇	＇	＇	，	＇	，	，	，	，	＇
	 	＇	＇	＇	＇	＇	＇	，	，	，	，	
		＇	＇	＇	＇	＇	＇	＇	，	，	，	＇
		＇	＇	＇	＇	＇	＇	＇	＇	，	，	＇
		＇	＇	，	＇	＇	＇	，	，	，	，	
	$\underset{\underline{N}}{N}$	＇	－	＇	＇	＇	＇	＇	＇	，	＇	＇
	$\stackrel{\omega}{\omega}$	，	＇	，	＇	＇	＇	＇	，	＇	，	
	$\stackrel{\square}{\circ}$	O	¢	N	厄్ల	犬 オ	$\begin{aligned} & \text { ! } \\ & \hline \end{aligned}$	©	Ò	$\begin{aligned} & \text { ơ } \\ & \hline \end{aligned}$	\％	\bigcirc

Table 12．STM32F722xx and STM32F723xx alternate function mapping（continued）

$\begin{array}{\|l\|l} \hline \frac{n}{4} \\ \hline \end{array}$	ω	㞼っ	\|를을	를흔	永各	発各	$\underset{\sim}{2} \underset{\sim}{2} \stackrel{1}{\circ}$		永っ	永各	$\underset{\text { zi }}{\underset{\sim}{4}}$		垫	穵亏
$\stackrel{N}{\stackrel{N}{4}}$		，				z_{0}^{2} $\sum_{i}^{0} 0$ \sum_{4}^{0}	，	＇		$\begin{array}{\|l\|} \hline z_{0} \\ \sum_{1} \\ \sum_{i l}^{0} \\ \hline \end{array}$			云	$\begin{array}{\|l\|} \hline 0 \\ \omega_{1} \\ \sum_{L}^{\prime} \bar{y} \\ \hline \end{array}$
$\underset{\frac{\rightharpoonup}{4}}{7}$	$\begin{aligned} & \text { N } \\ & \sum_{00} \\ & \text { © } \end{aligned}$	，	$\sum_{0}^{N} \sum_{0}^{N} \tilde{\sigma}_{1}$	，	＇	＇	＇	＇	，	＇	，	，	＇	
$\frac{\stackrel{\circ}{4}}{\frac{1}{4}}$		$\sum_{i=1}^{N_{0}^{\prime}}$	，	，	，	，	－	＇			$\begin{aligned} & J_{2}^{\prime \prime} \\ & 0_{1}^{x} \\ & \Sigma_{1}^{2} \\ & 0 \\ & 0 \end{aligned}$	＇	，	＇
$\frac{\ddot{4}}{4}$		＇	，	，		＇	，	＇	$\begin{aligned} & \overline{0}^{\prime} 0 \\ & 0 \\ & 0 \\ & \frac{1}{5} \\ & 0 \\ & 0 \end{aligned}$		，	，	$\begin{aligned} & \hline \overline{\mathrm{I}} \\ & \mathrm{~N}^{\prime} \\ & {\underset{\mathrm{N}}{1}}^{\mathrm{N}} \end{aligned}$	＇
$\stackrel{\infty}{4}$		＇					＇	，	，	，	＇	，	，	，
交		＇	，	＇	，	＇	－	－	，	，	，	，	，	，
$\stackrel{\circ}{4}$		＇	，	，	＇	＇	，	－	－	，	＇	＇	，	＇
$\stackrel{4}{4}$		＇	＇	，	，	＇	＇	＇	，	＇	＇			$\begin{array}{\|l\|} \hline \sum_{n} \\ \frac{\infty}{0} 0 \\ \frac{0}{\infty} \\ \hline \end{array}$
年		＇	，	，	－	＇	＇	＇	，	，	－ N N N్N	¢ ¢ N N	\sum_{n}^{∞} $N^{1 \varangle}$ N	
皆		，		$\begin{aligned} & 0 \\ & \sum_{i}^{\prime} \\ & \sum_{0} \\ & \hline \end{aligned}$		＇	－	＇	$\begin{aligned} & \underline{z_{1}} \\ & \sum_{5}^{\prime} N \\ & \vdots \end{aligned}$	，	，	，	，	＇
N	$\begin{aligned} & \stackrel{\varrho}{\text { n }} \\ & \stackrel{y}{m} \\ & \sum_{i}^{m} \end{aligned}$	＇	＇	＇	＇	＇	＇	＇	，	＇	＇	＇	＇	＇
砏	\sum_{i}^{N}	，	＇		＇	＇	＇	＇	＇	＇	＇	，	＇	＇
$\frac{0}{4}$	$\stackrel{\sim}{\omega}$	＇	＇		或	＇	＇	，	＇	＇	，	＇	＇	＇
$\stackrel{\square}{\circ}$		$\underset{\square}{\Sigma}$	N	$$	$\begin{aligned} & \hline \stackrel{t}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \frac{0}{0} \\ & \hline 2 \end{aligned}$	옴	$\stackrel{\text { ̇ㅡㅁ }}{ }$	$\frac{\mathrm{N}}{\mathrm{D}}$	$\frac{\text { 쏨 }}{}$	$\stackrel{\text { I }}{\text { I }}$	$\frac{\text { 옴 }}{}$	$\stackrel{\bigcirc}{\square}$	솜
		$\begin{aligned} & 0 \\ & \text { N } \\ & 0 \end{aligned}$					－							

