

STM32H743xI

32-bit Arm[®] Cortex[®]-M7 400MHz MCUs, up to 2MB Flash, 1MB RAM, 46 com. and analog interfaces

Datasheet - production data

Features

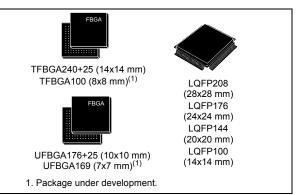
Core

 32-bit Arm[®] Cortex[®]-M7 core with doubleprecision FPU and L1 cache: 16 Kbytes of data and 16 Kbytes of instruction cache allowing one cache line to be filled in a single access from the 256-bit embedded Flash memory; frequency up to 400 MHz, MPU, 856 DMIPS/ 2.14 DMIPS/MHz (Dhrystone 2.1), and DSP instructions

Memories

- Up to 2 Mbytes of Flash memory with readwhile-write support
- 1 Mbyte of RAM: 192 Kbytes of TCM RAM (inc. 64 Kbytes of ITCM RAM + 128 Kbytes of DTCM RAM for time critical routines), 864 Kbytes of user SRAM, and 4 Kbytes of SRAM in Backup domain
- Dual mode Quad-SPI memory interface running up to 133 MHz
- Flexible external memory controller with up to 32-bit data bus: SRAM, PSRAM, SDRAM/LPSDR SDRAM, NOR/NAND Flash clocked up to 133 MHz in synchronous mode
- CRC calculation unit

Security


• ROP, PC-ROP, active tamper

General-purpose input/outputs

- Up to 168 I/O ports with interrupt capability
 - Fast I/Os capable of up to 133 MHz
 - Up to 164 5 V-tolerant I/Os

Reset and power management

 3 separate power domains which can be independently clock gated or switched off to maximize power efficiency:

- D1: high-performance capabilities for high bandwidth peripherals
- D2: communication peripherals and timers
- D3: reset/clock control/power management
- 1.62 to 3.6 V application supply and I/Os
- POR, PDR, PVD and BOR
- Dedicated USB power embedding a 3.3 V internal regulator to supply the internal PHYs
- Embedded regulator (LDO) with configurable scalable output to supply the digital circuitry
- Voltage scaling in Run and Stop mode (5 configurable ranges)
- Backup regulator (~0.9 V)
- Voltage reference for analog peripheral/V_{REF+}
- Low-power modes: Sleep, Stop, Standby and V_{BAT} supporting battery charging

Low-power consumption

Total current consumption down to 4 µA

Clock management

- Internal oscillators: 64 MHz HSI, 48 MHz HSI48, 4 MHz CSI, 40 kHz LSI
- External oscillators: 4-48 MHz HSE, 32.768 kHz LSE
- 3× PLLs (1 for the system clock, 2 for kernel clocks) with fractional mode

October 2017

DocID030538 Rev 3

This is information on a product in full production.

Interconnect matrix

- 3 bus matrices (1 AXI and 2 AHB)
- Bridges (5× AHB2-APB, 2× AXI2-AHB)

4 DMA controllers to unload the CPU

- 1× high-speed general-purpose master direct memory access controller (MDMA) with linked list support
- 2× dual-port DMAs with FIFO and request router capabilities
- 1× basic DMA with request router capabilities

Up to 35 communication peripherals

- 4× I2C FM+ interfaces (SMBus/PMBus)
- 4× USART/4x UARTs (ISO7816 interface, LIN, IrDA, modem control, up to 12.5 Mbit/s) and 1x LPUART
- 6× SPIs, including 3 with muxed duplex I2S audio class accuracy via internal audio PLL or external clock, 1x I2S in LP domain (up to 133 MHz)
- 4x SAIs (serial audio interface)
- SPDIFRX interface
- SWPMI single-wire protocol master I/F
- MDIO Slave interface
- 2× SD/SDIO/MMC interfaces (up to 125 MHz)
- 2× CAN controllers: 2 with CAN FD, 1 with time-triggered CAN (TT-CAN)
- 2× USB OTG interfaces (1FS, 1HS/FS)
- Ethernet MAC interface with DMA controller
- HDMI-CEC
- 8- to 14-bit camera interface (up to 80 MHz)

11 analog peripherals

 3× ADCs with 16-bit max. resolution (14 bits 4 MSPS, 16 bits 3.6 MSPS)

- 1× temperature sensor
- 2× 12-bit D/A converters (1 MHz)
- 2× ultra-low-power comparators
- 2× operational amplifiers (8 MHz bandwidth)
- 1× digital filters for sigma delta modulator (DFSDM) with 8 channels/4 filters

Graphics

- LCD-TFT controller up to XGA resolution
- Chrom-ART graphical hardware Accelerator™ (DMA2D) to reduce CPU load
- Hardware JPEG Codec

Up to 22 timers and watchdogs

- 1× high-resolution timer (2.5 ns max resolution)
- 2× 32-bit timers with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input (up to 200 MHz)
- 2× 16-bit advanced motor control timers (up to 200 MHz)
- 10× 16-bit general-purpose timers (up to 200 MHz)
- 5× 16-bit low-power timers (up to 200 MHz)
- 2× watchdogs (independent and window)
- 1× SysTick timer
- RTC with sub-second accuracy & HW calendar

Debug mode

- SWD & JTAG interfaces
- 4 Kbyte Embedded Trace Buffer

True random number generators (3 oscillators each)

96-bit unique ID

All packages are ECOPACK[®]2 compliant

Table	1.	Device	summary
-------	----	--------	---------

Reference	Part number
STM32H743xI	STM32H743VI, STM32H743ZI, STM32H743II, STM32H743BI, STM32H743XI, STM32H743AI

Contents

1	Introd	duction		12
2	Desc	ription		13
3	Funct	tional o	verview	18
	3.1	Arm [®] C	Cortex [®] -M7 with FPU	18
	3.2	Memor	y protection unit (MPU)	18
	3.3	Memor	ies	19
		3.3.1	Embedded Flash memory	19
		3.3.2	Embedded SRAM	19
	3.4	Boot m	odes	20
	3.5	Power	supply management	20
		3.5.1	Power supply scheme	20
		3.5.2	Power supply supervisor	
		3.5.3	Voltage regulator	
	3.6	•	ower strategy	
	3.7	Reset a	and clock controller (RCC)	
		3.7.1	Clock management	
		3.7.2	System reset sources	
	3.8		al-purpose input/outputs (GPIOs)	
	3.9			
	3.10			
	3.11	Chrom	-ART Accelerator™ (DMA2D)	26
	3.12	Nested	vectored interrupt controller (NVIC)	27
	3.13	Extend	ed interrupt and event controller (EXTI)	27
	3.14	Cyclic I	redundancy check calculation unit (CRC)	27
	3.15	Flexible	e memory controller (FMC)	28
	3.16	Quad-S	SPI memory interface (QUADSPI)	28
	3.17	Analog	-to-digital converters (ADCs)	28
	3.18	Tempe	rature sensor	29
	3.19	V _{BAT} o	peration	29
	3.20	Digital-	to-analog converters (DAC)	30

3.21	Ultra-low-power comparators (COMP)	. 30
3.22	Operational amplifiers (OPAMP)	. 30
3.23	Digital filter for sigma-delta modulators (DFSDM)	. 31
3.24	Digital camera interface (DCMI)	. 32
3.25	LCD-TFT controller	. 33
3.26	JPEG Codec (JPEG)	. 33
3.27	Random number generator (RNG)	. 33
3.28	Timers and watchdogs	. 33
	3.28.1 High-resolution timer (HRTIM1)	35
	3.28.2 Advanced-control timers (TIM1, TIM8)	. 36
	3.28.3 General-purpose timers (TIMx)	36
	3.28.4 Basic timers TIM6 and TIM7	. 37
	3.28.5 Low-power timers (LPTIM1, LPTIM2, LPTIM3, LPTIM4, LPTIM5)	. 37
	3.28.6 Independent watchdog	. 37
	3.28.7 Window watchdog	
	3.28.8 SysTick timer	37
3.29	Real-time clock (RTC), backup SRAM and backup registers	. 38
3.30	Inter-integrated circuit interface (I ² C)	. 39
3.31	Universal synchronous/asynchronous receiver transmitter (USART)	. 39
3.32	Low-power universal asynchronous receiver transmitter (LPUART)	. 40
3.33	Serial peripheral interface (SPI)/inter- integrated sound interfaces (I2S)	. 41
3.34	Serial audio interfaces (SAI)	. 41
3.35	SPDIFRX Receiver Interface (SPDIFRX)	. 42
3.36	Single wire protocol master interface (SWPMI)	. 42
3.37	Management Data Input/Output (MDIO) slaves	. 43
3.38	SD/SDIO/MMC card host interfaces (SDMMC)	. 43
3.39	Controller area network (FDCAN1, FDCAN2)	. 43
3.40	Universal serial bus on-the-go high-speed (OTG_HS)	. 44
3.41	Ethernet MAC interface with dedicated DMA controller (ETH)	. 44
3.42	High-definition multimedia interface (HDMI) - consumer electronics control (CEC)	. 45
3.43	Debug infrastructure	. 45
Mem	nory mapping	. 46

4

5	Pin d	lescripti	ons
6	Elect	trical ch	aracteristics
	6.1	Parame	eter conditions
		6.1.1	Minimum and maximum values
		6.1.2	Typical values
		6.1.3	Typical curves
		6.1.4	Loading capacitor
		6.1.5	Pin input voltage
		6.1.6	Power supply scheme
		6.1.7	Current consumption measurement
	6.2	Absolut	e maximum ratings
	6.3	Operati	ng conditions
		6.3.1	General operating conditions
		6.3.2	VCAP1/VCAP2/VCAP3 external capacitor
		6.3.3	Operating conditions at power-up / power-down
		6.3.4	Embedded reset and power control block characteristics
		6.3.5	Embedded reference voltage 101
		6.3.6	Supply current characteristics
		6.3.7	Wakeup time from low-power modes
		6.3.8	External clock source characteristics
		6.3.9	Internal clock source characteristics
		6.3.10	PLL characteristics
		6.3.11	Memory characteristics
		6.3.12	EMC characteristics
		6.3.13	Absolute maximum ratings (electrical sensitivity)
		6.3.14	I/O current injection characteristics
		6.3.15	I/O port characteristics
		6.3.16	NRST pin characteristics
		6.3.17	FMC characteristics
		6.3.18	Quad-SPI interface characteristics
		6.3.19	Delay block (DLYB) characteristics
		6.3.20	16-bit ADC characteristics
		6.3.21	DAC electrical characteristics
		6.3.22	Voltage reference buffer characteristics
		6.3.23	Temperature sensor characteristics
		6.3.24	V _{BAT} monitoring characteristics

		6.3.25	Voltage booster for analog switch
		6.3.26	Comparator characteristics
		6.3.27	Operational amplifiers characteristics
		6.3.28	Digital filter for Sigma-Delta Modulators (DFSDM) characteristics 173
		6.3.29	Camera interface (DCMI) timing specifications
		6.3.30	LCD-TFT controller (LTDC) characteristics
		6.3.31	Timer characteristics
		6.3.32	Communications interfaces
		6.3.33	JTAG/SWD interface characteristics
7	Packa	age info	rmation
	7.1	LQFP10	00 package information
	7.2		100, 8 x 8 x 0.8 mm thin fine-pitch ball grid array e information
	7.3	LQFP14	4 package information
	7.4	UFBGA	169 package information 208
	7.5	LQFP17	6 package information
	7.6	LQFP20	8 package information
	7.7	UFBGA	176+25 package information 217
	7.8	TFBGA	240+25 package information 220
	7.9	Therma	characteristics
		7.9.1	Reference document
8	Order	ring info	ormation
9	Revis	ion hist	ory

List of tables

Table 1.	Device summary	2
Table 2.	STM32H743xI features and peripheral counts	14
Table 3.	System vs domain low-power mode	22
Table 4.	DFSDM implementation	
Table 5.	Timer feature comparison	34
Table 6.	USART features	
Table 7.	Legend/abbreviations used in the pinout table	
Table 8.	STM32H743xI pin/ball definition	
Table 9.	Port A alternate functions	
Table 10.	Port B alternate functions	
Table 11.	Port C alternate functions	
Table 12.	Port D alternate functions	
Table 13.	Port E alternate functions	
Table 14.	Port F alternate functions	
Table 15.	Port G alternate functions	
Table 16.	Port H alternate functions	
Table 17.	Port I alternate functions.	
Table 18.	Port J alternate functions	
Table 19.	Port K alternate functions	
Table 20.	Voltage characteristics	
Table 21.	Current characteristics	
Table 22.	Thermal characteristics.	
Table 23.	General operating conditions	
Table 24.	VCAP1/VCAP2/VCAP3 operating conditions	
Table 25.	Operating conditions at power-up / power-down (regulator ON)	
Table 26.	Reset and power control block characteristics	
Table 27.	Embedded reference voltage	
Table 28.	Internal reference voltage calibration values	
Table 29.	Typical and maximum current consumption in Run mode, code with data processing	. 102
	running from ITCM, regulator ON	103
Table 30.	Typical and maximum current consumption in Run mode, code with data processing	. 100
	running from Flash memory, cache ON, regulator ON	104
Table 31.	Typical and maximum current consumption in Run mode, code with data processing	. 104
	running from Flash memory, cache OFF, regulator ON	104
Table 32.	Typical consumption in Run mode and corresponding performance	. 104
	versus code position	105
Table 33.	Typical current consumption batch acquisition mode	
Table 34.	Typical and maximum current consumption in Sleep mode, regulator ON.	
Table 35.	Typical and maximum current consumption in Stop mode, regulator ON.	
Table 36.	Typical and maximum current consumption in Stop mode, regulator ON.	
Table 30.	Typical and maximum current consumption in VBAT mode	
Table 37.	Peripheral current consumption in Run mode	
Table 30.	Peripheral current consumption in Stop, Standby and VBAT mode	
Table 39. Table 40.	Low-power mode wakeup timings	
Table 40. Table 41.	High-speed external user clock characteristics.	
Table 41. Table 42.	Low-speed external user clock characteristics	
Table 43.	4-48 MHz HSE oscillator characteristics	
Table 44.	Low-speed external user clock characteristics	. 119

Table 45.	HSI48 oscillator characteristics.	
Table 46.	HSI oscillator characteristics.	
Table 47.	CSI oscillator characteristics.	
Table 48.	LSI oscillator characteristics	
Table 49.	Main PLL characteristics.	
Table 50.	Flash memory characteristics	
Table 51.	Flash memory programming (single bank configuration nDBANK=1)	
Table 52.	Flash memory endurance and data retention	124
Table 53.	EMS characteristics	125
Table 54.	EMI characteristics	126
Table 55.	ESD absolute maximum ratings	126
Table 56.	Electrical sensitivities	127
Table 57.	I/O current injection susceptibility	127
Table 58.	I/O static characteristics	128
Table 59.	Output voltage characteristics	130
Table 60.	Output timing characteristics (HSLV OFF)	
Table 61.	Output timing characteristics (HSLV ON)	
Table 62.	NRST pin characteristics	
Table 63.	Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings	
Table 64.	Asynchronous non-multiplexed SRAM/PSRAM/NOR read - NWAIT timings	
Table 65.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings	
Table 66.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings	
Table 67.	Asynchronous multiplexed PSRAM/NOR read timings.	
Table 68.	Asynchronous multiplexed PSRAM/NOR read-NWAIT timings	
Table 69.	Asynchronous multiplexed PSRAM/NOR write timings	
Table 00.	Asynchronous multiplexed PSRAM/NOR write-NWAIT timings	
Table 70. Table 71.	Synchronous multiplexed NOR/PSRAM read timings	
Table 71.	• •	
Table 72. Table 73.	Synchronous multiplexed PSRAM write timings.	
	Synchronous non-multiplexed NOR/PSRAM read timings	
Table 74.	Synchronous non-multiplexed PSRAM write timings	
Table 75.	Switching characteristics for NAND Flash read cycles	
Table 76.	Switching characteristics for NAND Flash write cycles.	
Table 77.	SDRAM read timings	
Table 78.	LPSDR SDRAM read timings	
Table 79.	SDRAM write timings	
Table 80.	LPSDR SDRAM write timings	
Table 81.	Quad-SPI characteristics in SDR mode	
Table 82.	Quad SPI characteristics in DDR mode	
Table 83.	Dynamics characteristics: Delay Block characteristics	
Table 84.	ADC characteristics	
Table 85.	ADC accuracy	
Table 86.	DAC characteristics	
Table 87.	DAC accuracy	164
Table 88.	VREFBUF characteristics	
Table 89.	Temperature sensor characteristics	
Table 90.	Temperature sensor calibration values.	167
Table 91.	V _{BAT} monitoring characteristics	168
Table 92.	V _{BAT} charging characteristics	
Table 93.	Voltage booster for analog switch characteristics.	
Table 94.	COMP characteristics	
Table 95.	OPAMP characteristics	
Table 96.	DFSDM measured timing 1.62-3.6 V	