Port		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF15
		SYS	TIM $1 / 2$	TIM3/4/5	TIM8/9/10/1 1/LPTIM1	12C1/2/3/4		SPI2/12S2/ SPI3/2S3/ SPI3/I2S3 SAl1/ UART4	SPI2/I2S2/S PI3/I2S3/US ART1/2/3/UA RT5	SAI2/USART 6/UART4/5/7/ 8/OTG1_FS	CAN1/TIM1 2/13/14/QU ADSPI/ FMC/ OTG2_HS	SAI2/QUAD SPI/SDMM C2/OTG2 HS/OTG1_ FS	SDMMC2	UART7/F MC/SDM MC1/ OTG2_FS	SYS
Port H	PH8	-	-	-	-	12C3_SDA	-	-	-	-	-	-	-	FMC_D16	EVEN TOUT
	PH9	-	-	-	-	${ }^{12 C 3} 3_{\bar{A}} \mathrm{SMB}$	-	-	-	-	TIM12_CH2	-	-	FMC_D17	EVEN TOUT
	PH10	-	-	TIM5_CH1	-	-	-	-	-	-	-	-	-	FMC_D18	EVEN TOUT
	PH11	-	-	TIM5_CH2	-	-	-	-	-	-	-	-	-	FMC_D19	EVEN TOUT
	PH12	-	-	TIM5_CH3	-	-	-	-	-	-	-	-	-	FMC_D20	EVEN TOUT
	PH13	-	-	-	$\mathrm{TIM8}_{\overline{\mathrm{N}}}$	-	-	-	-	UART4_TX	CAN1_TX	-	-	FMC_D21	EVEN TOUT
	PH14	-	-	-	$\underset{\mathrm{N}}{\mathrm{TIM} 8} \mathrm{CH} 2$	-	-	-	-	UART4_RX	CAN1_RX	-	-	FMC_D22	$\begin{aligned} & \text { EVEN } \\ & \text { TOUT } \end{aligned}$
	PH15	-	-	-	$\underset{\bar{N}}{\text { TIM8_CH3 }}$	-	-	-	-	-	-	-	-	FMC_D23	EVEN TOUT
Port I	PIO	-	-	TIM5_CH4	-	-	$\begin{aligned} & \text { SPI2_NSS } \\ & \text { /I2S2_WS } \end{aligned}$	-	-	-	-	-	-	FMC_D24	EVEN TOUT
	PI1	-	-	-	$\mathrm{TIM}_{\overline{2}}^{\mathrm{T}} \mathrm{BKIN}$	-	SPI2_SCK /I2S2_CK	-	-	-	-	-	-	FMC_D25	EVEN TOUT
	PI2	-	-	-	TIM8_CH4	-	$\underset{\mathrm{O}}{\mathrm{SPI} \mathrm{MIS}}$	-	-	-	-	-	-	FMC_D26	EVEN TOUT
	PI3	-	-	-	TIM8_ETR	-	$\left\lvert\, \begin{gathered} \mathrm{SPI2} \mathrm{MO} \\ \mathrm{SI} / \mathrm{M} 2 _ \\ \mathrm{D} \end{gathered}\right.$	-	-	-	-	-	-	FMC_D27	$\begin{aligned} & \text { EVEN } \\ & \text { TOUT } \end{aligned}$
	PI4	-	-	-	TIM8_BKIN	-	-	-	-	-	-	$\underset{A}{\text { SAl2_MCK }}$	-	FMC_NBL	$\begin{aligned} & \text { EVEN } \\ & \text { TOUT } \end{aligned}$
	P15	-	-	-	TIM8_CH1	-	-	-	-	-	-	$\mathrm{SAl}_{-\mathrm{A}}^{2} \mathrm{SCK}$	-	FMC_NBL	EVEN TOUT
	Pl6	-	-	-	TIM8_CH2	-	-	-	-	-	-	SAI2_SD_A	-	FMC_D28	EVEN TOUT