Table 97.	DCMI characteristics.	176
Table 98.	LTDC characteristics	177
Table 99.	TIMx characteristics	
Table 100.	Minimum i2c_ker_ck frequency in all I2C modes	180
Table 101.	I2C analog filter characteristics	180
Table 102.	SPI dynamic characteristics	181
Table 103.	I ² S dynamic characteristics	184
Table 104.	SAI characteristics	186
Table 105.	MDIO Slave timing parameters	187
Table 106.	Dynamic characteristics: SD / MMC characteristics, VDD=2.7V to 3.6V	188
Table 107.	Dynamic characteristics: eMMC characteristics, VDD=1.71V to 1.9V	189
Table 108.	USB OTG_FS electrical characteristics	191
Table 109.	Dynamic characteristics: USB ULPI	191
Table 110.	Dynamics characteristics: Ethernet MAC signals for SMI.	192
Table 111.	Dynamics characteristics: Ethernet MAC signals for RMII	193
Table 112.	Dynamics characteristics: Ethernet MAC signals for MII	194
Table 113.	Dynamics characteristics: JTAG characteristics	195
Table 114.	Dynamics characteristics: SWD characteristics	195
Table 115.	LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package	
	mechanical data	198
Table 116.	TFBGA100, 8 x 8 × 0.8 mm thin fine-pitch ball grid array	
	package mechanical data	
Table 117.	TFBGA100 recommended PCB design rules (0.8 mm pitch BGA)	203
Table 118.	LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package	
	mechanical data	205
Table 119.	UFBGA169 - 169-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball	
	grid array package mechanical data	208
Table 120.	LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package	
	mechanical data	210
Table 121.	LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package	
	mechanical data	214
Table 122.	UFBGA176+25 - ball, 10 x 10 mm, 0.65 mm pitch,	
	ultra fine pitch ball grid array package mechanical data	217
Table 123.	UFBGA 176+25 recommended PCB design rules (0.65 mm pitch BGA)	218
Table 124.	TFBGA240+25 - 265 pin, 14x14 mm, 0.8 mm pitch, fine pitch ball grid array	
	mechanical data	221
Table 125.	TFBGA240+25, 265 pin recommended PCB design rules (0.8 mm pitch)	222
Table 126.	Thermal characteristics.	223
Table 127.	STM32H743xl ordering information scheme	224
Table 128.	Document revision history	225

List of figures

Figure 1.	STM32H743xl block diagram	17
Figure 2.	STM32H743xI bus matrix	25
Figure 3.	LQFP100 pinout	47
Figure 4.	TFBGA100 pinout	48
Figure 5.	LQFP144 pinout	49
Figure 6.	UFBGA169 ballout	50
Figure 7.	LQFP176 pinout	51
Figure 8.	UFBGA176+25 ballout	52
Figure 9.	LQFP208 pinout	53
Figure 10.	TFBGA240+25 ballout	54
Figure 11.	Pin loading conditions.	94
Figure 12.	Pin input voltage	94
Figure 13.	Power supply scheme	95
Figure 14.	Current consumption measurement scheme	96
Figure 15.	External capacitor C _{EXT}	
Figure 16.	High-speed external clock source AC timing diagram	. 116
Figure 17.	Low-speed external clock source AC timing diagram	. 117
Figure 18.	Typical application with an 8 MHz crystal	. 119
Figure 19.	Typical application with a 32.768 kHz crystal	. 120
Figure 20.	VIL/VIH for all I/Os except BOOT0	. 129
Figure 21.	Recommended NRST pin protection	. 134
Figure 22.	Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms	. 136
Figure 23.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms	. 138
Figure 24.	Asynchronous multiplexed PSRAM/NOR read waveforms.	. 139
Figure 25.	Asynchronous multiplexed PSRAM/NOR write waveforms	. 141
Figure 26.	Synchronous multiplexed NOR/PSRAM read timings	. 143
Figure 27.	Synchronous multiplexed PSRAM write timings	. 145
Figure 28.	Synchronous non-multiplexed NOR/PSRAM read timings	. 147
Figure 29.	Synchronous non-multiplexed PSRAM write timings	. 148
Figure 30.	NAND controller waveforms for read access	. 149
Figure 31.	NAND controller waveforms for write access	. 150
Figure 32.	NAND controller waveforms for common memory read access	. 150
Figure 33.	NAND controller waveforms for common memory write access	. 151
Figure 34.	SDRAM read access waveforms (CL = 1)	. 152
Figure 35.	SDRAM write access waveforms	. 153
Figure 36.	Quad-SPI timing diagram - SDR mode	. 156
Figure 37.	Quad-SPI timing diagram - DDR mode	. 156
Figure 38.	ADC accuracy characteristics	. 160
Figure 39.	Typical connection diagram using the ADC	. 161
Figure 40.	Power supply and reference decoupling (V _{REF+} not connected to V _{DDA})	. 162
Figure 41.	Power supply and reference decoupling (V _{REF+} connected to V _{DDA})	
Figure 42.	12-bit buffered /non-buffered DAC	
Figure 43.	Channel transceiver timing diagrams	. 175
Figure 44.	DCMI timing diagram	
Figure 45.	LCD-TFT horizontal timing diagram	
Figure 46.	LCD-TFT vertical timing diagram	. 178
Figure 47.		
Figure 48.	SPI timing diagram - slave mode and CPHA = 0 SPI timing diagram - slave mode and CPHA = $1^{(1)}$. 183

Figure 49.	SPI timing diagram - master mode ⁽¹⁾	183
Figure 50.	I ² S slave timing diagram (Philips protocol) ⁽¹⁾	185
Figure 51.	I ² S master timing diagram (Philips protocol) ⁽¹⁾	. 185
Figure 52.	SAI master timing waveforms	
Figure 53.	SAI slave timing waveforms	
Figure 54.	MDIO Slave timing diagram	
Figure 55.	SDIO high-speed mode	
Figure 56.	SD default mode	
Figure 57.	DDR mode	
Figure 58.	ULPI timing diagram	
Figure 59.	Ethernet SMI timing diagram	
Figure 60.	Ethernet RMII timing diagram	
Figure 61.	Ethernet MII timing diagram	
Figure 62.	JTAG timing diagram	
Figure 63.	SWD timing diagram	
Figure 64.	LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline	
Figure 65.	LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat	
0	recommended footprint	199
Figure 66.	LQFP100 marking example (package top view)	
Figure 67.	TFBGA100, 8 × 8 × 0.8 mm thin fine-pitch ball grid array	
0	package outline.	201
Figure 68.	TFBGA100, 8 x 8 x 0.8 mm thin fine-pitch ball grid array	
0	package recommended footprint	202
Figure 69.	TFBGA100 marking example (package top view)	
Figure 70.	LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline	
Figure 71.	LQFP144 - 144-pin,20 x 20 mm low-profile quad flat package	
- gai e i i i	recommended footprint.	206
Figure 72.	LQFP144 marking example (package top view)	
Figure 73.	UFBGA169 - 169-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid	
0	array package outline	208
Figure 74.	LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package outline	
Figure 75.	LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package	
0	recommended footprint.	211
Figure 76.	LQFP176 marking example (package top view)	
Figure 77.	LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package outline	
Figure 78.	LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package	
- gane i ei	recommended footprint.	215
Figure 79.	LQFP208 marking example (package top view)	216
Figure 80.	UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch,	
. gale col	ultra fine pitch ball grid array package outline	217
Figure 81.	UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball	
gene e n	grid array package recommended footprint	218
Figure 82.	UFBGA176+25 marking example (package top view)	
Figure 83.	TFBGA240+25 - 265 pin, 14x14 mm, 0.8 mm pitch, fine pitch ball grid array	
	package outline.	220
Figure 84.	TFBGA240+25 - 265 pin pin, 14x14 mm 0.8 mm pitch	0
	recommended footprint.	221
Figure 85.	TFBGA240+25 marking example (package top view)	
	· · · · · · · · · · · · · · · · · · ·	

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32H743xI microcontrollers.

This document should be read in conjunction with the STM32H743xl reference manual (RM0433). The reference manual is available from the STMicroelectronics website *www.st.com*.

For information on the Arm[®] Cortex[®]-M7 core, please refer to the Cortex[®]-M7 Technical Reference Manual, available from the www.arm.com website.

2 Description

STM32H743xI devices are based on the high-performance Arm[®] Cortex[®]-M7 32-bit RISC core operating at up to 400 MHz. The Cortex[®] -M7 core features a floating point unit (FPU) which supports Arm[®] double-precision (IEEE 754 compliant) and single-precision data-processing instructions and data types. STM32H743xI devices support a full set of DSP instructions and a memory protection unit (MPU) to enhance application security.

STM32H743xI devices incorporate high-speed embedded memories with a dual-bank Flash memory up to 2 Mbytes, 1 Mbyte of RAM (including 192 Kbytes of TCM RAM, 864 Kbytes of user SRAM and 4 Kbytes of backup SRAM), as well as an extensive range of enhanced I/Os and peripherals connected to APB buses, AHB buses, 2x32-bit multi-AHB bus matrix and a multi layer AXI interconnect supporting internal and external memory access.

All the devices offer three ADCs, two DACs, two ultra-low power comparators, a low-power RTC, a high-resolution timer, 12 general-purpose 16-bit timers, two PWM timers for motor control, five low-power timers and a true random number generator (RNG). The devices support four digital filters for external sigma-delta modulators (DFSDM). They also feature standard and advanced communication interfaces.

- Standard peripherals
 - Four I²Cs
 - Four USARTs, four UARTs and one LPUART
 - Six SPIs, three I²Ss in half-duplex mode. To achieve audio class accuracy, the I²S peripherals can be clocked by a dedicated internal audio PLL or by an external clock to allow synchronization.
 - Four SAI serial audio interfaces
 - One SPDIFRX interface
 - One SWPMI (Single Wire Protocol Master Interface)
 - Management Data Input/Output (MDIO) slaves
 - Two SDMMC interfaces
 - A USB OTG full-speed and a USB OTG high-speed interface with full-speed capability (with the ULPI)
 - One FDCAN plus one TT-CAN interface
 - An Ethernet interface
 - Chrom-ART Accelerator[™]
 - HDMI-CEC
- Advanced peripherals including
 - A flexible memory control (FMC) interface
 - A Quad-SPI Flash memory interface
 - A camera interface for CMOS sensors
 - An LCD-TFT display controller
 - A JPEG hardware compressor/decompressor

Refer to *Table 2: STM32H743xI features and peripheral counts* for the list of peripherals available on each part number.

STM32H743xI devices operate in the –40 to +85 °C temperature range from a 1.62 to 3.6 V power supply. The supply voltage can drop down to 1.62 V by using an external power supervisor (see Section 3.5.2: Power supply supervisor) and connecting the PDR_ON pin to V_{SS} . Otherwise the supply voltage must stay above 1.71 V with the embedded power voltage detector enabled.

Dedicated supply inputs for USB (OTG_FS and OTG_HS) are available on all packages except LQFP100 to allow a greater power supply choice.

A comprehensive set of power-saving modes allows the design of low-power applications.

STM32H743xl devices are offered in 8 packages ranging from 100 pins to 240 pins/balls. The set of included peripherals changes with the device chosen.

These features make STM32H743xI microcontrollers suitable for a wide range of applications:

- Motor drive and application control
- Medical equipment
- Industrial applications: PLC, inverters, circuit breakers
- Printers, and scanners
- Alarm systems, video intercom, and HVAC
- Home audio appliances
- Mobile applications, Internet of Things
- Wearable devices: smart watches.

Figure 1 shows the general block diagram of the device family.

Pe	eripherals	STM32H 743VI	STM32H 743ZI	STM32H 743AI	STM32H 743II	STM32H 743BI	STM32H 743XI
Flash memory in Kbytes				2048			
	SRAM mapped onto AXI bus	512					
SRAM in	SRAM1 (D2 domain)			128			
Kbytes	SRAM2 (D2 domain)			128			
	SRAM3 (D2 domain)	32					
	SRAM4 (D3 domain)	64					
TCM RAM in Kbytes	ITCM RAM (instruction)	64					
Roytes	DTCM RAM (data)	128					
Backup SRAM (Kbytes)		4					
FMC		Yes					
Quad-SPI		Yes					
	Ethernet			Yes			

Table 2. STM32H743xl features and peripheral counts

Table 2. STM32H/43XI features and peripheral counts (continued)									
Pe	eripherals	STM32H 743VI	STM32H 743ZI	STM32H 743AI	STM32H 743II	STM32H 743BI	STM32H 743XI		
	High-resolution	1							
	General-purpose	10							
Timers	Advanced-control (PWM)		2						
	Basic								
	Low-power			5					
Random r	number generator			Yes					
	SPI / I ² S			6/3 ⁽¹)				
	l ² C			4					
	USART/UART/ LPUART			4/4 /1					
	SAI								
Communicati	SPDIFRX	4 inputs							
on interfaces	SWPMI	Yes							
	MDIO	Yes							
	SDMMC	2							
	FDCAN/TT-CAN	1/1							
	USB OTG_FS	Yes							
	USB OTG_HS	Yes							
Ethernet ar	nd camera interface	Yes							
L	.CD-TFT	Yes							
JP	EG Codec	Yes							
Chrom-ART A	ccelerator™ (DMA2D)	Yes							
	GPIOs	82	114	131	140	16	8		
8 to	16-bit ADCs	3							
Numb	er of channels	20							
12-bit DAC		Yes							
Number of channels		2							
Comparators		2							
Operational amplifiers		2							
DFSDM		Yes							
Maximum CPU frequency		400 MHz							
Oper	ating voltage	1.71 to 3.6 V ⁽²⁾ 1.62 to 3.6 V ⁽³⁾							

Table 2. STM32H743xl features and peripheral counts (continued)

Table 2. of mozini four four four four four four four four									
Peripherals	STM32H 743VI	STM32H 743ZI	STM32H 743AI	STM32H 743II	STM32H 743BI	STM32H 743XI			
Operating temperatures	Ambient temperatures: -40 up to +85 °C ⁽⁴⁾								
	Junction temperature: -40 to + 125 °C								
Package LQFP10 TFBGA10		LQFP144	UFBGA 169 ⁽⁵⁾	LQFP176 UFBGA 176+25	LQFP208	TFBGA 240+25			

Table 2. STM32H743xl features and peripheral counts (continued)

1. The SPI1, SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.

2. Since the LQFP100 package does not feature the PDR_ON pin (tied internally to V_{DD}), the minimum V_{DD} value for this package is 1.71 V.

 V_{DD}/V_{DDA} can drop down to 1.62 V by using an external power supervisor (see Section 3.5.2: Power supply supervisor) and connecting PDR_ON pin to V_{SS}. Otherwise the supply voltage must stay above 1.71 V with the embedded power voltage detector enabled.

4. The product junction temperature must be kept within the -40 to +125 °C temperature range.

5. This package is under development. Please contact STMicroelectronics for details.

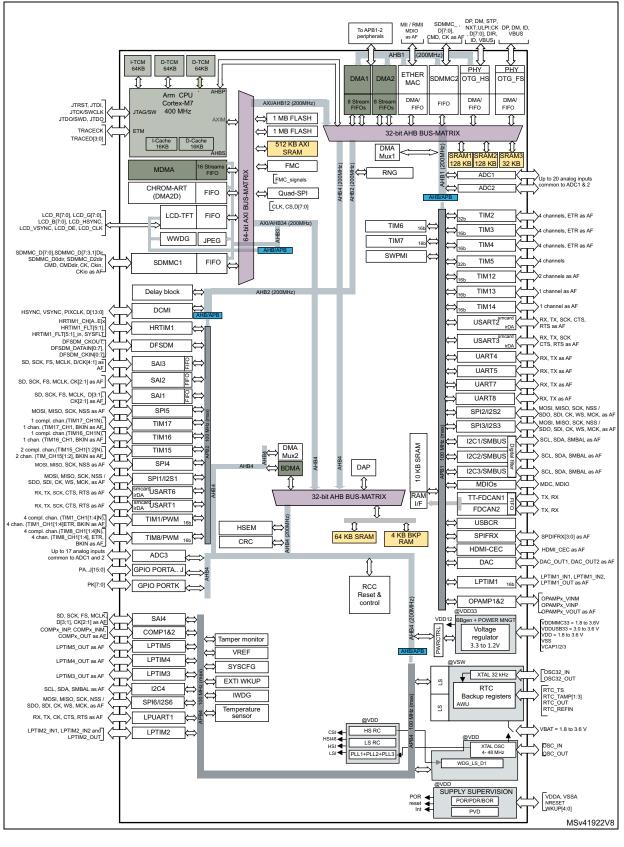


Figure 1. STM32H743xI block diagram

DocID030538 Rev 3

57

3 Functional overview

3.1 Arm[®] Cortex[®]-M7 with FPU

The Arm[®] Cortex[®]-M7 with double-precision FPU processor is the latest generation of Arm processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and optimized power consumption, while delivering outstanding computational performance and low interrupt latency.

The Cortex[®]-M7 processor is a highly efficient high-performance featuring:

- Six-stage dual-issue pipeline
- Dynamic branch prediction
- Harvard architecture with L1 caches (16 Kbytes of I-cache and 16 Kbytes of D-cache)
- 64-bit AXI interface
- 64-bit ITCM interface
- 2x32-bit DTCM interfaces

The following memory interfaces are supported:

- Separate Instruction and Data buses (Harvard Architecture) to optimize CPU latency
- Tightly Coupled Memory (TCM) interface designed for fast and deterministic SRAM accesses
- AXI Bus interface to optimize Burst transfers
- Dedicated low-latency AHB-Lite peripheral bus (AHBP) to connect to peripherals.

The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution.

It also supports single and double precision FPU (floating point unit) speeds up software development by using metalanguage development tools, while avoiding saturation.

Figure 1 shows the general block diagram of the STM32H743xI family.

Note: Cortex[®]-M7 with FPU core is binary compatible with the Cortex[®]-M4 core.

3.2 Memory protection unit (MPU)

The memory protection unit (MPU) manages the CPU access rights and the attributes of the system resources. It has to be programmed and enabled before use. Its main purposes are to prevent an untrusted user program to accidentally corrupt data used by the OS and/or by a privileged task, but also to protect data processes or read-protect memory regions. The MPU defines access rules for privileged accesses and user program accesses. It allows defining up to 16 protected regions that can in turn be divided into up to 8 independent subregions, where region address, size, and attributes can be configured. The protection area ranges from 32 bytes to 4 Gbytes of addressable memory. When an unauthorized access is performed, a memory management exception is generated.

3.3 Memories

3.3.1 Embedded Flash memory

The STM32H743xI devices embed up to 2 Mbytes of Flash memory that can be used for storing programs and data.

The Flash memory is organized as 266-bit Flash words memory that can be used for storing both code and data constants. Each word consists of:

- One Flash word (8 words, 32 bytes or 256 bits)
- 10 ECC bits.

The Flash memory is divided into two independent banks. Each bank is organized as follows:

- A 1 Mbyte user Flash memory block containing eight user sectors of 128 Kbytes(4 K Flash words)
- 128 Kbytes of System Flash memory from which the device can boot
- 2 Kbytes (64 Flash words) of user option bytes for user configuration

3.3.2 Embedded SRAM

All devices feature:

- 512 Kbytes of AXI-SRAM mapped onto AXI bus on D1 domain.
- SRAM1 mapped on D2 domain: 128 Kbytes
- SRAM2 mapped on D2 domain: 128 Kbytes
- SRAM3 mapped on D2 domain: 32 Kbytes
- SRAM4 mapped on D3 domain: 64 Kbytes
- 4 Kbytes of backup SRAM

The content of this area is protected against possible unwanted write accesses, and is retained in Standby or V_{BAT} mode.

RAM mapped to TCM interface (ITCM and DTCM):

Both ITCM and DTCM RAMs are 0 wait state memories that are accessible from the CPU or the MDMA (even in Sleep mode) through a specific AHB slave of the CPU(AHBP).

- 64 Kbytes of ITCM-RAM (instruction RAM)
 This RAM is connected to ITCM 64-bit interface designed for execution of critical real-times routines by the CPU.
- 128 Kbytes of DTCM-RAM (2x 64 Kbyte DTCM-RAMs on 2x32-bit DTCM ports) The DTCM-RAM could be used for critical real-time data, such as interrupt service routines or stack/heap memory. Both DTCM-RAMs can be used in parallel (for load/store operations) thanks to the Cortex[®]-M7 dual issue capability.

Error code correction (ECC)

Over the product lifetime, and/or due to external events such as radiations, invalid bits in memories may occur. They can be detected and corrected by ECC. This is an expected behavior that has to be managed at final-application software level in order to ensure data integrity through ECC algorithms implementation.

SRAM data are protected by ECC:

- 7 ECC bits are added per 32-bit word.
- 8 ECC bits are added per 64-bit word for AXI-SRAM and ITCM-RAM.

The ECC mechanism is based on the SECDED algorithm. It supports single- and doubleerror correction.

3.4 Boot modes

At startup, the boot memory space is selected by the BOOT pin and BOOT_ADDx option bytes, allowing to program any boot memory address from 0x0000 0000 to 0x3FFF FFFF which includes:

- All Flash address space
- All RAM address space: ITCM, DTCM RAMs and SRAMs
- The System memory bootloader

The boot loader is located in non-user System memory. It is used to reprogram the Flash memory through a serial interface (USART, I2C, SPI, USB-DFU). Refer to *STM32 microcontroller System memory boot mode* application note (AN2606) for details.

3.5 Power supply management

3.5.1 Power supply scheme

- V_{DD} = 1.62 to 3.6 V: external power supply for I/Os, provided externally through V_{DD} pins.
- V_{DDLDO} = 1.62 to 3.6 V: supply voltage for the internal regulator supplying V_{CORE}
- V_{DDA} = 1.62 to 3.6 V: external analog power supplies for ADC, DAC, COMP and OPAMP.
- V_{DD33USB and} V_{DD50USB}:

 $V_{DD50USB}$ can be supplied through the USB cable to generate the $V_{DD33USB}$ via the USB internal regulator. This allows supporting a V_{DD} supply different from 3.3 V.

The USB regulator can be bypassed to supply directly $V_{DD33USB}$ if V_{DD} = 3.3 V.

- V_{BAT} = 1.2 to 3.6 V: power supply for the V_{SW} domain when V_{DD} is not present.
- V_{CAP1}/V_{CAP2}/V_{CAP3}: V_{CORE} supplies, which values depend on voltage scaling (0.7 V, 0.9 V, 1.0 V, 1.1 V or 1.2 V). They are configured through VOS bits in PWR_D3CR register. The V_{CORE} domain is split into the following power domains that can be independently switch off.
 - D1 domain containing some peripherals and the Cortex[®]-M7 core.
 - D2 domain containing a large part of the peripherals.
 - D3 domain containing some peripherals and the system control.

3.5.2 **Power supply supervisor**

The devices have an integrated power-on reset (POR)/ power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry:

- Power-on reset (POR)
 The POR supervisor monitors V_{DD} power supply and compares it to a fixed threshold. The devices remain in reset mode when V_{DD} is below this threshold,
- Power-down reset (PDR)
 The PDR supervisor monitors V_{DD} power supply. A reset is generated when V_{DD} drops below a fixed threshold.

The PDR supervisor can be enabled/disabled through PDR_ON pin.

• Brownout reset (BOR)

The BOR supervisor monitors V_{DD} power supply. Three BOR thresholds (from 2.1 to 2.7 V) can be configured through option bytes. A reset is generated when V_{DD} drops below this threshold.

3.5.3 Voltage regulator

The same voltage regulator supplies the 3 power domains (D1, D2 and D3). D1 and D2 can be independently switched off.

Voltage regulator output can be adjusted according to application needs through 5 power supply levels:

- Run mode (VOS1 to VOS3)
 - Scale 1: high performance
 - Scale 2: medium performance and consumption
 - Scale 3: optimized performance and low-power consumption
- Stop mode (SVOS3 to SVOS5)
 - Scale 3: peripheral with wakeup from stop mode capabilities (UART, SPI, I2C, LPTIM) are operational
 - Scale 4 and 5 where the peripheral with wakeup from Stop mode is disabled The peripheral functionality is disabled but wakeup from Stop mode is possible through GPIO or asynchronous interrupt.

3.6 Low-power strategy

There are several ways to reduce power consumption on STM32H743xI:

- Decrease dynamic power consumption by slowing down the system clocks even in Run mode and individually clock gating the peripherals that are not used.
- Save power consumption when the CPU is idle, by selecting among the available lowpower mode according to the user application needs. This allows achieving the best compromise between short startup time, low-power consumption, as well as available wakeup sources.

The devices feature several low-power modes:

- CSleep (CPU clock stopped)
- CStop (CPU sub-system clock stopped)
- DStop (Domain bus matrix clock stopped)
- Stop (System clock stopped)
- DStandby (Domain powered down)
- Standby (System powered down)

CSleep and CStop low-power modes are entered by the MCU when executing the WFI (Wait for Interrupt) or WFE (Wait for Event) instructions, or when the SLEEPONEXIT bit of the Cortex[®]-Mx core is set after returning from an interrupt service routine.

A domain can enter low-power mode (DStop or DStandby) when the processor, its subsystem and the peripherals allocated in the domain enter low-power mode.

If part of the domain is not in low-power mode, the domain remains in the current mode.

Finally the system can enter Stop or Standby when all EXTI wakeup sources are cleared and the power domains are in DStop or DStandby mode.

System power mode	D1 domain power mode	D2 domain power mode	D3 domain power mode	
Run	DRun/DStop/DStandby	DRun/DStop/DStandby	DRun	
Stop	DStop/DStandby	DStop/DStandby	DStop	
Standby	DStandby	DStandby	DStandby	

Table 3. System vs domain low-power mode

3.7 Reset and clock controller (RCC)

The clock and reset controller is located in D3 domain. The RCC manages the generation of all the clocks, as well as the clock gating and the control of the system and peripheral resets. It provides a high flexibility in the choice of clock sources and allows to apply clock ratios to improve the power consumption. In addition, on some communication peripherals that are capable to work with two different clock domains (either a bus interface clock or a kernel peripheral clock), the system frequency can be changed without modifying the baudrate.

3.7.1 Clock management

The devices embed four internal oscillators, two oscillators with external crystal or resonator, two internal oscillators with fast startup time and three PLLs.

The RCC receives the following clock source inputs:

- Internal oscillators:
 - 64 MHz HSI clock (1% accuracy)
 - 48 MHz RC oscillator
 - 4 MHz CSI clock
 - 32 kHz LSI clock
- External oscillators:
 - 4-48 MHz HSE clock
 - 32.768 kHz LSE clock

The RCC provides three PLLs: one for system clock, two for kernel clocks.

The system starts on the HSI clock. The user application can then select the clock configuration.

3.7.2 System reset sources

Power-on reset initializes all registers while system reset reinitializes the system except for the debug, part of the RCC and power controller status registers, as well as the backup power domain.

A system reset is generated in the following cases:

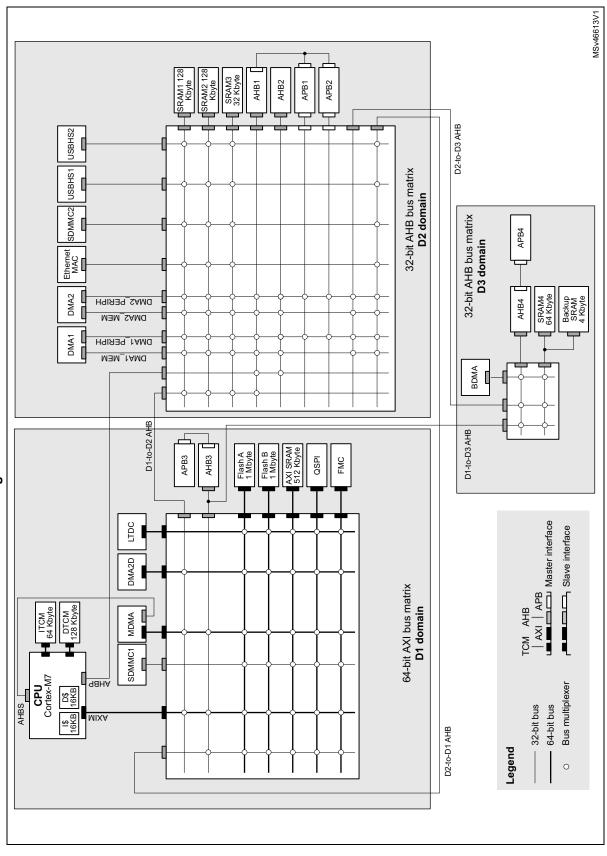
- Power-on reset (pwr_por_rst)
- Brownout reset
- Low level on NRST pin (external reset)
- Window watchdog
- Independent watchdog
- Software reset
- Low-power mode security reset
- Exit from Standby

3.8 General-purpose input/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-capable and have speed selection to better manage internal noise, power consumption and electromagnetic emission.

After reset, all GPIOs are in Analog mode to reduce power consumption.

The I/O configuration can be locked if needed by following a specific sequence in order to avoid spurious writing to the I/Os registers.


3.9 Bus-interconnect matrix

The devices feature an AXI bus matrix, two AHB bus matrices and bus bridges that allow interconnecting bus masters with bus slaves (see *Figure 2*).

24/226

3.10 DMA controllers

The devices feature four DMA instances to unload CPU activity:

• A master direct memory access (MDMA)

The MDMA is a high-speed DMA controller, which is in charge of all types of memory transfers (peripheral to memory, memory to memory, memory to peripheral), without any CPU action. It features a master AXI interface and a dedicated AHB interface to access Cortex[®]-M7 TCM memories.

The MDMA is located in D1 domain. It is able to interface with the other DMA controllers located in D2 domain to extend the standard DMA capabilities, or can manage peripheral DMA requests directly.

Each of the 16 channels can perform single block transfers, repeated block transfers and linked list transfers.

- Two dual-port DMAs (DMA1, DMA2) located in D2 domain, with FIFO and request router capabilities.
- One basic DMA (BDMA) located in D3 domain, with request router capabilities.

The DMA request router could be considered as an extension of the DMA controller. It routes the DMA peripheral requests to the DMA controller itself. This allowing managing the DMA requests with a high flexibility, maximizing the number of DMA requests that run concurrently, as well as generating DMA requests from peripheral output trigger or DMA event.

3.11 Chrom-ART Accelerator™ (DMA2D)

The Chrom-Art Accelerator ™ (DMA2D) is a graphical accelerator which offers advanced bit blitting, row data copy and pixel format conversion. It supports the following functions:

- Rectangle filling with a fixed color
- Rectangle copy
- Rectangle copy with pixel format conversion
- Rectangle composition with blending and pixel format conversion

Various image format coding are supported, from indirect 4bpp color mode up to 32bpp direct color. It embeds dedicated memory to store color lookup tables. The DMA2D also supports block based YCbCr to handle JPEG decoder output.

An interrupt can be generated when an operation is complete or at a programmed watermark.

All the operations are fully automatized and are running independently from the CPU or the DMAs.

3.12 Nested vectored interrupt controller (NVIC)

The devices embed a nested vectored interrupt controller which is able to manage 16 priority levels, and handle up to 150 maskable interrupt channels plus the 16 interrupt lines of the Cortex[®]-M7 with FPU core.

- Closely coupled NVIC gives low-latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Allows early processing of interrupts
- Processing of late arriving, higher-priority interrupts
- Support tail chaining
- Processor context automatically saved on interrupt entry, and restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimum interrupt latency.

3.13 Extended interrupt and event controller (EXTI)

The EXTI controller performs interrupt and event management. In addition, it can wake up the processor, power domains and/or D3 domain from Stop mode.

The EXTI handles up to 89 independent event/interrupt lines split as 28 configurable events and 61 direct events .

Configurable events have dedicated pending flags, active edge selection, and software trigger capable.

Direct events provide interrupts or events from peripherals having a status flag.

3.14 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a programmable polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

3.15 Flexible memory controller (FMC)

The FMC controller main features are the following:

- Interface with static-memory mapped devices including:
 - Static random access memory (SRAM)
 - NOR Flash memory/OneNAND Flash memory
 - PSRAM (4 memory banks)
 - NAND Flash memory with ECC hardware to check up to 8 Kbytes of data
- Interface with synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) memories
- 8-,16-,32-bit data bus width
- Independent Chip Select control for each memory bank
- Independent configuration for each memory bank
- Write FIFO
- Read FIFO for SDRAM controller
- The maximum FMC_CLK/FMC_SDCLK frequency for synchronous accesses is the FMC kernel clock divided by 2.

3.16 Quad-SPI memory interface (QUADSPI)

All devices embed a Quad-SPI memory interface, which is a specialized communication interface targeting Single, Dual or Quad-SPI Flash memories. It supports both single and double datarate operations.

It can operate in any of the following modes:

- Direct mode through registers
- External Flash status register polling mode
- Memory mapped mode.

Up to 256 Mbytes of external Flash memory can be mapped, and 8-, 16- and 32-bit data accesses are supported as well as code execution.

The opcode and the frame format are fully programmable.

3.17 Analog-to-digital converters (ADCs)

The STM32H743xl devices embed three analog-to-digital converters, which resolution can be configured to 16, 14, 12, 10 or 8 bits. Each ADC shares up to 20 external channels, performing conversions in the single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.

Additional logic functions embedded in the ADC interface allow:

- Simultaneous sample and hold
- Interleaved sample and hold

The ADC can be served by the DMA controller, thus allowing to automatically transfer ADC converted values to a destination location without any software action.

In addition, an analog watchdog feature can accurately monitor the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1, TIM2, TIM3, TIM4, TIM6, TIM8, TIM15, HRTIM1 and LPTIM1 timer.

3.18 Temperature sensor

STM32H743xI devices embeds a temperature sensor that generates a voltage (V_{TS}) that varies linearly with the temperature. This temperature sensor is internally connected to ADC3_IN18. The conversion range is between 1.7 V and 3.6 V. It can measure the device ambient temperature ranging from – 40 to +125 °C with a precision of +-2%.

The temperature sensor have a good linearity, but it has to be calibrated to obtain a good overall accuracy of the temperature measurement. As the temperature sensor offset varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the System memory area, which is accessible in read-only mode.

3.19 V_{BAT} operation

The V_{BAT} power domain contains the RTC, the backup registers and the backup SRAM.

To optimize battery duration, this power domain is supplied by V_{DD} when available or by the voltage applied on VBAT pin (when V_{DD} supply is not present). V_{BAT} power is switched when the PDR detects that V_{DD} dropped below the PDR level.

The voltage on the VBAT pin could be provided by an external battery, a supercapacitor or directly by V_{DD} , in which case, the V_{DD} mode is not functional.

 V_{BAT} operation is activated when V_{DD} is not present.

The V_{BAT} pin supplies the RTC, the backup registers and the backup SRAM.

Note: When the microcontroller is supplied from V_{BAT}, external interrupts and RTC alarm/events do not exit it from V_{BAT} operation.

When PDR_ON pin is connected to V_{SS} (Internal Reset OFF), the V_{BAT} functionality is no more available and V_{BAT} pin should be connected to VDD.

3.20 Digital-to-analog converters (DAC)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs.

This dual digital Interface supports the following features:

- two DAC converters: one for each output channel
- 8-bit or 12-bit monotonic output
- left or right data alignment in 12-bit mode
- synchronized update capability
- noise-wave generation
- triangular-wave generation
- dual DAC channel independent or simultaneous conversions
- DMA capability for each channel including DMA underrun error detection
- external triggers for conversion
- input voltage reference V_{REF+} or internal VREFBUF reference.

The DAC channels are triggered through the timer update outputs that are also connected to different DMA streams.

3.21 Ultra-low-power comparators (COMP)

STM32H743xI devices embed two rail-to-rail comparators (COMP1 and COMP2). They feature programmable reference voltage (internal or external), hysteresis and speed (low speed for low-power) as well as selectable output polarity.

The reference voltage can be one of the following:

- An external I/O
- A DAC output channel
- An internal reference voltage or submultiple (1/4, 1/2, 3/4).

All comparators can wake up from Stop mode, generate interrupts and breaks for the timers, and be combined into a window comparator.

3.22 Operational amplifiers (OPAMP)

STM32H743xI devices embed two rail-to-rail operational amplifiers (OPAMP1 and OPAMP2) with external or internal follower routing and PGA capability.

The operational amplifier main features are:

- PGA with a non-inverting gain ranging of 2, 4, 8 or 16 or inverting gain ranging of -1, -3, -7 or -15
- One positive input connected to DAC
- Output connected to internal ADC
- Low input bias current down to 1 nA
- Low input offset voltage down to 1.5 mV
- Gain bandwidth up to 8 MHz

The devices embeds two operational amplifiers (OPAMP1 and OPAMP2) with two inputs and one output each. These three I/Os can be connected to the external pins, thus enabling any type of external interconnections. The operational amplifiers can be configured internally as a follower, as an amplifier with a non-inverting gain ranging from 2 to 16 or with inverting gain ranging from -1 to -15.