Table 12．STM32F722xx and STM32F723xx alternate function mapping（continued）

$\begin{aligned} & \text { n } \\ & \frac{n}{4} \end{aligned}$	$\stackrel{\infty}{\omega}$	$\underset{\sim}{2} \underset{\sim}{2}$	$\begin{aligned} & \text { 乲5 } \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \text { ze } \\ & \underset{y}{4} \\ & \hline 1 \end{aligned}$	를흔	를눈	\|른	를ㄴㄹㄴ	를흔	를흔
$\frac{N}{\dot{4}}$		$\stackrel{\circ}{0}$ \sum_{1}^{\prime} \sum_{4}^{\prime}	＇	$\begin{aligned} & \text { ò } \\ & \hat{O}_{1}^{\prime} \\ & \sum_{\Delta}^{0} \end{aligned}$	$\begin{aligned} & \overline{\omega_{1}^{\prime}} \\ & \sum_{\Delta}^{\prime} \end{aligned}$	＇	＇	＇	＇	，
$\underset{\underset{4}{4}}{\bar{u}}$	$\begin{aligned} & \text { N } \\ & \sum_{\grave{0}}^{6} \\ & \text { Non } \end{aligned}$	＇	＇	＇	＇	＇	＇	＇	＇	，
$\frac{\stackrel{\circ}{4}}{\frac{1}{4}}$			＇	，	＇		，	，	＇	＇
$\stackrel{\circ}{4}$		，	＇		＇	＇	，	＇	＇	，
$\frac{\infty}{4}$		＇	＇		＇	＇	，	＇	，	＇
交		，	＇	＇	＇	，	，	＇	＇	＇
$\frac{\stackrel{\circ}{4}}{4}$		＇	＇	＇	＇	＇	，	＇	＇	＇
$\frac{!!2}{4}$		＇	，	＇	，	，	，	，	＇	＇
誌		＇	，	＇	，	，	，	，	，	＇
$\frac{\mathscr{m}}{\mathbb{4}}$			，	＇	，	，	，	＇	＇	＇
妣	$\begin{aligned} & \frac{n}{\frac{n}{L}} \\ & \stackrel{y}{m} \\ & \sum_{1}^{n} \end{aligned}$	＇	＇	＇	＇	＇	，	＇	＇	＇
六	$\underset{\underline{\Sigma}}{\stackrel{N}{N}}$	＇	＇	＇	＇	＇	，	＇	＇	＇
인	$\stackrel{\infty}{\omega}$	＇	＇	＇	＇	＇	＇	＇	＇	＇
$\stackrel{\text { º }}{\text { ¢ }}$		슴	뜸	음	$\frac{}{ㅁ}$	츤	$\frac{\mathrm{N}}{\mathrm{a}}$	$\frac{m}{\square}$		$\stackrel{\bullet}{\square}$
		¢								

4 Memory mapping

The memory map is shown in Figure 24.
Figure 24. Memory map

Table 13. STM32F722xx and STM32F723xx register boundary addresses ${ }^{(1)}$

Bus	Boundary address	Peripheral
	0xE00F FFFF - 0xFFFF FFFF	Reserved
Cortex-M7	0xE000 0000-0xE00F FFFF	Cortex-M7 internal peripherals
AHB3	0xD000 0000-0xDFFF FFFF	FMC bank 6
	0xC000 0000-0xCFFF FFFF	FMC bank 5
	0xA000 2000-0xBFFF FFFF	Reserved
	0xA000 1000-0xA000 1FFF	Quad-SPI control register
	0xA000 0000-0xA000 0FFF	FMC control register
	0x9000 0000-0x9FFF FFFF	Quad-SPI
	0x8000 0000-0x8FFF FFFF	FMC bank 3
	0x7000 0000-0x7FFF FFFF	FMC bank 2
	0x6000 0000-0x6FFF FFFF	FMC bank 1
	0×5006 0C00-0x5FFF FFFF	Reserved
AHB2	0x5006 0800-0x5006 0BFF	RNG
	0x5004 0000-0x5006 07FF	Reserved
	0x5000 0000-0x5003 FFFF	USB OTG FS

Table 13. STM32F722xx and STM32F723xx register boundary addresses ${ }^{(1)}$ (continued)