3.23 Digital filter for sigma-delta modulators (DFSDM)

The devices embed one DFSDM with 4 digital filters modules and 8 external input serial channels (transceivers) or alternately 8 internal parallel inputs support.

The DFSDM peripheral is dedicated to interface the external $\Sigma\Delta$ modulators to microcontroller and then to perform digital filtering of the received data streams (which represent analog value on $\Sigma\Delta$ modulators inputs). DFSDM can also interface PDM (Pulse Density Modulation) microphones and perform PDM to PCM conversion and filtering in hardware. DFSDM features optional parallel data stream inputs from internal ADC peripherals or microcontroller memory (through DMA/CPU transfers into DFSDM).

DFSDM transceivers support several serial interface formats (to support various $\Sigma\Delta$ modulators). DFSDM digital filter modules perform digital processing according user selected filter parameters with up to 24-bit final ADC resolution.

The DFSDM peripheral supports:

- 8 multiplexed input digital serial channels:
 - configurable SPI interface to connect various SD modulator(s)
 - configurable Manchester coded 1 wire interface support
 - PDM (Pulse Density Modulation) microphone input support
 - maximum input clock frequency up to 20 MHz (10 MHz for Manchester coding)
 - clock output for SD modulator(s): 0..20 MHz
- alternative inputs from 8 internal digital parallel channels (up to 16 bit input resolution):
 internal sources: ADC data or memory data streams (DMA)
 - 4 digital filter modules with adjustable digital signal processing:
 - Sinc^x filter: filter order/type (1..5), oversampling ratio (up to 1..1024)
 - integrator: oversampling ratio (1..256)
- up to 24-bit output data resolution, signed output data format
- automatic data offset correction (offset stored in register by user)
- continuous or single conversion
- start-of-conversion triggered by:
 - software trigger
 - internal timers
 - external events
 - start-of-conversion synchronously with first digital filter module (DFSDM0)
- analog watchdog feature:
 - low value and high value data threshold registers
 - dedicated configurable Sincx digital filter (order = 1..3, oversampling ratio = 1..32)
 - input from final output data or from selected input digital serial channels
 - continuous monitoring independently from standard conversion

- short circuit detector to detect saturated analog input values (bottom and top range):
 - up to 8-bit counter to detect 1..256 consecutive 0's or 1's on serial data stream
 - monitoring continuously each input serial channel
- break signal generation on analog watchdog event or on short circuit detector event
- extremes detector:
 - storage of minimum and maximum values of final conversion data
 - refreshed by software
- DMA capability to read the final conversion data
- interrupts: end of conversion, overrun, analog watchdog, short circuit, input serial channel clock absence
- "regular" or "injected" conversions:
 - "regular" conversions can be requested at any time or even in continuous mode without having any impact on the timing of "injected" conversions
 - "injected" conversions for precise timing and with high conversion priority

DFSDM features	DFSDM1			
Number of filters	4			
Number of input transceivers/channels	8			
Internal ADC parallel input	Х			
Number of external triggers	16			
Regular channel information in identification register	Х			

Table 4. DFSDM implementation

3.24 Digital camera interface (DCMI)

The devices embed a camera interface that can connect with camera modules and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera interface can achieve a data transfer rate up to 140 Mbyte/s using a 80 MHz pixel clock. It features:

- Programmable polarity for the input pixel clock and synchronization signals
- Parallel data communication can be 8-, 10-, 12- or 14-bit
- Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2 progressive video, RGB 565 progressive video or compressed data (like JPEG)
- Supports continuous mode or snapshot (a single frame) mode
- Capability to automatically crop the image

3.25 LCD-TFT controller

The LCD-TFT display controller provides a 24-bit parallel digital RGB (Red, Green, Blue) and delivers all signals to interface directly to a broad range of LCD and TFT panels up to XGA (1024x768) resolution with the following features:

- 2 display layers with dedicated FIFO (64x32-bit)
- Color Look-Up table (CLUT) up to 256 colors (256x24-bit) per layer
- Up to 8 input color formats selectable per layer
- Flexible blending between two layers using alpha value (per pixel or constant)
- Flexible programmable parameters for each layer
- Color keying (transparency color)
- Up to 4 programmable interrupt events
- AXI master interface with burst of 16 words

3.26 JPEG Codec (JPEG)

The JPEG Codec can encode and decode a JPEG stream as defined in the **ISO/IEC 10918-1** specification. It provides an fast and simple hardware compressor and decompressor of JPEG images with full management of JPEG headers.

The JPEG codec main features are as follows:

- 8-bit/channel pixel depths
- Single clock per pixel encoding and decoding
- Support for JPEG header generation and parsing
- Up to four programmable quantization tables
- Fully programmable Huffman tables (two AC and two DC)
- Fully programmable minimum coded unit (MCU)
- Encode/decode support (non simultaneous)
- Single clock Huffman coding and decoding
- Two-channel interface: Pixel/Compress In, Pixel/Compressed Out
- Support for single greyscale component
- Ability to enable/disable header processing
- Fully synchronous design
- Configuration for high-speed decode mode

3.27 Random number generator (RNG)

All devices embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit.

3.28 Timers and watchdogs

The devices include one high-resolution timer, two advanced-control timers, ten generalpurpose timers, two basic timers, five low-power timers, two watchdogs and a SysTick timer.

All timer counters can be frozen in debug mode.

Table 5 compares the features of the advanced-control, general-purpose and basic timers.

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Comple- mentary output	Max interface clock (MHz)	Max timer clock (MHz) ⁽¹⁾
High- resolution timer	HRTIM1	16-bit	Up	/1 /2 /4 (x2 x4 x8 x16 x32, with DLL)	Yes	10	Yes	400	400
Advanced -control	TIM1, TIM8	16-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	Yes	100	200
General purpose	TIM2, TIM5	32-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	No	100	200
	TIM3, TIM4	16-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	No	100	200
	TIM12	16-bit	Up	Any integer between 1 and 65536	No	2	No	100	200
	TIM13, TIM14	16-bit	Up	Any integer between 1 and 65536	No	1	No	100	200
	TIM15	16-bit	Up	Any integer between 1 and 65536	Yes	2	1	100	200
	TIM16, TIM17	16-bit	Up	Any integer between 1 and 65536	Yes	1	1	100	200

 Table 5. Timer feature comparison

34/226

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Comple- mentary output	Max interface clock (MHz)	Max timer clock (MHz) ⁽¹⁾
Basic	TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No	100	200
Low- power timer	LPTIM1, LPTIM2, LPTIM3, LPTIM4, LPTIM5	16-bit	Up	1, 2, 4, 8, 16, 32, 64, 128	No	0	No	100	200

Table 5. Timer feature comparison (continued)

 The maximum timer clock is up to 400 MHz depending on TIMPRE bit in the RCC_CFGR register and D2PRE1/2 bits in RCC_D2CFGR register.

3.28.1 High-resolution timer (HRTIM1)

The high-resolution timer (HRTIM1) allows generating digital signals with high-accuracy timings, such as PWM or phase-shifted pulses.

It consists of 6 timers, 1 master and 5 slaves, totaling 10 high-resolution outputs, which can be coupled by pairs for deadtime insertion. It also features 5 fault inputs for protection purposes and 10 inputs to handle external events such as current limitation, zero voltage or zero current switching.

The HRTIM1 timer is made of a digital kernel clocked at 400 MHz The high-resolution is available on the 10 outputs in all operating modes: variable duty cycle, variable frequency, and constant ON time.

The slave timers can be combined to control multiswitch complex converters or operate independently to manage multiple independent converters.

The waveforms are defined by a combination of user-defined timings and external events such as analog or digital feedbacks signals.

HRTIM1 timer includes options for blanking and filtering out spurious events or faults. It also offers specific modes and features to offload the CPU: DMA requests, burst mode controller, push-pull and resonant mode.

It supports many topologies including LLC, Full bridge phase shifted, buck or boost converters, either in voltage or current mode, as well as lighting application (fluorescent or LED). It can also be used as a general purpose timer, for instance to achieve high-resolution PWM-emulated DAC.

3.28.2 Advanced-control timers (TIM1, TIM8)

The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete general-purpose timers. Their 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge- or center-aligned modes)
- One-pulse mode output

If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-100%).

The advanced-control timer can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining.

TIM1 and TIM8 support independent DMA request generation.

3.28.3 General-purpose timers (TIMx)

There are ten synchronizable general-purpose timers embedded in the STM32H743xI devices (see *Table 5* for differences).

• TIM2, TIM3, TIM4, TIM5

The devices include 4 full-featured general-purpose timers: TIM2, TIM3, TIM4 and TIM5. TIM2 and TIM5 are based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler while TIM3 and TIM4 are based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. All timers feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input capture/output compare/PWMs on the largest packages.

TIM2, TIM3, TIM4 and TIM5 general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the Timer Link feature for synchronization or event chaining.

Any of these general-purpose timers can be used to generate PWM outputs.

TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors.

• TIM12, TIM13, TIM14, TIM15, TIM16, TIM17

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM13, TIM14, TIM16 and TIM17 feature one independent channel, whereas TIM12 and TIM15 have two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers or used as simple timebases.

3.28.4 Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger and waveform generation. They can also be used as a generic 16-bit time base.

TIM6 and TIM7 support independent DMA request generation.

3.28.5 Low-power timers (LPTIM1, LPTIM2, LPTIM3, LPTIM4, LPTIM5)

The low-power timers have an independent clock and is running also in Stop mode if it is clocked by LSE, LSI or an external clock. It is able to wakeup the devices from Stop mode.

This low-power timer supports the following features:

- 16-bit up counter with 16-bit autoreload register
- 16-bit compare register
- Configurable output: pulse, PWM
- Continuous / one-shot mode
- Selectable software / hardware input trigger
- Selectable clock source:
- Internal clock source: LSE, LSI, HSI or APB clock
- External clock source over LPTIM input (working even with no internal clock source running, used by the Pulse Counter Application)
- Programmable digital glitch filter
- Encoder mode

3.28.6 Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes.

3.28.7 Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.28.8 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard downcounter. It features:

- A 24-bit downcounter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source.

3.29 Real-time clock (RTC), backup SRAM and backup registers

The RTC is an independent BCD timer/counter. It supports the following features:

- Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format.
- Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
- Two programmable alarms.
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock.
- Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.
- Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal inaccuracy.
- Three anti-tamper detection pins with programmable filter.
- Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to V_{BAT} mode.
- 17-bit auto-reload wakeup timer (WUT) for periodic events with programmable resolution and period.

The RTC and the 32 backup registers are supplied through a switch that takes power either from the V_{DD} supply when present or from the V_{BAT} pin.

The backup registers are 32-bit registers used to store 128 bytes of user application data when VDD power is not present. They are not reset by a system or power reset, or when the device wakes up from Standby mode.

The RTC clock sources can be:

- A 32.768 kHz external crystal (LSE)
- An external resonator or oscillator (LSE)
- The internal low-power RC oscillator (LSI, with typical frequency of 32 kHz)
- The high-speed external clock (HSE) divided by 32.

The RTC is functional in V_{BAT} mode and in all low-power modes when it is clocked by the LSE. When clocked by the LSI, the RTC is not functional in V_{BAT} mode, but is functional in all low-power modes.

All RTC events (Alarm, Wakeup Timer, Timestamp or Tamper) can generate an interrupt and wakeup the device from the low-power modes.

3.30 Inter-integrated circuit interface (I2C)

STM32H743xI devices embed four I²C interfaces.

The I²C bus interface handles communications between the microcontroller and the serial I²C bus. It controls all I²C bus-specific sequencing, protocol, arbitration and timing.

The I2C peripheral supports:

- I²C-bus specification and user manual rev. 5 compatibility:
 - Slave and master modes, multimaster capability
 - Standard-mode (Sm), with a bitrate up to 100 kbit/s
 - Fast-mode (Fm), with a bitrate up to 400 kbit/s
 - Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os
 - 7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
 - Programmable setup and hold times
 - Optional clock stretching
- System Management Bus (SMBus) specification rev 2.0 compatibility:
 - Hardware PEC (Packet Error Checking) generation and verification with ACK control
 - Address resolution protocol (ARP) support
 - SMBus alert
- Power System Management Protocol (PMBusTM) specification rev 1.1 compatibility
- Independent clock: a choice of independent clock sources allowing the I2C communication speed to be independent from the PCLK reprogramming.
- Wakeup from Stop mode on address match
- Programmable analog and digital noise filters
- 1-byte buffer with DMA capability

3.31 Universal synchronous/asynchronous receiver transmitter (USART)

STM32H743xI devices have four embedded universal synchronous receiver transmitters (USART1, USART2, USART3 and USART6) and four universal asynchronous receiver transmitters (UART4, UART5, UART7 and UART8). Refer to *Table 6* for a summary of USARTx and UARTx features.

These interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. They provide hardware management of the CTS and RTS signals, and RS485 Driver Enable. They are able to communicate at speeds of up to 12.5 Mbit/s.

USART1, USART2, USART3 and USART6 also provide Smartcard mode (ISO 7816 compliant) and SPI-like communication capability.

The USARTs embed a Transmit FIFO (TXFIFO) and a Receive FIFO (RXFIFO). FIFO mode is enabled by software and is disabled by default.

All USART have a clock domain independent from the CPU clock, allowing the USARTx to wake up the MCU from Stop mode. The wakeup from Stop mode are programmable and can be done on:

- Start bit detection
- Any received data frame
- A specific programmed data frame
- Specific TXFIFO/RXFIFO status when FIFO mode is enabled.

All USART interfaces can be served by the DMA controller.

USART modes/features ⁽¹⁾	USART1/2/3/6	UART4/5/7/8
Hardware flow control for modem	Х	Х
Continuous communication using DMA	Х	Х
Multiprocessor communication	Х	Х
Synchronous mode (Master/Slave)	Х	-
Smartcard mode	Х	-
Single-wire Half-duplex communication	Х	Х
IrDA SIR ENDEC block	Х	Х
LIN mode	Х	Х
Dual clock domain and wakeup from low power mode	Х	Х
Receiver timeout interrupt	Х	Х
Modbus communication	Х	Х
Auto baud rate detection	Х	Х
Driver Enable	Х	Х
USART data length	7, 8 an	d 9 bits
Tx/Rx FIFO	Х	Х
Tx/Rx FIFO size	1	6

Table 6. USART features

1. X = supported.

3.32 Low-power universal asynchronous receiver transmitter (LPUART)

The device embeds one Low-Power UART (LPUART1). The LPUART supports asynchronous serial communication with minimum power consumption. It supports half duplex single wire communication and modem operations (CTS/RTS). It allows multiprocessor communication.

The LPUARTs embed a Transmit FIFO (TXFIFO) and a Receive FIFO (RXFIFO). FIFO mode is enabled by software and is disabled by default.

The LPUART has a clock domain independent from the CPU clock, and can wakeup the system from Stop mode. The wakeup from Stop mode are programmable and can be done on:

- Start bit detection
- Any received data frame
- A specific programmed data frame
- Specific TXFIFO/RXFIFO status when FIFO mode is enabled.

Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher speed clock can be used to reach higher baudrates.

LPUART interface can be served by the DMA controller.

3.33 Serial peripheral interface (SPI)/inter- integrated sound interfaces (I2S)

The devices feature up to six SPIs (SPI2S1, SPI2S2, SPI2S3, SPI4, SPI5 and SPI6) that allow communicating up to 50 Mbits/s in master and slave modes, in half-duplex, full-duplex and simplex modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable from 4 to 16 bits. All SPI interfaces support NSS pulse mode, TI mode, Hardware CRC calculation and 8x 8-bit embedded Rx and Tx FIFOs with DMA capability.

Three standard I²S interfaces (multiplexed with SPI1, SPI2 and SPI3) are available. They can be operated in master or slave mode, in simplex communication modes, and can be configured to operate with a 16-/32-bit resolution as an input or output channel. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I²S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency. All I²S interfaces support 16x 8-bit embedded Rx and Tx FIFOs with DMA capability.

3.34 Serial audio interfaces (SAI)

The devices embed 4 SAIs (SAI1, SAI2, SAI3 and SAI4) that allow designing many stereo or mono audio protocols such as I2S, LSB or MSB-justified, PCM/DSP, TDM or AC'97. An SPDIF output is available when the audio block is configured as a transmitter. To bring this level of flexibility and reconfigurability, the SAI contains two independent audio sub-blocks. Each block has it own clock generator and I/O line controller.

Audio sampling frequencies up to 192 kHz are supported.

In addition, up to 8 microphones can be supported thanks to an embedded PDM interface. The SAI can work in master or slave configuration. The audio sub-blocks can be either receiver or transmitter and can work synchronously or asynchronously (with respect to the other one). The SAI can be connected with other SAIs to work synchronously.

3.35 SPDIFRX Receiver Interface (SPDIFRX)

The SPDIFRX peripheral is designed to receive an S/PDIF flow compliant with IEC-60958 and IEC-61937. These standards support simple stereo streams up to high sample rate, and compressed multi-channel surround sound, such as those defined by Dolby or DTS (up to 5.1).

The main SPDIFRX features are the following:

- Up to 4 inputs available
- Automatic symbol rate detection
- Maximum symbol rate: 12.288 MHz
- Stereo stream from 32 to 192 kHz supported
- Supports Audio IEC-60958 and IEC-61937, consumer applications
- Parity bit management
- Communication using DMA for audio samples
- Communication using DMA for control and user channel information
- Interrupt capabilities

The SPDIFRX receiver provides all the necessary features to detect the symbol rate, and decode the incoming data stream. The user can select the wanted SPDIF input, and when a valid signal will be available, the SPDIFRX will re-sample the incoming signal, decode the Manchester stream, recognize frames, sub-frames and blocks elements. It delivers to the CPU decoded data, and associated status flags.

The SPDIFRX also offers a signal named spdif_frame_sync, which toggles at the S/PDIF sub-frame rate that will be used to compute the exact sample rate for clock drift algorithms.