Bus	Boundary address	Peripheral
	0x4008 0000-0x4FFF FFFF	Reserved
AHB1	0x4004 0000-0x4007 FFFF	USB OTG HS
	0x4002 6800-0x4003 FFFF	Reserved
	0x4002 6400-0x4002 67FF	DMA2
	0x4002 6000-0x4002 63FF	DMA1
	0x4002 5000-0X4002 5FFF	Reserved
	0x4002 4000-0x4002 4FFF	BKPSRAM
	0x4002 3C00-0x4002 3FFF	Flash interface register
	0x4002 3800-0x4002 3BFF	RCC
	0X4002 3400-0X4002 37FF	Reserved
	0x4002 3000-0x4002 33FF	CRC
	0x4002 2400-0x4002 2FFF	Reserved
	0x4002 2000-0x4002 23FF	GPIOI
	0x4002 1C00-0x4002 1FFF	GPIOH
	0x4002 1800-0x4002 1BFF	GPIOG
	0x4002 1400-0x4002 17FF	GPIOF
	0x4002 1000-0x4002 13FF	GPIOE
	0X4002 0C00-0x4002 0FFF	GPIOD
	0x4002 0800-0x4002 0BFF	GPIOC
	0x4002 0400-0x4002 07FF	GPIOB
	0x4002 0000-0x4002 03FF	GPIOA

Table 13. STM32F722xx and STM32F723xx register boundary addresses ${ }^{(1)}$ (continued)

Bus	Boundary address	Peripheral
	0x4001 8000-0x4001 FFFF	Reserved
APB2	0x4001 7C00-0x4001 7FFF	OTG PHY HS Controller ${ }^{(2)}$
	0x4001 6000-0x4001 7BFF	Reserved
	0x4001 5C00-0x4001 5FFF	SAI2
	0x4001 5800-0x4001 5BFF	SAI1
	0x4001 5400-0x4001 57FF	Reserved
	0x4001 5000-0x4001 53FF	SPI5
	0x4001 4C00-0x4001 4FFF	Reserved
	0x4001 4800-0x4001 4BFF	TIM11
	0x4001 4400-0x4001 47FF	TIM10
	0x4001 4000-0x4001 43FF	TIM9
	0x4001 3C00-0x4001 3FFF	EXTI
	0x4001 3800-0x4001 3BFF	SYSCFG
	0x4001 3400-0x4001 37FF	SPI4
	0x4001 3000-0x4001 33FF	SPI1/I2S1
	0x4001 2C00-0x4001 2FFF	SDMMC1
	0x4001 $2400-0 \times 4001$ 2BFF	Reserved
	0x4001 2000-0x4001 23FF	ADC1 - ADC2 - ADC3
	0x4001 1C00-0x4001 1FFF	SDMMC2
	0x4001 1800-0x4001 1BFF	Reserved
	0x4001 1400-0x4001 17FF	USART6
	0x4001 1000-0x4001 13FF	USART1
	0x4001 $0800-0 \times 4001$ OFFF	Reserved
	0x4001 $0400-0 \times 4001$ 07FF	TIM8
	0x4001 0000-0x4001 03FF	TIM1

Table 13. STM32F722xx and STM32F723xx register boundary addresses ${ }^{(1)}$ (continued)

Bus	Boundary address	Peripheral
	0x4000 8000-0x4000 FFFF	Reserved
APB1	0x4000 7C00-0x4000 7FFF	UART8
	0x4000 7800-0x4000 7BFF	UART7
	0x4000 7400-0x4000 77FF	DAC
	0x4000 7000-0x4000 73FF	PWR
	0x4000 6800-0x4000 6FFF	Reserved
	0x4000 6400-0x4000 67FF	CAN1
	0x4000 6000-0x4000 63FF	Reserved
	0x4000 5C00-0x4000 5FFF	I2C3
	0x4000 5800-0x4000 5BFF	I2C2
	0x4000 5400-0x4000 57FF	I2C1
	0x4000 5000-0x4000 53FF	UART5
	0x4000 4C00-0x4000 4FFF	UART4
	0x4000 4800-0x4000 4BFF	USART3
	0x4000 4400-0x4000 47FF	USART2
	0x4000 4000-0x4000 43FF	Reserved
	0x4000 3C00-0x4000 3FFF	SPI3 / I2S3
	0x4000 3800-0x4000 3BFF	SPI2 / I2S2
	0x4000 3400-0x4000 37FF	Reserved
	0x4000 3000-0x4000 33FF	IWDG
	0x4000 2C00-0x4000 2FFF	WWDG
	0x4000 2800-0x4000 2BFF	RTC \& BKP Registers
	0x4000 2400-0x4000 27FF	LPTIM1
	0x4000 2000-0x4000 23FF	TIM14
	0x4000 1C00-0x4000 1FFF	TIM13
	0x4000 1800-0x4000 1BFF	TIM12
	0x4000 1400-0x4000 17FF	TIM7
	0x4000 1000-0x4000 13FF	TIM6
	0x4000 0C00-0x4000 0FFF	TIM5
	0x4000 0800-0x4000 0BFF	TIM4
	0x4000 0400-0x4000 07FF	TIM3
	0x4000 0000-0x4000 03FF	TIM2

1. The gray color is used for reserved Flash memory addresses.
2. Only for the STM32F723xx devices.

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

5.1 LQFP64-10×10 mm, low-profile quad flat package information

Figure 25. LQFP64-10 x 10 mm , low-profile quad flat package outline

1. Drawing is not to scale.

Table 14. LQFP64-10×10 mm, low-profile quad flat package mechanical data

Symbol	millimeters			inches $^{(1)}$		
	Min	Typ	Max	Min	Typ	Max
A	-	-	1.60	-	-	0.0630
A1	0.05	-	0.15	0.0020	-	0.0059

Table 14. LQFP64-10×10 mm, low-profile quad flat package mechanical data (continued)

Symbol	millimeters			inches $^{(1)}$		
	Min	Typ	Max	Min	Typ	Max
A2	1.350	1.40	1.45	0.0531	0.0551	0.0571
b	0.17	0.22	0.27	0.0067	0.0087	0.0106
c	0.09	-	0.20	0.0035		0.0079
D	-	12.00	-	-	0.4724	-
D1	-	10.00	-	-	0.3937	-
D3	-	7.50	-	-	0.2953	-
E	-	12.00	-	-	0.4724	-
E1	-	10.00	-	-	0.3937	-
E3	-	7.50	-	-	0.2953	-
e	-	0.50	-	-	0.0197	-
K	0°	3.5°	7°	0°	3.5°	7°
L	0.45	0.60	0.75	0.0177	0.0236	0.0295
L1	-	1.00	-	-	0.0394	-
ccc	-	-	0.08	-	-	0.0031

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 26. LQFP64-10 x 10 mm , low-profile quad flat package recommended footprint

1. Dimensions are in millimeters.

5.2 LQFP100, 14×14 mm low-profile quad flat package information

Figure 27. LQFP100, $14 \times 14 \mathrm{~mm}$ 100-pin low-profile quad flat package outline

1. Drawing is not to scale.

Table 15. LQPF100, $14 \times 14 \mathrm{~mm}$ 100-pin low-profile quad flat package mechanical data

Symbol	millimeters			inches ${ }^{(1)}$		
	Min	Typ	Max	Min	Typ	Max
A	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
c	0.090	-	0.200	0.0035	-	0.0079
D	15.800	16.000	16.200	0.6220	0.6299	0.6378
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591
D3	-	12.000	-	-	0.4724	-
E	15.800	16.000	16.200	0.6220	0.6299	0.6378

Table 15. LQPF100, $14 \times 14 \mathrm{~mm}$ 100-pin low-profile quad flat package mechanical data (continued)

Symbol	millimeters			inches $^{(1)}$		
	Min	Typ	Max	Min	Typ	Max
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591
E3	-	12.000	-	-	0.4724	-
e	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
ccc	-	-	0.080	-	-	0.0031

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 28. LQFP100, $14 \times 14 \mathrm{~mm}, 100$-pin low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

5.3 LQFP144, $20 \times 20 \mathrm{~mm}$ low-profile quad flat package information

Figure 29. LQFP144, $20 \times 20 \mathrm{~mm}$, 144-pin low-profile quad flat package outline

1. Drawing is not to scale.

Table 16. LQFP144, $20 \times 20 \mathrm{~mm}$, 144-pin low-profile quad flat package mechanical data

Symbol	millimeters			inches $^{(1)}$		
	Min	Typ	Max	Min	Typ	Max
A	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
c	0.090	-	0.200	0.0035	-	0.0079
D	21.800	22.000	22.200	0.8583	0.8661	0.874

Table 16. LQFP144, $20 \times 20 \mathrm{~mm}$, 144-pin low-profile quad flat package mechanical data (continued)