3.36 Single wire protocol master interface (SWPMI)

The Single wire protocol master interface (SWPMI) is the master interface corresponding to the Contactless Frontend (CLF) defined in the ETSI TS 102 613 technical specification. The main features are:

- full-duplex communication mode
- automatic SWP bus state management (active, suspend, resume)
- configurable bitrate up to 2 Mbit/s
- automatic SOF, EOF and CRC handling

SWPMI can be served by the DMA controller.

3.37 Management Data Input/Output (MDIO) slaves

The devices embed an MDIO slave interface it includes the following features:

- 32 MDIO Registers addresses, each of which is managed using separate input and output data registers:
 - 32 x 16-bit firmware read/write, MDIO read-only output data registers
 - 32 x 16-bit firmware read-only, MDIO write-only input data registers
- Configurable slave (port) address
- Independently maskable interrupts/events:
 - MDIO Register write

_

- MDIO Register read
- MDIO protocol error
- Able to operate in and wake up from STOP mode

3.38 SD/SDIO/MMC card host interfaces (SDMMC)

Two SDMMC host interfaces are available. They support *MultiMediaCard System Specification Version 4.51* in three different databus modes: 1 bit (default), 4 bits and 8 bits.

Both interfaces support the *SD memory card specifications version 4.1.* and the *SDIO card specification version 4.0.* in two different databus modes: 1 bit (default) and 4 bits.

Each SDMMC host interface supports only one SD/SDIO/MMC card at any one time and a stack of MMC Version 4.51 or previous.

The SDMMC host interface embeds a dedicated DMA controller allowing high-speed transfers between the interface and the SRAM.

3.39 Controller area network (FDCAN1, FDCAN2)

The controller area network (CAN) subsystem consists of two CAN modules, a shared message RAM memory and a clock calibration unit.

Both CAN modules (FDCAN1 and FDCAN2) are compliant with ISO 11898-1 (CAN protocol specification version 2.0 part A, B) and CAN FD protocol specification version 1.0.

FDCAN1 supports time triggered CAN (TTCAN) specified in ISO 11898-4, including event synchronized time-triggered communication, global system time, and clock drift compensation. The FDCAN1 contains additional registers, specific to the time triggered feature. The CAN FD option can be used together with event-triggered and time-triggered CAN communication.

A 10 Kbytes message RAM memory implements filters, receive FIFOs, receive buffers, transmit event FIFOs, transmit buffers (and triggers for TTCAN). This message RAM is shared between the two FDCAN1 and FDCAN2 modules.

The common clock calibration unit is optional. It can be used to generate a calibrated clock for both FDCAN1 and FDCAN2 from the HSI internal RC oscillator and the PLL, by evaluating CAN messages received by the FDCAN1.

3.40 Universal serial bus on-the-go high-speed (OTG_HS)

The devices embed two USB OTG high-speed (up to 480 Mbit/s) device/host/OTG peripheral. OTG-HS1 supports both full-speed and high-speed operations, while OTG-HS2 supports only full-speed operations. They both integrate the transceivers for full-speed operation (12 Mbit/s). OTG-HS1 features a UTMI low-pin interface (ULPI) for high-speed operation (480 Mbit/s). When using the USB OTG-HS1 in HS mode, an external PHY device connected to the ULPI is required.

The USB OTG HS peripherals are compliant with the USB 2.0 specification and with the OTG 2.0 specification. They have software-configurable endpoint setting and supports suspend/resume. The USB OTG controllers require a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator.

The main features are:

- Combined Rx and Tx FIFO size of 4 Kbytes with dynamic FIFO sizing
- Supports the session request protocol (SRP) and host negotiation protocol (HNP)
- 8 bidirectional endpoints
- 16 host channels with periodic OUT support
- Software configurable to OTG1.3 and OTG2.0 modes of operation
- USB 2.0 LPM (Link Power Management) support
- Battery Charging Specification Revision 1.2 support
- Internal FS OTG PHY support
- External HS or HS OTG operation supporting ULPI in SDR mode (OTG_HS1 only) The OTG PHY is connected to the microcontroller ULPI port through 12 signals. It can be clocked using the 60 MHz output.
- Internal USB DMA
- HNP/SNP/IP inside (no need for any external resistor)
- For OTG/Host modes, a power switch is needed in case bus-powered devices are connected

3.41 Ethernet MAC interface with dedicated DMA controller (ETH)

The devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for ethernet LAN communications through an industry-standard medium-independent interface (MII) or a reduced medium-independent interface (RMII). The microcontroller requires an external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair, fiber, etc.). The PHY is connected to the device MII port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz (MII) from the microcontroller.

The devices include the following features:

- Supports 10 and 100 Mbit/s rates
- Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM and the descriptors
- Tagged MAC frame support (VLAN support)
- Half-duplex (CSMA/CD) and full-duplex operation
- MAC control sublayer (control frames) support
- 32-bit CRC generation and removal
- Several address filtering modes for physical and multicast address (multicast and group addresses)
- 32-bit status code for each transmitted or received frame
- Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the receive FIFO are both 2 Kbytes.
- Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008 (PTP V2) with the time stamp comparator connected to the TIM2 input
- Triggers interrupt when system time becomes greater than target time

3.42 High-definition multimedia interface (HDMI) - consumer electronics control (CEC)

The devices embed a HDMI-CEC controller that provides hardware support for the Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard).

This protocol provides high-level control functions between all audiovisual products in an environment. It is specified to operate at low speeds with minimum processing and memory overhead. It has a clock domain independent from the CPU clock, allowing the HDMI-CEC controller to wakeup the MCU from Stop mode on data reception.

3.43 Debug infrastructure

The devices offer a comprehensive set of debug and trace features to support software development and system integration.

- Breakpoint debugging
- Code execution tracing
- Software instrumentation
- JTAG debug port
- Serial-wire debug port
- Trigger input and output
- Serial-wire trace port
- Trace port
- Arm[®] CoreSight[™] debug and trace components

The debug can be controlled via a JTAG/Serial-wire debug access port, using industry standard debugging tools.

The trace port performs data capture for logging and analysis.

4 Memory mapping

Refer to the product line reference manual for details on the memory mapping as well as the boundary addresses for all peripherals.

46/226

5 Pin descriptions

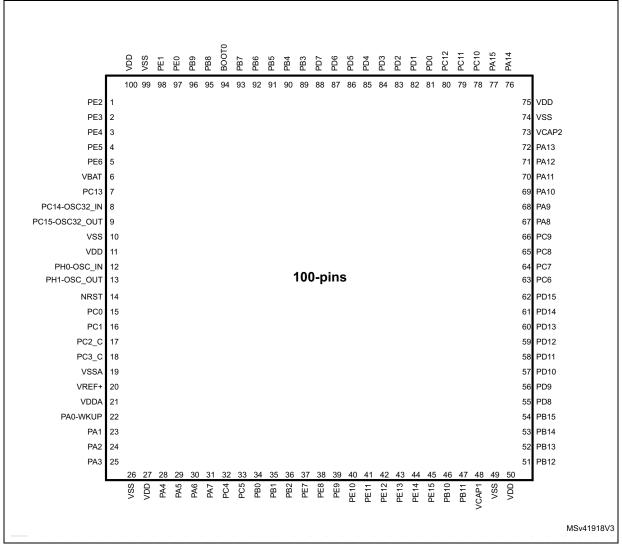


Figure 3. LQFP100 pinout

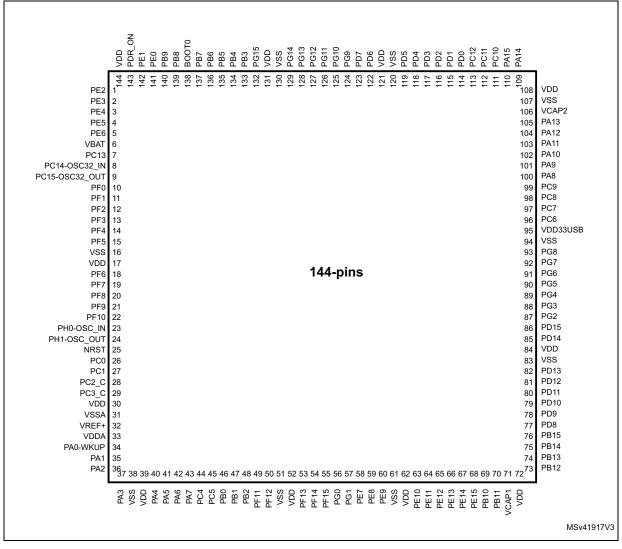
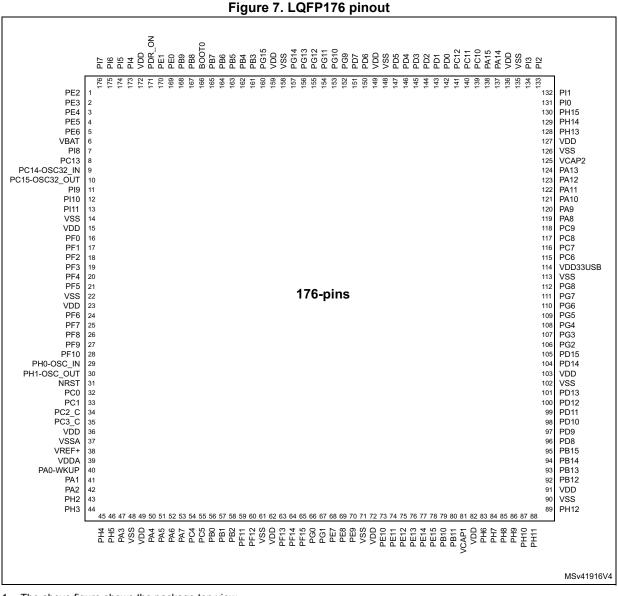

1 2 3 4 5 6 7 8 9 10 A $\frac{PC14}{(PC14)}$ PC13 PE2 PB9 PB7 $\frac{PB4}{(NJTRST})$ $\frac{PB3}{TRACESWO}$ PA15(JTD) PA14(JTCK PA13(JTMS- SWD1/7) B $\frac{PC15}{(PC15)}$ VBAT PE3 PB8 PB6 PD5 PD2 PC11 PC10 PA12 C $\frac{OSC}{(PC15)}$ VBAT PE3 PB8 PB6 PD5 PD2 PC11 PC10 PA12 C $\frac{OSC}{(PC15)}$ VBAT PE3 PB8 PB6 PD5 PD2 PC11 PC10 PA12 C $\frac{OSC}{(PC15)}$ VD3 PE4 PE1 PB5 PD6 PD3 PC12 PA9 PA11 D $\frac{OSC}{(PC1)}$ VD3 PE5 PE0 BO070 PD7 PD4 PD0 PA PA P PC2_C PE6 VSS VSS VSS VCAP2 PD1 PC6<												
A OSC32 IN (PC14) PC13 (PC14) PE2 PB9 PB7 (NJTRST) (NJTRST) PE3(JTD0) TRACESWO) PA15(JTD1) SWCLK) PA15(JTD1) SWCLK) PA15(JTD1) SWCLK) PA15(JTD1) SWCLK) PA15(JTD1) SWCLK) PA15(JTD1) SWCLK) PA15(JTD1) SWCLK) PA15(JTD1) SWCLK) B PC15 OSC32/OUT (PC19) VBAT PE3 PB8 PB6 PD5 PD2 PC11 PC10 PA12 C PH0- OSC_IN(PH0) VSS PE4 PE1 PB5 PD6 PD3 PC12 PA9 PA11 D PH0- OSC_OUT VDD PE5 PE0 BOOT0 PD7 PD4 PD0 PA8 PA10 E NRST PC2_C PE6 VSS VSS VSS VCAP2 PD1 PC9 PC7 F PC0 PC1 PC3_C VDD0 VD0 VD0 VD1 VD1 VD1 VD1 PC1 PC1 PC9 PC7 F PC0 PC1 PC3_C VDD0///////////////////////////////////			1	2	3	4	5	6	7	8	9	10
B OSC32 OUT (PCT3) VBAT PE3 PB8 PB6 PD5 PD2 PC11 PC10 PA12 C PH0- OSC_IN(PH0) VSS PE4 PE1 PB5 PD6 PD3 PC12 PA9 PA11 D PH- OSC_IN(PH0) VSD PE5 PE0 B00T0 PD7 PD4 PD0 PA8 PA10 E NRST PC2_C PE6 VSS VSS VSS VCAP2 PD1 PC9 PC7 F PC0 PC1 PC3_C VDD PE5 VD1 VDS VSS VSS VSS VCAP2 PD1 PC9 PC7 F PC0 PC1 PC3_C VDDLO3 VDD VDD33USB PDR_ON VCAP1 PC8 PC6 G VSA PA1 PA5 PC5 PE7 PE10 PE14 PD15 PD10 PB14 H VDDA PA4 PA5 PC5 PE7 PE	А	. [OSC32 IN	PC13	PE2	PB9	PB7		PB3(JTDO/ TRACESWO)	PA15(JTDI)	PA14(JTCK- SWCLK)	PA13(JTMS- SWDIO)
C OSC_IN(PH0) VSS PE4 PE1 PB5 PU6 PU3 PC12 PA9 PA11 D PH- OSC_0UT VDD PE5 PE0 BOOT0 PD7 PD4 PD0 PA8 PA10 E NRST PC2_C PE6 VSS VSS VSS VCAP2 PD1 PC9 PC7 F PC0 PC1 PC3_C VDDLD03 VDD VDD33USB PDR_ON VCAP1 PC8 PC6 G VSA PA1 PC3_C VDDLD03 VDD VDD33USB PDR_ON VCAP1 PC8 PC6 H VDA PA1 PA5 PC5 PE7 PE10 PE14 PD15 PD11 PB14 J VSS PA2 PA6 PB0 PE8 PE12 PB10 PB13 PD9 PD13	В	:	OSC32 OUT	VBAT	PE3	PB8	PB6	PD5	PD2	PC11	PC10	PA12
D OSC_OUT (PH1) VDD PE5 PE0 BOOT0 PD7 PD4 PD0 PA8 PA10 E NRST PC2_C PE6 VSS VSS VSS VCAP2 PD1 PC9 PC7 F PC0 PC1 PC3_C VDD VDD VDD33USB PDR_ON VCAP1 PC8 PC6 G VSSA WKUP(PA0) PA4 PC4 PB2 PE10 PE14 PD15 PD11 PB15 H VDDA PA1 PA5 PC5 PE7 PE11 PE15 PD14 PD10 PB14 J VSS PA2 PA6 PB0 PE8 PE12 PB10 PB13 PD9 PD13	c	;		VSS	PE4	PE1	PB5	PD6	PD3	PC12	PA9	PA11
F PC0 PC1 PC3_C VDLD03 VDD VD33USB PD6_ON VCAP1 PC8 PC6 G VSSA PA0- WKUP(PA0) PA4 PC4 PB2 PE10 PE14 PD15 PD11 PB15 H VDDA PA1 PA5 PC5 PE7 PE11 PE15 PD14 PD10 PB14 J VSS PA2 PA6 PB0 PE8 PE12 PB10 PB13 PD9 PD13	D	,	OSC OUT	VDD	PE5	PE0	BOOTO	PD7	PD4	PD0	PA8	PA10
G VSSA PA0- WKUP(PA0) PA4 PC4 PB2 PE10 PE14 PD15 PD11 PB15 H VDDA PA1 PA5 PC5 PE7 PE11 PE15 PD14 PD10 PB14 J VSS PA2 PA6 PB0 PE8 PE12 PB10 PB13 PD9 PD13	E		NRST	PC2_C	PE6	vss	VSS	vss	VCAP2	PD1	PC9	PC7
G VSSA WKUP(PA0) PA4 PC4 PE2 PE10 PE14 PD15 PD11 PE15 H VDDA PA1 PA5 PC5 PE7 PE11 PE15 PD14 PD10 PB14 J VSS PA2 PA6 PB0 PE8 PE12 PB10 PB13 PD9 PD13	F		PC0	PC1	PC3_C	VDDLDO3	VDD	VDD33USB	PDR_ON	VCAP1	PC8	PC6
J VSS PA2 PA6 PB0 PE8 PE12 PB10 PB13 PD9 PD13	G		VSSA		PA4	PC4	PB2	PE10	PE14	PD15	PD11	PB15
	н	ı I	VDDA	PA1	PA5	PC5	PE7	PE11	PE15	PD14	PD10	PB14
K VDD PA3 PA7 PB1 PE9 PE13 PB11 PB12 PD8 PD12	J		vss	PA2	PA6	PB0	PE8	PE12	PB10	PB13	PD9	PD13
	к	:	VDD	PA3	PA7	PB1	PE9	PE13	PB11	PB12	PD8	PD12
		-										

Figure 4. TFBGA100 pinout

48/226



	1	2	3	4	5	6	7	8	9	10	11	12	13
А	PE4	PE2	VDD	Pl6	PB6	Pl2	VDD	PG10	PD5	VDD	PC12	PC10	P10
в	PC15- OSC32_ OUT	PE3	VSS	VDDLDO3	PB8	PB4	PI3	PG11	PD6	VSS	PC11	PA14	PI1
С	PC14- OSC32_ IN	PE6	PE5	PDR_ON	PB9	PB5	PG14	PG9	PD4	PD1	PA15	vss	VDD
D	VDD	VSS	PC13	PE1	PE0	PB7	PG13	PD7	PD3	PD0	PA13	VDDLDO2	VCAP2
E	PI11	PI7	VBAT	PF1	PF3	BOOT0	PG15	PG12	PD2	PA10	PA9	PA8	PA12
F	PI13	PI12	PF0	PF2	PF5	PF7	PB3	PG4	PC6	PC7	PC9	PC8	PA11
G	VDD	VSS	PF4	PF6	PF9	NRST	PF13	PE7	PG6	PG7	PG8	VDD50_ USB	VDD33_ USB
н	PH0- OSCIN	PH1- OSCOUT	PF10	PF8	PJ1	PA4	PF14	PE8	PG2	PG3	PG5	VSS	VDD
J	PC0	PC1	VSSA	PJ0	PA0- WKUP	PA7	PF15	PE9	PE14	PD11	PD13	PD15	PD14
К	PC3_C	PC2_C	PH4	PA1	PA6	PC4	PG0	PE13	PH10	PH12	PD9	PD10	PD12
L	VDDA	VREF+	PH5	PA5	PB1	PB2	PG1	PE12	PB10	PH11	PB13	VSS	VDD
М	VDD	VSS	PH3	VSS	PB0	PF11	VSS	PE10	PB11	VDDLDO1	VSS	PD8	PB15
Ν	PA2	PH2	PA3	VDD	PC5	PF12	VDD	PE11	PE15	VCAP1	VDD	PB12	PB14
												· ·	MSv453