Symbol	millimeters			inches $^{(1)}$		
	Min	Typ	Max	Min	Typ	Max
D1	19.800	20.000	20.200	0.7795	0.7874	0.7953
D3	-	17.500	-	-	0.689	-
E	21.800	22.000	22.200	0.8583	0.8661	0.8740
E1	19.800	20.000	20.200	0.7795	0.7874	0.7953
E3	-	17.500	-	-	0.6890	-
e	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
ccc	-	-	0.080	-	-	0.0031

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 30. LQFP144, 20×20 mm, 144-pin low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

5.4 LQFP176 24×24 mm low-profile quad flat package information

Figure 31. LQFP176, $24 \times 24 \mathrm{~mm}$, 176-pin low-profile quad flat package outline

1. Drawing is not to scale.

Table 17. LQFP176, $24 \times 24 \mathrm{~mm}$, 176-pin low-profile quad flat package mechanical data

Symbol	millimeters			inches $^{(1)}$		
	Min	Typ	Max	Min	Typ	Max
A	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	-	1.450	0.0531	-	0.0060
b	0.170	-	0.270	0.0067	-	0.0106
C	0.090	-	0.200	0.0035	-	0.0079
D	23.900	-	24.100	0.9409	-	0.9488

Table 17. LQFP176, $24 \times 24 \mathrm{~mm}$, 176-pin low-profile quad flat package mechanical data (continued)

Symbol	millimeters			inches $^{(1)}$		
	Min	Typ	Max	Min	Typ	Max
E	23.900	-	24.100	0.9409	-	0.9488
e	-	0.500	-	-	0.0197	-
HD	25.900	-	26.100	1.0200	-	1.0276
HE	25.900	-	26.100	1.0200	-	1.0276
L	0.450	-	0.750	0.0177	-	0.0295
L1	-	1.000	-	-	0.0394	-
ZD	-	1.250	-	-	0.0492	-
ZE	-	1.250	-	-	0.0492	-
ccc	-	-	0.080	-	-	0.0031
k	0°	-	7°	0°	-	7°

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 32. LQFP176, $24 \times 24 \mathrm{~mm}$, 176-pin low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

5.5 UFBGA144 package information

Figure 33. UFBGA144-144-ball, $7 \times 7 \mathrm{~mm}, 0.50 \mathrm{~mm}$ pitch, ultra fine pitch ball grid array package outline

1. Drawing is not to scale.

Table 18. UFBGA144-144-ball, $7 \times 7 \mathrm{~mm}, 0.50 \mathrm{~mm}$ pitch, ultra fine pitch ball grid array package mechanical data

Symbol	millimeters			inches ${ }^{(1)}$		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A	0.460	0.530	0.600	0.0181	0.0209	0.0236
A1	0.050	0.080	0.110	0.0020	0.0031	0.0043
A2	0.400	0.450	0.500	0.0157	0.0177	0.0197
A3	-	0.130	-	-	0.0051	-
A4	0.270	0.320	0.370	0.0106	0.0126	0.0146
b	0.230	0.280	0.320	0.0091	0.0110	0.0126
D	6.950	7.000	7.050	0.2736	0.2756	0.2776
D1	5.450	5.500	5.550	0.2146	0.2165	0.2185
E	6.950	7.000	7.050	0.2736	0.2756	0.2776
E1	5.450	5.500	5.550	0.2146	0.2165	0.2185
e	-	0.500	-	-	0.0197	-
F	0.700	0.750	0.800	0.0276	0.0295	0.0315

Table 18. UFBGA144-144-ball, $7 \times 7 \mathrm{~mm}, 0.50 \mathrm{~mm}$ pitch, ultra fine pitch ball grid array package mechanical data (continued)

Symbol	millimeters			inches ${ }^{(1)}$		
	Min.	Typ.	Max.	Min.	Typ.	Max.
ddd	-	-	0.100	-	-	0.0039
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 34. UFBGA144-144-ball, $7 \times 7 \mathrm{~mm}, 0.50 \mathrm{~mm}$ pitch, ultra fine pitch ball grid array package recommended footprint

Table 19. UFBGA144 recommended PCB design rules (0.50 mm pitch BGA)

Dimension	Recommended values
Pitch	0.50 mm
Dpad	0.280 mm
Dsm	0.370 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.280 mm
Stencil thickness	Between 0.100 mm and 0.125 mm
Pad trace width	0.120 mm

5.6 UFBGA 176+25, $10 \times 10,0.65 \mathrm{~mm}$ ultra thin-pitch ball grid array package information

Figure 35. UFBGA $176+25,10 \times 10 \times 0.65 \mathrm{~mm}$ ultra thin fine-pitch ball grid array package outline