Figure 6. UFBGA169 ballout

		-			_		_			()		10			
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
А	PE3	PE2	PE1	PE0	PB8	PB5	PG14	PG13	PB4	PB3	PD7	PC12	PA15	PA14	PA13
В	PE4	PE5	PE6	PB9	PB7	PB6	PG15	PG12	PG11	PG10	PD6	PD0	PC11	PC10	PA12
с	VBAT	PI7	PI6	PI5	VDD	PDR_ON	VDD	VDD	VDD	PG9	PD5	PD1	PI3	PI2	PA11
D	PC13	PI8	PI9	PI4	VSS	BOOT0	VSS	VSS	VSS	PD4	PD3	PD2	PH15	PI1	PA10
E	PC14- OSC32_ IN	PF0	PI10	PI11								PH13	PH14	P10	PA9
F	PC15- OSC32_ OUT	VSS	VDD	PH2		VSS	VSS	VSS	VSS	VSS		VSS	VCAP2	PC9	PA8
G	PH0- OSC_IN	VSS	VDD	PH3		VSS	VSS	VSS	VSS	VSS		VSS	VDD	PC8	PC7
Н	PH1- OSC_ OUT	PF2	PF1	PH4		VSS	VSS	VSS	VSS	VSS		VSS	VDD 33USB	PG8	PC6
J	NRST	PF3	PF4	PH5		VSS	VSS	VSS	VSS	VSS		VDD	VDD	PG7	PG6
к	PF7	PF6	PF5	VDD		VSS	VSS	VSS	VSS	VSS		PH12	PG5	PG4	PG3
L	PF10	PF9	PF8	VSS								PH11	PH10	PD15	PG2
М	VSSA	PC0	PC1	PC2_C	PC3_C	PB2	PG1	VSS	VSS	VCAP1	PH6	PH8	PH9	PD14	PD13
N	VREF-	PA1	PA0	PA4	PC4	PF13	PG0	VDD	VDD	VDD	PE13	PH7	PD12	PD11	PD10
Ρ	VREF+	PA2	PA6	PA5	PC5	PF12	PF15	PE8	PE9	PE11	PE14	PB12	PB13	PD9	PD8
R	VDDA	PA3	PA7	PB1	PB0	PF11	PF14	PE7	PE10	PE12	PE15	PB10	PB11	PB14	PB15
															MSv41912V

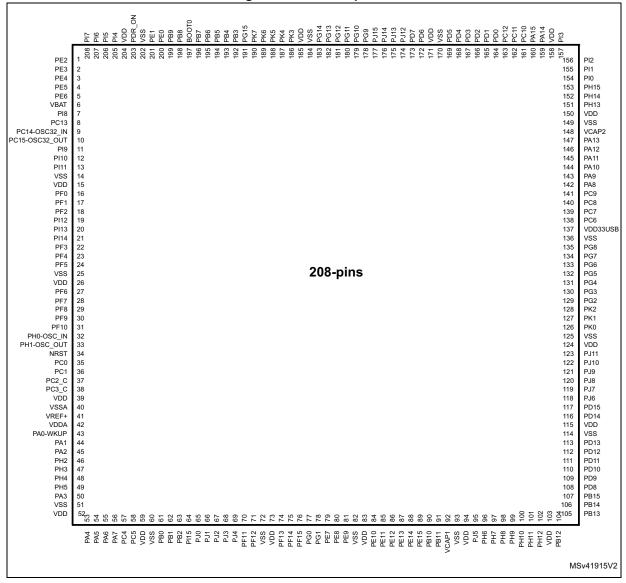


Figure 9. LQFP208 pinout

VSS VBAT PC15- DSC32_ OUT	PI6 VSS PC14- OSC32	PI5 PI7	Pl4	PB5	VDD											
PC15- DSC32_ OUT	PC14-	PI7			LDO3	VCAP3	PK5	PG10	PG9	PD5	PD4	PC10	PA15	PI1	P10	VSS
OSC32_ OUT			PE1	PB6	VSS	PB4	PK4	PG11	PJ15	PD6	PD3	PC11	PA14	PI2	PH15	PH14
	IN	PE2	PE0	PB7	PB3	PK6	PK3	PG12	VSS	PD7	PC12	VSS	PI3	PA13	VSS	VDD LDO2
PE5	PE4	PE3	PB9	PB8	PG15	PK7	PG14	PG13	PJ14	PJ12	PD2	PD0	PA10	PA9	PH13	VCAP2
NC	PI9	PC13	PI8	PE6	VDD	PDR_ ON	BOO T0	VDD	PJ13	VDD	PD1	PC8	PC9	PA8	PA12	PA11
NC	NC	PI10	PI11	VDD								PC7	PC6	PG8	PG7	VDD33 USB
PF2	NC	PF1	PF0	VDD		VSS	VSS	VSS	VSS	VSS		VDD	PG5	PG6	VSS	VDD50 USB
PI12	PI13	PI14	PF3	VDD		VSS	VSS	VSS	VSS	VSS		VDD	PG4	PG3	PG2	PK2
PH0- OSC_ OUT	PH0- OSC_IN	VSS	PF5	PF4		VSS	VSS	VSS	VSS	VSS		VDD	PK0	PK1	VSS	VSS
NRST	PF6	PF7	PF8	VDD		VSS	VSS	VSS	VSS	VSS		VDD	PJ11	VSS	NC	NC
VDDA	PC0	PF10	PF9	VDD		VSS	VSS	VSS	VSS	VSS		VDD	PJ10	VSS	NC	NC
/REF+	PC1	PC2	PC3	VDD								VDD	PJ9	VSS	NC	NC
/REF-	PH2	PA2	PA1	PA0	PJ0	VDD	VDD	PE10	VDD	VDD	VDD	PJ8	PJ7	PJ6	VSS	NC
VSSA	PH3	PH4	PH5	PI15	PJ1	PF13	PF14	PE9	PE11	PB10	PB11	PH10	PH11	PD15	PD14	VDD
PC2_C	PC3_C	PA6	VSS	PA7	PB2	PF12	VSS	PF15	PE12	PE15	PJ5	PH9	PH12	PD11	PD12	PD13
PA0_C	PA1_C	PA5	PC4	PB1	PJ2	PF11	PG0	PE8	PE13	PH6	VSS	PH8	PB12	PB15	PD10	PD9
VSS	PA3	PA4	PC5	PB0	PJ3	PJ4	PG1	PE7	PE14	VCAP1	VDD LDO1	PH7	PB13	PB14	PD8	VSS
															M	Sv41911V1
	NC PF2 PI12 PH0- DSC_ OUII IRST /DDA REF+ /SSA C2_C C2_C	NC PI9 NC NC PF2 NC PI2 PI13 PH0- OSC_IN IRST PF6 /DDA PC0 REF+ PC1 REF- PH2 /SSA PH3 C2_C PC3_C /A0_C PA1_C	NC PI9 PC13 NC NC PI10 PF2 NC PF1 PI12 PI13 PI14 PH0- DSC_ OSC_IN VSS QUIT PF6 PF7 //DDA PC0 PF10 REF+ PC1 PC2 REF- PH2 PA2 /SSA PH3 PH4 C2_C PC3_C PA5	NC PI9 PC13 PI8 NC NC PI9 PC13 PI8 NC NC PI10 PI11 PF2 NC PF1 PF0 PI12 PI13 PI14 PF3 PH0- DSC_ OUT PH0- OSC_IN VSS PF5 IRST PF6 PF7 PF8 /DDA PC0 PF10 PF9 REF+ PC1 PC2 PC3 REF- PH2 PA2 PA1 /SSA PH3 PH4 PH5 C2_C PC3_C PA6 VSS /A0_C PA1_C PA5 PC4	NC PI9 PC13 PI8 PE6 NC NC PI10 PI11 VDD PF2 NC PF1 PF0 VDD PI12 PI13 PI14 PF3 VDD PH0- DSC_ OUT PH0- OSC_IN VSS PF5 PF4 IRST PF6 PF7 PF8 VDD /DDA PC0 PF10 PF9 VDD REF+ PC1 PC2 PC3 VDD REF- PH2 PA2 PA1 PA0 /SSA PH3 PH4 PH5 PI15 C2_C PC3_C PA6 VSS PA7 /A0_C PA1_C PA5 PC4 PB1	NC PI9 PC13 PI8 PE6 VDD NC NC PI10 PI11 VDD PF2 NC PF1 PF0 VDD PI2 NC PF1 PF0 VDD PI2 NC PF1 PF0 VDD PI12 PI13 PI14 PF3 VDD IRST PF6 PF7 PF8 VDD /DDA PC0 PF10 PF9 VDD REF+ PC1 PC2 PC3 VDD /SSA PH3 PH4 PH5 PI15 PJ1 C2_C	NC PI9 PC13 PI8 PE6 VDD PDR_{ON} NC NC PI9 PC13 PI8 PE6 VDD PDR_{ON} NC NC PI10 PI11 VDD Image: Comparison of the text of text o	NC PI9 PC13 PI8 PE6 VDD PDR ON BOO TO NC NC PI10 PI11 VDD Image: State S	NC PI9 PC13 PI8 PE6 VDD PDR_{ON} BOO_{T0} VDD NC NC PI10 PI11 VDD Image: Stress of the stress o	NC PI9 PC13 PI8 PE6 VDD PDR_{ON} BOO_{T0} VDD PJ13 NC NC PI10 PI11 VDD I	NC PI9 PC13 PI8 PE6 VDD PDR_{ON}^{-} BOO_{T0}^{-} VDD PJ13 VDD NC NC PI10 PI11 VDD III VDD IIII VDD IIII VDD IIII VDD IIIII VDD IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	NC PI9 PC13 PI8 PE6 VDD PDR ON BOO TO VDD PJ13 VDD PD1 NC NC PI10 PI11 VDD III VDD IIII IIII VDD IIIII VDD VSS VSS <t< td=""><td>NC PI9 PC13 PI8 PE6 VDD PDR_{-} BOO_{TO} VDD PJ13 VDD PD1 PC8 NC NC PI10 PI11 VDD III VDD IIII PC7 PF2 NC PF1 PF0 VDD IIII VDD IIIII VDD VSS VSS</td><td>NC PI9 PC13 PI8 PE6 VDD PDR_{-} RO VDD PJ13 VDD PD1 PC68 PC9 NC NC PI10 PI11 VDD III VDD IIII PI60 VDD IIII VDD PC7 PC6 PF2 NC PF1 PF0 VDD IIII VDD VSS <t< td=""><td>NC PI9 PC13 PI8 PE6 VDD PDR ON BOO TO VDD PJ13 VDD PD1 PC6 PC9 PA8 NC NC PI10 PI11 VDD III VDD IIII VDD PI1 VDD PC6 PG8 PF2 NC PF1 PF0 VDD IIII VDD IIIII VDD IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</td><td>NC PH0 PC13 PH8 PE6 VDD PDR ON TO VDD PJ13 VDD PD1 PC68 PC9 PA8 PA12 NC NC PH0 PH1 VDD III VDD IIII VDD IIII VDD IIII VDD IIII VDD IIIII VDD IIIII VDD IIIII VDD IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</td></t<></td></t<>	NC PI9 PC13 PI8 PE6 VDD PDR_{-} BOO_{TO} VDD PJ13 VDD PD1 PC8 NC NC PI10 PI11 VDD III VDD IIII PC7 PF2 NC PF1 PF0 VDD IIII VDD IIIII VDD VSS VSS	NC PI9 PC13 PI8 PE6 VDD PDR_{-} RO VDD PJ13 VDD PD1 PC68 PC9 NC NC PI10 PI11 VDD III VDD IIII PI60 VDD IIII VDD PC7 PC6 PF2 NC PF1 PF0 VDD IIII VDD VSS VSS <t< td=""><td>NC PI9 PC13 PI8 PE6 VDD PDR ON BOO TO VDD PJ13 VDD PD1 PC6 PC9 PA8 NC NC PI10 PI11 VDD III VDD IIII VDD PI1 VDD PC6 PG8 PF2 NC PF1 PF0 VDD IIII VDD IIIII VDD IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</td><td>NC PH0 PC13 PH8 PE6 VDD PDR ON TO VDD PJ13 VDD PD1 PC68 PC9 PA8 PA12 NC NC PH0 PH1 VDD III VDD IIII VDD IIII VDD IIII VDD IIII VDD IIIII VDD IIIII VDD IIIII VDD IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</td></t<>	NC PI9 PC13 PI8 PE6 VDD PDR ON BOO TO VDD PJ13 VDD PD1 PC6 PC9 PA8 NC NC PI10 PI11 VDD III VDD IIII VDD PI1 VDD PC6 PG8 PF2 NC PF1 PF0 VDD IIII VDD IIIII VDD IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	NC PH0 PC13 PH8 PE6 VDD PDR ON TO VDD PJ13 VDD PD1 PC68 PC9 PA8 PA12 NC NC PH0 PH1 VDD III VDD IIII VDD IIII VDD IIII VDD IIII VDD IIIII VDD IIIII VDD IIIII VDD IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Figure 10. TFBGA240+25 ballout

Nar	ne	Abbreviation	Definition					
Pin na	ame		ecified in brackets below the pin name, the pin function during a same as the actual pin name					
		S	Supply pin					
Pin t		I	Input only pin					
FIII	уре	I/O	Input / output pin					
		ANA	Analog-only Input					
		FT	5 V tolerant I/O					
		TT	3.3 V tolerant I/O					
		В	Dedicated BOOT0 pin					
		RST	Bidirectional reset pin with embedded weak pull-up resistor					
I/O stru	ucture		Option for TT and FT I/Os					
		_f	I2C FM+ option					
		_a	analog option (supplied by V _{DDA})					
		_u	USB option (supplied by V _{DD33USB})					
		_h	High Speed Low Voltage					
Not	es	Unless otherwise sp after reset.	ecified by a note, all I/Os are set as floating inputs during and					
Pin functions	Alternate functions	Functions selected through GPIOx_AFR registers						
Finiturictions	Additional functions	Functions directly selected/enabled through peripheral registers						

Table 7. Legend/abbreviations used in the	ninout table
	pinout table

			Pin/ba	all name			0.011	/I32H/43X					
LQFP100	TFBGA100	LQFP144	UFBGA169	UFBGA176+25	LQFP176	LQFP208	TFBGA240 +25	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
1	A3	1	A2	A2	1	1	C3	PE2	I/O	FT_h	-	TRACECLK, SAI1_CK1, SPI4_SCK, SAI1_MCLK_A, SAI4_MCLK_A, QUADSPI_BK1_IO2, SAI4_CK1, ETH_MII_TXD3, FMC_A23, EVENTOUT	-
2	В3	2	B2	A1	2	2	D3	PE3	I/O	FT_h	-	TRACED0, TIM15_BKIN, SAI1_SD_B, SAI4_SD_B, FMC_A19, EVENTOUT	-
3	C3	3	A1	B1	3	3	D2	PE4	I/O	FT_h	-	TRACED1, SAI1_D2, DFSDM_DATIN3, TIM15_CH1N, SPI4_NSS, SAI1_FS_A, SAI4_FS_A, SAI4_D2, FMC_A20, DCMI_D4, LCD_B0, EVENTOUT	-
4	D3	4	C3	B2	4	4	D1	PE5	I/O	FT_h	-	TRACED2, SAI1_CK2, DFSDM_CKIN3, TIM15_CH1, SPI4_MISO, SAI1_SCK_A, SAI4_SCK_A, SAI4_CK2, FMC_A21, DCMI_D6, LCD_G0, EVENTOUT	-
5	E3	5	C2	В3	5	5	E5	PE6	I/O	FT_h	-	TRACED3, TIM1_BKIN2, SAI1_D1, TIM15_CH2, SPI4_MOSI, SAI1_SD_A, SAI4_SD_A, SAI4_D1, SAI2_MCK_B, TIM1_BKIN2_COMP12, FMC_A22, DCMI_D7, LCD_G1, EVENTOUT	-
-	-	-	M4	H10	-	-	A1	VSS	S	-	-	-	-
-	-	-	A3	-	-	-	-	VDD	S	-	-	-	-
6	B2	6	E3	C1	6	6	B1	VBAT	S	-	-	-	-
-	-	-	-	J6	-	-	B2	VSS	-	-	-	-	-
-	-	-	-	D2	7	7	E4	PI8	I/O	FT	-	EVENTOUT	RTC_TAMP_2/ RTC_TS/ WKUP3
7	A2	7	D3	D1	8	8	E3	PC13	I/O	FT	-	EVENTOUT	RTC_TAMP_1/ RTC_TS/ WKUP2
-	-	-	-	J7	-	-	B6	VSS	-	-	-	-	-

Table 8. STM32H743xI pin/ball definition

Pin/ball name													
LQFP100	TFBGA100	LQFP144	UFBGA169	UFBGA176+25	LQFP176	LQFP208	TFBGA240 +25	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
8	A1	8	C1	E1	9	9	C2	PC14- OSC32_ IN(PC14)	I/O	FT	-	EVENTOUT	OSC32_IN
9	B1	9	B1	F1	10	10	C1	PC15- OSC32_ OUT(PC1 5)	I/O	FT	-	EVENTOUT	OSC32_ OUT
-	-	-	-	D3	11	11	E2	PI9	I/O	FT_h	-	UART4_RX, CAN1_RX, FMC_D30, LCD_VSYNC, EVENTOUT	-
-	-	-	-	E3	12	12	F3	PI10	I/O	FT_h	-	CAN1_RXFD, ETH_MII_RX_ER, FMC_D31, LCD_HSYNC, EVENTOUT	
-	-	-	E1	E4	13	13	F4	PI11	I/O	FT	-	LCD_G6, OTG_HS_ULPI_DIR, EVENTOUT	WKUP4
-	C2	-	D2	F2	14	14	A17	VSS	S	-	-	-	-
-	D2	-	D1	F3	15	15	E6	VDD	S	-	-	-	-
-	-	-	-	-	-	-	E1 ⁽¹⁾	NC	-	-	-	-	-
-	-	-	-	-	-	-	F1 ⁽²⁾	NC	-	-	-	-	-
-	-	-	-	-	-	I	G2 ⁽³⁾	NC	-	-	-	-	-
-	-	10	F3	E2	16	16	G4	PF0	I/O	FT_f	-	I2C2_SDA, FMC_A0, EVENTOUT	-
-	-	11	E4	H3	17	17	G3	PF1	I/O	FT_f	-	I2C2_SCL, FMC_A1, EVENTOUT	-
-	-	12	F4	H2	18	18	G1	PF2	I/O	FT	-	I2C2_SMBA, FMC_A2, EVENTOUT	-
-	-	-	F2	-	-	19	H1	PI12	I/O	FT	-	ETH_TX_ER, LCD_HSYNC, EVENTOUT	-
-	-	-	F1	-	-	20	H2	PI13	I/O	FT	-	LCD_VSYNC, EVENTOUT	-
-	-	-	-	-	-	21	H3	PI14	I/O	FT_h	-	LCD_CLK, EVENTOUT	-
-	-	13	E5	J2	19	22	H4	PF3	I/O	FT_ ha	-	FMC_A3, EVENTOUT	ADC3_INP5
-	-	14	G3	J3	20	23	J5	PF4	I/O	FT_ ha	-	FMC_A4, EVENTOUT	ADC3_INN5, ADC3_INP9
-	-	15	F5	K3	21	24	J4	PF5	I/O	FT_ ha	-	FMC_A5, EVENTOUT	ADC3_INP4

Table 8. STM32H743xI pin/ball definition (continued)

57/226

Pin/ball name												continued)	
LQFP100	TFBGA100	LQFP144	UFBGA169	UFBGA176+25	LQFP176	LQFP208	TFBGA240 +25	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
10	-	16	B10	G2	22	25	C10	VSS	S	-	-	-	-
11	-	17	G1	G3	23	26	E9	VDD	S	-	-	-	-
-	-	18	G4	K2	24	27	К2	PF6	I/O	FT_ ha	-	TIM16_CH1, SPI5_NSS, SAI1_SD_B, UART7_RX, SAI4_SD_B, QUADSPI_BK1_IO3, EVENTOUT	ADC3_INN4, ADC3_INP8
-	-	19	F6	K1	25	28	K3	PF7	I/O	FT_ ha	-	TIM17_CH1, SPI5_SCK, SAI1_MCLK_B, UART7_TX, SAI4_MCLK_B, QUADSPI_BK1_IO2, EVENTOUT	ADC3_INP3
-	-	20	H4	L3	26	29	К4	PF8	I/O	FT_ ha	-	TIM16_CH1N, SPI5_MISO, SAI1_SCK_B, UART7_RTS, SAI4_SCK_B, TIM13_CH1, QUADSPI_BK1_IO0, EVENTOUT	ADC3_INN3, ADC3_INP7
-	-	21	G5	L2	27	30	L4	PF9	I/O	FT_ ha	-	TIM17_CH1N, SPI5_MOSI, SAI1_FS_B, UART7_CTS, SAI4_FS_B, TIM14_CH1, QUADSPI_BK1_IO1, EVENTOUT	ADC3_INP2
-	-	22	H3	L1	28	31	L3	PF10	I/O	FT_ ha	-	TIM16_BKIN, SAI1_D3, QUADSPI_CLK, SAI4_D3, DCMI_D11, LCD_DE, EVENTOUT	ADC3_INN2, ADC3_INP6
12	C1	23	H1	G1	29	32	J2	PH0- OSC_IN (PH0)	I/O	FT	-	EVENTOUT	OSC_IN
13	D1	24	H2	H1	30	33	J1	PH1- OSC_OUT (PH1)	I/O	FT	-	EVENTOUT	OSC_OUT
14	E1	25	G6	J1	31	34	K1	NRST	I/O	RST	-	-	-
15	F1	26	J1	M2	32	35	L2	PC0	I/O	FT_a	-	DFSDM_CKIN0, DFSDM_DATIN4, SAI2_FS_B, OTG_HS_ULPI_STP, FMC_SDNWE, LCD_R5, EVENTOUT	ADC123_ INP10

Table 8. STM32H743xI pin/ball definition (continued)

			Pin/ba	all nam	е								
LQFP100	TFBGA100	LQFP144	UFBGA169	UFBGA176+25	LQFP176	LQFP208	TFBGA240 +25	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
16	F2	27	J2	М3	33	36	M2	PC1	I/O	FT_ ha	-	TRACED0, SAI1_D1, DFSDM_DATIN0, DFSDM_CKIN4, SPI2_MOSI/I2S2_SDO, SAI1_SD_A, SAI4_SD_A, SDMMC2_CK, SAI4_D1, ETH_MDC, MDIOS_MDC, EVENTOUT	ADC123_ INN10, ADC123_ INP11, RTC_TAMP_3/ WKUP5
-	-	-	-	-	-	-	M3 ⁽⁴⁾	PC2	I/O	FT_a	-	DFSDM_CKIN1, SPI2_MISO/I2S2_SDI, DFSDM_CKOUT, OTG_HS_ULPI_DIR, ETH_MII_TXD2, FMC_SDNE0, EVENTOUT	ADC123_ INN11, ADC123_ INP12
17 (5)	E2 ⁽⁵⁾	28 ⁽⁵⁾	K2 ⁽⁵⁾	M4 ⁽⁵⁾	34 ⁽⁵⁾	37 ⁽⁵⁾	R1 ⁽⁴⁾	PC2_C	ANA	TT_a	-	-	ADC3_INN1, ADC3_INP0
-	-	-	-	-	-	-	M4 ⁽⁴⁾	PC3	I/O	FT_a	-	DFSDM_DATIN1, SPI2_MOSI/I2S2_SDO, OTG_HS_ULPI_NXT, ETH_MII_TX_CLK, FMC_SDCKE0, EVENTOUT	ADC12_INN12, ADC12_INP13
18 (5)	F3 ⁽⁵⁾	29 ⁽⁵⁾	K1 ⁽⁵⁾	M5 ⁽⁵⁾	35 ⁽⁵⁾	38 ⁽⁵⁾	R2 ⁽⁴⁾	PC3_C	ANA	TT_a	-	-	ADC3_INP1
-	F5	30	-	G3	36	39	E11	VDD	S	-	-	-	-
-	E6	-	B3	J10	-	-	C13	VSS	S	-	-	-	-
19	G1	31	J3	M1	37	40	P1	VSSA	S	-	-	-	-
-	-	-	-	N1	-	-	N1	VREF-	S	-	-	-	-
20	_(6)	32	L2	P1	38	41	M1	VREF+	S	-	-	-	-
21	H1	33	L1	R1	39	42	L1	VDDA	S	-	-	-	-
22	G2	34	J5	N3	40	43	N5 ⁽⁴⁾	PA0- WKUP (PA0)	I/O	FT_a	-	TIM2_CH1/TIM2_ETR, TIM5_CH1, TIM8_ETR, TIM15_BKIN, USART2_CTS_NSS, UART4_TX, SDMMC2_CMD, SAI2_SD_B, ETH_MII_CRS, EVENTOUT	ADC1_INP16, WKUP0
-	-	-	-	-	-	-	T1 ⁽⁴⁾	PA0_C	ANA	TT_a	-	-	ADC12_INN1, ADC12_INP0

Table 8. STM32H743xI pin/ball definition (continued)

			Pin/ba	all nam	е			-					
LQFP100	TFBGA100	LQFP144	UFBGA169	UFBGA176+25	LQFP176	LQFP208	TFBGA240 +25	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
23	H2	35	K4	N2	41	44	N4 ⁽⁴⁾	PA1	I/O	FT_ ha	_	TIM2_CH2, TIM5_CH2, LPTIM3_OUT, TIM15_CH1N, USART2_RTS, UART4_RX, QUADSPI_BK1_IO3, SAI2_MCK_B, ETH_MII_RX_CLK/ETH_ RMII_REF_CLK, LCD_R2, EVENTOUT	ADC1_INN16, ADC1_INP17
-	-	-	-	-	-	-	T2 ⁽⁴⁾	PA1_C	ANA	TT_a	-	-	ADC12_INP1
24	J2	36	N1	P2	42	45	N3	PA2	I/O	FT_a	-	TIM2_CH3, TIM5_CH3, LPTIM4_OUT, TIM15_CH1, USART2_TX, SAI2_SCK_B, ETH_MDIO, MDIOS_MDIO, LCD_R1, EVENTOUT	ADC12_INP14, WKUP1
-	-	-	N2	F4	43	46	N2	PH2	I/O	FT_ ha	-	LPTIM1_IN2, QUADSPI_BK2_IO0, SAI2_SCK_B, ETH_MII_CRS, FMC_SDCKE0, LCD_R0, EVENTOUT	ADC3_INP13
-	K1	-	M1	-	-	-	F5	VDD	S	-	-	-	-
-	J1	-	M7	J8	-	-	C16	VSS	S	-	-	-	-
-	-	-	М3	G4	44	47	P2	PH3	I/O	FT_ ha	-	QUADSPI_BK2_IO1, SAI2_MCK_B, ETH_MII_COL, FMC_SDNE0, LCD_R1, EVENTOUT	ADC3_INN13, ADC3_INP14
-	-	-	K3	H4	45	48	P3	PH4	I/O	FT_fa	-	I2C2_SCL, LCD_G5, OTG_HS_ULPI_NXT, LCD_G4, EVENTOUT	ADC3_INN14, ADC3_INP15
-	-	-	L3	J4	46	49	P4	PH5	I/O	FT_fa	-	I2C2_SDA, SPI5_NSS, FMC_SDNWE, EVENTOUT	ADC3_INN15, ADC3_INP16
25	K2	37	N3	R2	47	50	U2	PA3	I/O	FT_ ha	-	TIM2_CH4, TIM5_CH4, LPTIM5_OUT, TIM15_CH2, USART2_RX, LCD_B2, OTG_HS_ULPI_D0, ETH_MII_COL, LCD_B5, EVENTOUT	ADC12_INP15

Table 8. STM32H743xl pin/ball definition (continued)

			Pin/ba	all nam	e							continueuy	
LQFP100	TFBGA100	LQFP144	UFBGA169	UFBGA176+25	LQFP176	LQFP208	TFBGA240 +25	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
26	-	38	G2	K6	-	51	F2 ⁽³⁾	VSS	S	-	-	-	-
-	-	-	-	L4	48	-	-	VSS	S	-	-	-	-
27	-	39	-	K4	49	52	G5	VDD	S	-	-	-	-
28	G3	40	H6	N4	50	53	U3	PA4	I/O	TT_a	-	TIM5_ETR, SPI1_NSS/I2S1_WS, SPI3_NSS/I2S3_WS, USART2_CK, SPI6_NSS, OTG_HS_SOF, DCMI_HSYNC, LCD_VSYNC, EVENTOUT	ADC12_INP18, DAC1_OUT1
29	H3	41	L4	P4	51	54	Т3	PA5	I/O	TT_ ha	-	TIM2_CH1/TIM2_ETR, TIM8_CH1N, SPI1_SCK/I2S1_CK, SPI6_SCK, OTG_HS_ULPI_CK, LCD_R4, EVENTOUT	ADC12_INN18, ADC12_INP19, DAC1_OUT2
30	J3	42	K5	P3	52	55	R3	PA6	I/O	FT_a	-	TIM1_BKIN, TIM3_CH1, TIM8_BKIN, SPI1_MISO/I2S1_SDI, SPI6_MISO, TIM13_CH1, TIM8_BKIN_COMP12, MDIOS_MDC, TIM1_BKIN_COMP12, DCMI_PIXCLK, LCD_G2, EVENTOUT	ADC12_INP3
31	КЗ	43	J6	R3	53	56	R5	PA7	I/O	TT_a	-	TIM1_CH1N, TIM3_CH2, TIM8_CH1N, SPI1_MOSI/I2S1_SDO, SPI6_MOSI, TIM14_CH1, ETH_MII_RX_DV/ETH_R MII_CRS_DV, FMC_SDNWE, EVENTOUT	ADC12_INN3, ADC12_INP7, OPAMP1_VINM
32	G4	44	K6	N5	54	57	T4	PC4	I/O	TT_a	-	DFSDM_CKIN2, I2S1_MCK, SPDIFRX_IN2, ETH_MII_RXD0/ETH_R MII_RXD0, FMC_SDNE0, EVENTOUT	ADC12_INP4, OPAMP1_ VOUT, COMP_1_INM

Table 8. STM32H743xI pin/ball definition (continued)

			Pin/ba	ill nam	е								
LQFP100	TFBGA100	LQFP144	UFBGA169	UFBGA176+25	LQFP176	LQFP208	TFBGA240 +25	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
33	H4	45	N5	P5	55	58	U4	PC5	I/O	TT_a	-	SAI1_D3, DFSDM_DATIN2, SPDIFRX_IN3, SAI4_D3, ETH_MII_RXD1/ETH_R MII_RXD1, FMC_SDCKE0, COMP_1_OUT, EVENTOUT	ADC12_INN4, ADC12_INP8, OPAMP1_ VINM
-	-	-	N4	-	-	59	G13	VDD	S	-	-	-	-
-	-	-	H12	J9	-	60	G16	VSS	S	-	-	-	-
34	J4	46	M5	R5	56	61	U5	PB0	I/O	FT_a	-	TIM1_CH2N, TIM3_CH3, TIM8_CH2N, DFSDM_CKOUT, UART4_CTS, LCD_R3, OTG_HS_ULPI_D1, ETH_MII_RXD2, LCD_G1, EVENTOUT	ADC12_INN5, ADC12_INP9, OPAMP1_VINP, COMP_1_INP
35	K4	47	L5	R4	57	62	T5	PB1	I/O	TT_u	-	TIM1_CH3N, TIM3_CH4, TIM8_CH3N, DFSDM_DATIN1, LCD_R6, OTG_HS_ULPI_D2, ETH_MII_RXD3, LCD_G0, EVENTOUT	ADC12_INP5, COMP_1_INM
36	G5	48	L6	M6	58	63	R6	PB2	I/O	FT_ ha	-	SAI1_D1, DFSDM_CKIN1, SAI1_SD_A, SPI3_MOSI/I2S3_SDO, SAI4_SD_A, QUADSPI_CLK, SAI4_D1, ETH_TX_ER, EVENTOUT	COMP_1_INP, RTC_OUT
-	-	-	-	-	-	64	P5	PI15	I/O	FT	-	LCD_G2, LCD_R0, EVENTOUT	-
-	-	-	J4	-	-	65	N6	PJ0	I/O	FT	-	LCD_R7, LCD_R1, EVENTOUT	-
-	-	-	H5	-	-	66	P6	PJ1	I/O	FT	-	LCD_R2, EVENTOUT	-
-	-	-	-	-	-	67	Т6	PJ2	I/O	FT	-	LCD_R3, EVENTOUT	-
-	-	-	-	-	-	68	U6	PJ3	I/O	FT	-	LCD_R4, EVENTOUT	-
-	-	-	-	-	-	69	U7	PJ4	I/O	FT	-	LCD_R5, EVENTOUT	-
-	-	49	M6	R6	59	70	Τ7	PF11	I/O	FT_a	-	SPI5_MOSI, SAI2_SD_B, FMC_SDNRAS, DCMI_D12, EVENTOUT	ADC1_INP2

Table 8. STM32H743xI pin/ball definition (continued)

			Pin/ba	ll nam	e								
LQFP100	TFBGA100	LQFP144	UFBGA169	UFBGA176+25	LQFP176	LQFP208	TFBGA240 +25	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	50	N6	P6	60	71	R7	PF12	I/O	FT_ ha	-	FMC_A6, EVENTOUT	ADC1_INN2, ADC1_INP6
-	-	51	M11	M8	61	72	J3	VSS	S	-	-	-	-
-	-	52	-	N8	62	73	H5	VDD	S	-	-	-	-
-	-	53	G7	N6	63	74	P7	PF13	I/O	FT_ ha	-	DFSDM_DATIN6, I2C4_SMBA, FMC_A7, EVENTOUT	ADC2_INP2
-	-	54	H7	R7	64	75	P8	PF14	I/O	FT_ fha	-	DFSDM_CKIN6, I2C4_SCL, FMC_A8, EVENTOUT	ADC2_INN2, ADC2_INP6
-	-	55	J7	P7	65	76	R9	PF15	I/O	FT_fh	-	I2C4_SDA, FMC_A9, EVENTOUT	-
-	-	56	K7	N7	66	77	Т8	PG0	I/O	FT_h	-	FMC_A10, EVENTOUT	-
-	-	-	M2	F6	-	-	J16	VSS	S	-	-	-	-
-	-	-	A10	-	-	-	H13	VDD	S	-	-	-	-
-	-	57	L7	M7	67	78	U8	PG1	I/O	TT_h	-	FMC_A11, EVENTOUT	OPAMP2_ VINM
37	H5	58	G8	R8	68	79	U9	PE7	I/O	TT_ ha	-	TIM1_ETR, DFSDM_DATIN2, UART7_RX, QUADSPI_BK2_IO0, FMC_D4/FMC_DA4, EVENTOUT	OPAMP2_ VOUT, COMP_2_INM
38	J5	59	H8	P8	69	80	Т9	PE8	I/O	TT_ ha	-	TIM1_CH1N, DFSDM_CKIN2, UART7_TX, QUADSPI_BK2_IO1, FMC_D5/FMC_DA5, COMP_2_OUT, EVENTOUT	OPAMP2_ VINM
39	K5	60	J8	P9	70	81	P9	PE9	I/O	TT_ ha	-	TIM1_CH1, DFSDM_CKOUT, UART7_RTS, QUADSPI_BK2_IO2, FMC_D6/FMC_DA6, EVENTOUT	OPAMP2_VINP, COMP_2_INP
-	-	61	C12	M9	71	82	J17	VSS	S	-	-	-	-
-	-	62	C13	N9	72	83	J13	VDD	S	-	-	-	-