1. Drawing is not to scale.

Table 20. UFBGA176+25, $10 \times 10 \times 0.65 \mathrm{~mm}$ ultra thin fine-pitch ball grid array package mechanical data

Symbol	millimeters			inches $^{(1)}$		
	Min	Typ	Max	Min	Typ	Max
A	0.460	0.530	0.600	0.0181	0.0209	0.0236
A1	0.050	0.080	0.110	0.002	0.0031	0.0043
A2	0.400	0.450	0.500	0.0157	0.0177	0.0197
b	0.230	0.280	0.330	0.0091	0.0110	0.0130
D	9.950	10.000	10.050	0.3917	0.3937	0.3957
E	9.950	10.000	10.050	0.3917	0.3937	0.3957
e	-	0.650	-	-	0.0256	-
F	0.400	0.450	0.500	0.0157	0.0177	0.0197
ddd	-	-	0.080	-	-	0.0031
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.080	-	-	0.0031

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 36. UFBGA176+25, $10 \times 10 \mathrm{~mm} \times 0.65 \mathrm{~mm}$, ultra fine-pitch ball grid array package recommended footprint

Table 21. UFBGA176+25 recommended PCB design rules (0.65 mm pitch BGA)

Dimension	\quad Recommended values
Pitch	0.65 mm
Dpad	0.300 mm
Dsm	0.400 mm typ. (depends on the soldermask reg- istration tolerance $)$
Stencil opening	0.300 mm
Stencil thickness	Between 0.100 mm and 0.125 mm
Pad trace width	0.100 mm

5.7 WLCSP100-0.4 mm pitch wafer level chip scale package information

Figure 37. WLCSP100 - 100L, $4.166 \times 4.628 \mathrm{~mm} 0.4 \mathrm{~mm}$ pitch wafer level chip scale package outline

SIDE VIEW

1. Drawing is not to scale.

Table 22. WLCSP100 - 100L, $4.166 \times 4.628 \mathrm{~mm} 0.4 \mathrm{~mm}$ pitch wafer level chip scale package mechanical data

Symbol	millimeters			inches $^{(1)}$		
	Min	Typ	Max	Typ	Min	Max
A	0.525	0.555	0.585	0.0207	0.0219	0.0230
A1	-	0.17	-	-	0.0067	-
A2	-	0.38	-	-	0.0150	-
A3 $^{(2)}$	-	0.025	-	-	0.0010	-
${\varnothing \text { b }^{(3)}}^{\text {D }}$	0.22	0.25	0.28	-	0.0098	0.0110
E	4.166	4.201	4.236	-	0.1654	0.1668
e	4.628	4.663	4.698	-	0.1836	0.1850
e1	-	0.4	-	-	0.0157	-
e2	-	3.6	-	-	0.1417	-
F	-	0.3005	-	-	0.0118	-
G	-	0.5315	-	-	0.0209	-
N	-	100	-	-	3.9370	-
aaa	-	0.1	-	-	0.0039	-
bbb	-	0.1	-	-	0.0039	-
ccc	-	0.1	-	-	0.0039	-
ddd	-	0.05	-	-	0.0020	-
eee	-	0.05	-	-	0.0020	-

1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Back side coating.
3. Dimension is measured at the maximum bump diameter parallel to primary datum Z .

Figure 38. WLCSP100 - 100L, $4.166 \times 4.628 \mathrm{~mm} 0.4 \mathrm{~mm}$ pitch wafer level chip scale package recommended footprint

WLCSP100L_A01Q_FP_V1
Table 23. WLCSP100 recommended PCB design rules (0.4 mm pitch)

Dimension	\quad Recommended values
Pitch	0.4 mm
Dpad	0.225 mm
Dsm	0.290 mm
Stencil thickness	0.1 mm

5.8 Thermal characteristics

The maximum chip-junction temperature, T_{J} max, in degrees Celsius, may be calculated using the following equation:
$T_{J} \max =T_{A} \max +\left(P_{D} \max x \Theta_{J A}\right)$
Where:

- $\quad \mathrm{T}_{\mathrm{A}}$ max is the maximum ambient temperature in ${ }^{\circ} \mathrm{C}$,
- $\quad \Theta_{\mathrm{JA}}$ is the package junction-to-ambient thermal resistance, in ${ }^{\circ} \mathrm{C} / \mathrm{W}$,
- $\quad P_{D}$ max is the sum of $P_{I N T} \max$ and $P_{I / O} \max \left(P_{D} \max =P_{I N T} \max +P_{I / O} m a x\right)$,
- $\quad P_{I N T} m a x$ is the product of $I_{D D}$ and $V_{D D}$, expressed in Watts. This is the maximum chip internal power.
$\mathrm{P}_{\mathrm{I} / \mathrm{O}}$ max represents the maximum power dissipation on output pins where:
$\mathrm{P}_{\mathrm{I} / \mathrm{O}} \max =\Sigma\left(\mathrm{V}_{\mathrm{OL}} \times \mathrm{l}_{\mathrm{OL}}\right)+\Sigma\left(\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{OH}}\right) \times \mathrm{l}_{\mathrm{OH}}\right)$,
taking into account the actual $\mathrm{V}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OL}}$ and $\mathrm{V}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OH}}$ of the I / Os at low and high level in the application.

Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.

6 Ordering information

Table 24. Ordering information scheme
Example:
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
F = general-purpose
Device subfamily
722 = STM32F722xx, no OTG PHY HS
723 = STM32F723xx, with OTG PHY HS
Pin count
$\mathrm{R}=64$ pins
$V=100$ pins
$Z=144$ pins
$\mathrm{I}=176$ pins
Flash memory size
C = 256 Kbytes of Flash memory
$\mathrm{E}=512$ Kbytes of Flash memory
Package
T = LQFP
$\mathrm{K}=\mathrm{UFBGA}(10 \times 10 \mathrm{~mm})$
$\mathrm{I}=\mathrm{UFBGA}(7 \times 7 \mathrm{~mm})$
$Y=$ WLCSP

Temperature range

$6=$ Industrial temperature range, -40 to $85^{\circ} \mathrm{C}$.
7 = Industrial temperature range, -40 to $105^{\circ} \mathrm{C}$.

Options

xxx = programmed parts
TR = tape and reel

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

Appendix A Recommendations when using internal reset OFF

When the internal reset is OFF, the following integrated features are no longer supported:

- The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled.
- The brownout reset (BOR) circuitry must be disabled.
- The embedded programmable voltage detector (PVD) is disabled.
- $\quad V_{B A T}$ functionality is no more available and VBAT pin should be connected to $V_{D D}$.
- The over-drive mode is not supported.

A. 1 Operating conditions

Table 25. Limitations depending on the operating power supply range
$\begin{array}{|l|c|c|c|l|l|}\hline & & \begin{array}{c}\text { Maximum } \\ \text { Operating } \\ \text { power } \\ \text { supply } \\ \text { range }\end{array} & \begin{array}{c}\text { ADC } \\ \text { operation }\end{array} & \begin{array}{c}\text { memory } \\ \text { access } \\ \text { frequency } \\ \text { with no wait } \\ \text { states } \\ \left(f_{\text {Flashmax }}\right.\end{array} & \begin{array}{c}\text { Maximum Flash } \\ \text { memory access } \\ \text { frequency with } \\ \text { wait states (1)(2) }\end{array}\end{array}$ I/O operation $\left.\begin{array}{c}\text { Possible Flash } \\ \text { memory } \\ \text { operations }\end{array}\right]$

1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is required.
2. Thanks to the ART accelerator on ITCM interface and L1-cache on AXI interface, the number of wait states given here does not impact the execution speed from the Flash memory since the ART accelerator or L1cache allows to achieve a performance equivalent to 0 -wait state program execution.
3. $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{DDA}}$ minimum value of 1.7 V , with the use of an external power supply supervisor (refer to Section 2.15.1: Internal reset $O N$).

Revision history

Table 26. Document revision history

Date	Revision	Changes
21-Sep-2016	1	Initial release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

$$
\text { © } 2016 \text { STMicroelectronics - All rights reserved }
$$

[^0]: 1. Function availability depends on the chosen device.
[^1]: These I/Os must not be used as a current source (e.g. to drive an LED)

 - The speed should not exceed 2 MHz with a maximum load of 30 pF .

 Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after reset (because these registers are not
 reset by the main reset).
 ULPI signals not available on the STM32F723xx devices.
 5. $\mathrm{FT}=5 \mathrm{~V}$ tolerant except when in analog mode or oscillator mode (for $\mathrm{PC} 14, \mathrm{PC} 15, \mathrm{PH} 0$ and PH 1).
 6. If the device is in regulator OFF/internal reset ON mode (BYPASS REG pin is set to VDD), then PAO is used as an internal reset (active low).