Table 8. STM32H743xI pin/ball definition (continued)

			Pin/ba	ill nam	e								
LQFP100	TFBGA100	LQFP144	UFBGA169	UFBGA176+25	LQFP176	LQFP208	TFBGA240 +25	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
40	G6	63	M8	R9	73	84	N9	PE10	I/O	FT_ ha	-	TIM1_CH2N, DFSDM_DATIN4, UART7_CTS, QUADSPI_BK2_IO3, FMC_D7/FMC_DA7, EVENTOUT	COMP_2_INM
41	H6	64	N8	P10	74	85	P10	PE11	I/O	FT_ ha	-	TIM1_CH2, DFSDM_CKIN4, SPI4_NSS, SAI2_SD_B, FMC_D8/FMC_DA8, LCD_G3, EVENTOUT	COMP_2_INP
42	J6	65	L8	R10	75	86	R10	PE12	I/O	FT_h	-	TIM1_CH3N, DFSDM_DATIN5, SPI4_SCK, SAI2_SCK_B, FMC_D9/FMC_DA9, COMP_1_OUT, LCD_B4, EVENTOUT	-
43	K6	66	K8	N11	76	87	T10	PE13	I/O	FT_h	-	TIM1_CH3, DFSDM_CKIN5, SPI4_MISO, SAI2_FS_B, FMC_D10/FMC_DA10, COMP_2_OUT, LCD_DE, EVENTOUT	-
-	-	-	L12	F7	-	-	K15	VSS	S	-	-	-	-
-	-	-	H13	-	-	-	K13	VDD	s	-	I	-	-
44	G7	67	J ð	P11	77	88	U10	PE14	I/O	FT_h	-	TIM1_CH4, SPI4_MOSI, SAI2_MCK_B, FMC_D11/FMC_DA11, LCD_CLK, EVENTOUT	-
45	H7	68	N9	R11	78	89	R11	PE15	I/O	FT_h	-	TIM1_BKIN, HDMITIM1_BKIN, FMC_D12/FMC_DA12, TIM1_BKIN_COMP12, LCD_R7, EVENTOUT	-
46	J7	69	L9	R12	79	90	P11	PB10	I/O	FT_f	-	TIM2_CH3, HRTIM_SCOUT, LPTIM2_IN1, I2C2_SCL, SPI2_SCK/I2S2_CK, DFSDM_DATIN7, USART3_TX, QUADSPI_BK1_NCS, OTG_HS_ULPI_D3, ETH_MII_RX_ER, LCD_G4, EVENTOUT	-

Table 8. STM32H743xl pin/ball definition (continued)

			Pin/ba	all nam	е								
LQFP100	TFBGA100	LQFP144	UFBGA169	UFBGA176+25	LQFP176	LQFP208	TFBGA240 +25	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
47	K7	70	M9	R13	80	91	P12	PB11	I/O	FT_f	_	TIM2_CH4, HRTIM_SCIN, LPTIM2_ETR, I2C2_SDA, DFSDM_CKIN7, USART3_RX, OTG_HS_ULPI_D4, ETH_MII_TX_EN/ETH_R MII_TX_EN, LCD_G5, EVENTOUT	-
48	F8	71	N10	M10	81	92	U11	VCAP1	S	-	-	-	-
49	E4	-	-	K7	-	93	L15	VSS	S	-	-	-	-
-	-	-	M10	-	-	-	U12	VDDLDO1	s	-	-	-	-
50	-	72	M1	N10	82	94	L13	VDD	S	-	-	-	-
-	-	-	-	-	-	95	R12	PJ5	I/O	FT	-	LCD_R6, EVENTOUT	-
-	-	-	-	M11	83	96	T11	PH6	I/O	FT	-	TIM12_CH1, I2C2_SMBA, SPI5_SCK, ETH_MII_RXD2, FMC_SDNE1, DCMI_D8, EVENTOUT	-
-	-	-	-	N12	84	97	U13	PH7	I/O	FT_fa	-	I2C3_SCL, SPI5_MISO, ETH_MII_RXD3, FMC_SDCKE1, DCMI_D9, EVENTOUT	-
-	-	-	-	M12	85	98	T13	PH8	I/O	FT_fh a	-	TIM5_ETR, I2C3_SDA, FMC_D16, DCMI_HSYNC, LCD_R2, EVENTOUT	-
-	-	-	-	F8	-	-	M15	VSS	S	-	-	-	-
-	-	-	L13	-	-	-	M13	VDD	S	-	-	-	-
-	-	-	-	M13	86	99	R13	PH9	I/O	FT_h	-	TIM12_CH2, I2C3_SMBA, FMC_D17, DCMI_D0, LCD_R3, EVENTOUT	-
-	-	-	K9	L13	87	100	P13	PH10	I/O	FT_h	-	TIM5_CH1, I2C4_SMBA, FMC_D18, DCMI_D1, LCD_R4, EVENTOUT	-
-	-	-	L10	L12	88	101	P14	PH11	I/O	FT_fh	-	TIM5_CH2, I2C4_SCL, FMC_D19, DCMI_D2, LCD_R5, EVENTOUT	-

Table 8. STM32H743xI pin/ball definition (continued)

			Pin/ba	ll nam								continued)	
LQFP100	TFBGA100	LQFP144	UFBGA169	UFBGA176+25	LQFP176	LQFP208	TFBGA240 +25	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	K10	K12	89	102	R14	PH12	I/O	FT_fh	-	TIM5_CH3, I2C4_SDA, FMC_D20, DCMI_D3, LCD_R6, EVENTOUT	-
-	-	-	-	H12	90	-	N16	VSS	S	-	-	-	-
-	-	-	N11	J12	91	103	P17	VDD	S	-	-	-	-
51	К8	73	N12	P12	92	104	T14	PB12	I/O	FT_u	-	TIM1_BKIN, I2C2_SMBA, SPI2_NSS/I2S2_WS, DFSDM_DATIN1, USART3_CK, CAN2_RX, OTG_HS_ULPI_D5, ETH_MII_TXD0/ETH_RM II_TXD0, OTG_HS_ID, TIM1_BKIN_COMP12, UART5_RX, EVENTOUT	
52	J8	74	L11	P13	93	105	U14	PB13	I/O	FT_u	-	TIM1_CH1N, LPTIM2_OUT, SPI2_SCK/I2S2_CK, DFSDM_CKIN1, USART3_CTS_NSS, CAN2_TX, OTG_HS_ULPI_D6, ETH_MII_TXD1/ETH_RM II_TXD1, UART5_TX, EVENTOUT	OTG_HS_ VBUS
53	H10	75	N13	R14	94	106	U15	PB14	I/O	FT_u	_	TIM1_CH2N, TIM12_CH1, TIM8_CH2N, USART1_TX, SPI2_MISO/I2S2_SDI, DFSDM_DATIN2, USART3_RTS, UART4_RTS, SDMMC2_D0, OTG_HS_DM, EVENTOUT	-
54	G10	76	M13	R15	95	107	T15	PB15	I/O	FT_u	-	RTC_REFIN, TIM1_CH3N, TIM12_CH2, TIM8_CH3N, USART1_RX, SPI2_MOSI/I2S2_SDO, DFSDM_CKIN2, UART4_CTS, SDMMC2_D1, OTG_HS_DP, EVENTOUT	-

Table 8. STM32H743xI pin/ball definition (continued)

			Pin/ba	all nam	e								
LQFP100	TFBGA100	LQFP144	UFBGA169	UFBGA176+25	LQFP176	LQFP208	TFBGA240 +25	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
55	K9	77	M12	P15	96	108	U16	PD8	I/O	FT_h	-	DFSDM_CKIN3, SAI3_SCK_B, USART3_TX, SPDIFRX_IN1, FMC_D13/FMC_DA13, EVENTOUT	-
56	Jð	78	K11	P14	97	109	T17	PD9	I/O	FT_h	-	DFSDM_DATIN3, SAI3_SD_B, USART3_RX, CAN2_RXFD, FMC_D14/FMC_DA14, EVENTOUT	-
57	H9	79	K12	N15	98	110	T16	PD10	I/O	FT_h	-	DFSDM_CKOUT, SAI3_FS_B, USART3_CK, CAN2_TXFD, FMC_D15/FMC_DA15, LCD_B3, EVENTOUT	-
-	-	-	N7	-	-	-	N12	VDD	S	-	-	-	-
-	-	-	-	F9	-	-	U17	VSS	S	-	-	-	-
58	G9	80	J10	N14	99	111	R15	PD11	I/O	FT_h	-	LPTIM2_IN2, I2C4_SMBA, USART3_CTS_NSS, QUADSPI_BK1_IO0, SAI2_SD_A, FMC_A16, EVENTOUT	-
59	K10	81	K13	N13	100	112	R16	PD12	I/O	FT_fh	-	LPTIM1_IN1, TIM4_CH1, LPTIM2_IN1, I2C4_SCL, USART3_RTS, QUADSPI_BK1_IO1, SAI2_FS_A, FMC_A17, EVENTOUT	-
60	J10	82	J11	M15	101	113	R17	PD13	I/O	FT_fh	-	LPTIM1_OUT, TIM4_CH2, I2C4_SDA, QUADSPI_BK1_IO3, SAI2_SCK_A, FMC_A18, EVENTOUT	-
-	-	83	-	K8	102	114	T12	VSS	S	-	-	-	-
-	-	84	-	J13	103	115	N11	VDD	S	-	-	-	-
61	H8	85	J13	M14	104	116	P16	PD14	I/O	FT_h	-	TIM4_CH3, SAI3_MCLK_B, UART8_CTS, FMC_D0/FMC_DA0, EVENTOUT	-

Table 8. STM32H743xI pin/ball definition (continued)

			Pin/ba	all nam								continued)	
LQFP100	TFBGA100	LQFP144	UFBGA169	UFBGA176+25	LQFP176	LQFP208	TFBGA240 +25	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
62	G8	86	J12	L14	105	117	P15	PD15	I/O	FT_h	-	TIM4_CH4, SAI3_MCLK_A, UART8_RTS, FMC_D1/FMC_DA1, EVENTOUT	-
-	-	-	-	-	-	118	N15	PJ6	I/O	FT	-	TIM8_CH2, LCD_R7, EVENTOUT	-
-	-	-	-	-	-	119	N14	PJ7	I/O	FT	-	TRGIN, TIM8_CH2N, LCD_G0, EVENTOUT	-
-	-	-	-	-	-	-	N10	VDD	S		-		-
-	-	-	-	F10	-	-	R8	VSS	S		-		-
-	-	-	-	-	-	120	N13	PJ8	I/O	FT	-	TIM1_CH3N, TIM8_CH1, UART8_TX, LCD_G1, EVENTOUT	-
-	-	-	-	-	-	121	M14	PJ9	I/O	FT	-	TIM1_CH3, TIM8_CH1N, UART8_RX, LCD_G2, EVENTOUT	-
-	-	-	-	-	-	122	L14	PJ10	I/O	FT	-	TIM1_CH2N, TIM8_CH2, SPI5_MOSI, LCD_G3, EVENTOUT	-
-	-	-	-	-	-	123	K14	PJ11	I/O	FT	-	TIM1_CH2, TIM8_CH2N, SPI5_MISO, LCD_G4, EVENTOUT	-
-	-	-	-	-	-	124	N8	VDD	S		-		-
-	-	-	-	G6	-	125	U1	VSS	S	-	-	-	-
-	-	-	-	-	-	-	N17 (1)	NC	-	-	-	-	-
-	-	-	-	-	-	-	M16 (1)	NC	-	-	-	-	-
-	-	-	-	-	-	-	M17 (1)	NC	-	-	-	-	-
-	-	-	-	-	-	-	L7	VSS	S	-	-	-	-
-	-	-	-	-	-	-	L16 ⁽¹⁾	NC	-	-	-	-	-
-	-	-	-	-	-	-	L17 ⁽¹⁾	NC	-	-	-	-	-
-	-	-	-	-	-	-	K16 (1)	NC	-	-	-	-	-
-	-	-	-	-	-	-	K17 (1)	NC	-	-	-	-	-
-	-	-	-	-	-	-	L8	VSS	S	-	-	-	-

Table 8. STM32H743xI pin/ball definition (continued)

op for an and by and				Pin/ba	all nam								continueuy	
- - - 126 J14 PK0 I/0 FT - SPE_SCK_LOD_GS, EVENTOUT - - - 127 J15 PK1 I/0 FT - SPE_SCK_LOD_GS, EVENTOUT - - - 127 J15 PK1 I/0 FT - SPE_SCK_LOD_GS, EVENTOUT - - - 128 H17 PK2 I/0 FT - TIM1_BKIN,TIM8_BKIN, COMP12, ICD_G7, EVENTOUT - - 87 H9 L15 106 128 H16 PG2 I/0 FT_h - TIM1_BKIN,COMP12, ICD_G7, EVENTOUT - - 87 H9 L15 106 129 H16 PG2 I/0 FT_h - TIM8_BKIN, COMP12, ICD_G7, EVENTOUT - - 88 H10 K15 107 130 H15 PG3 I/0 FT_h - TIM8_BKIN, COMP12, ICD_G7, EVENTOUT - - - - 67 - - VS S - - - -	LQFP100	TFBGA100	LQFP144	UFBGA169	UFBGA176+25	LQFP176	LQFP208	TFBGA240 +25	(function after	Pin type	I/O structure	Notes	Alternate functions	
- - - - 127 J15 PK1 I/O FT - SPI5_NSS_LCD_G6, EVENTOUT - - - - - 128 H17 PK2 I/O FT - SPI5_NSS_LCD_G6, EVENTOUT - - - - - - 128 H17 PK2 I/O FT - TIM1_BKIN_TIM8_BKIN_COMP12, TIM1_BKIN_COMP12, FVENTOUT - - - 87 H9 L15 106 129 H16 PG2 I/O FT_h - TIM8_BKIN_COMP12, FVENTOUT - - - 88 H10 K15 107 130 H15 PG3 I/O FT_h - TIM8_BKIN2_COMP12, FVENTOUT - - - 67 - - VSS S - - - - - - 67 - - N7 VDD S - - - - - - - - - - - - - - - <	-	-	-	-	-	-	126	J14	PK0	I/O	FT	-	SPI5_SCK, LCD_G5,	-
- - - - 128 H17 PK2 I/O FT - TIM8_BKIN_COMP12, TIM1_BKIN_COMP12, LCD_G7_EVENTOUT - - 87 H9 L15 106 129 H16 PG2 I/O FT_h - TIM8_BKIN_COMP12, TIM8_BKIN_COMP12, FMC_A12_EVENTOUT - - 88 H10 K15 107 130 H15 PG3 I/O FT_h - TIM8_BKIN_COMP12, TIM8_BKIN_COMP12, FMC_A12_EVENTOUT - - - 67 - - VSS S - - - - - G7 - - N7 VDD S - - - - - 67 - N7 VDD S -	-	-	-	-	-	-	127	J15	PK1	I/O	FT	-	SPI5_NSS, LCD_G6,	-
- 87 H9 L15 106 129 H16 PG2 I/O FT_h - TIM8_BKIN_COMP12, FMC_A12_EVENTOUT - - - 88 H10 K15 107 130 H15 PG3 I/O FT_h - TIM8_BKIN_COMP12, FMC_A13_EVENTOUT - - - - G7 - - VSS S - - - - - - G7 - - N7 VDD S - - - - - - - N7 VDD S - - - - - - 89 F8 K14 108 131 H14 PG4 I/O FT_h - TIM1_BKIN2,	-	-	-	-	-	-	128	H17	PK2	I/O	FT	-	TIM8_BKIN_COMP12, TIM1_BKIN_COMP12,	-
- 88 H10 K15 107 130 H15 PG3 I/O FT_h - TIM8_BKIN2_COMP12, FMC_A13, EVENTOUT - - - - G7 - - VSS S - - - - - - - - - N7 VDD S - - - - - - - - - N7 VDD S - - - - - - 89 F8 K14 108 131 H14 PG4 I/O FT_h - TIM1_BKIN2_COMP12, FMC_BA0, EVENTOUT - - 90 H11 K13 109 132 G14 PG5 I/O FT_h - TIM1_END_COMP12, FMC_BA1, EVENTOUT - - 90 H11 K13 109 132 G14 PG5 I/O FT_h - TIM1_END_COMP12, FMC_BA1, EVENTOUT - - 91 G9 J15 110 133 G15 PG6 I/O </td <td>-</td> <td>-</td> <td>87</td> <td>H9</td> <td>L15</td> <td>106</td> <td>129</td> <td>H16</td> <td>PG2</td> <td>I/O</td> <td>FT_h</td> <td>-</td> <td>TIM8_BKIN_COMP12,</td> <td>-</td>	-	-	87	H9	L15	106	129	H16	PG2	I/O	FT_h	-	TIM8_BKIN_COMP12,	-
- - - - N7 VDD S - - - - - - - 89 F8 K14 108 131 H14 PG4 I/O FT_h - TIM1_BKIN2_COMP12, FMC_A14/FMC_BA0, EVENTOUT - - - 90 H11 K13 109 132 G14 PG5 I/O FT_h - TIM1_BKIN2_COMP12, FMC_A14/FMC_BA0, EVENTOUT - - - 90 H11 K13 109 132 G14 PG5 I/O FT_h - TIM1_ETR, FMC_A13/FMC_BA1, EVENTOUT - - 91 G9 J15 110 133 G15 PG6 I/O FT_h - TIM1_ETR, FMC_A13/FMC_BA1, EVENTOUT - - 91 G9 J15 110 133 G15 PG6 I/O FT_h - TIM1_EN, HRTIM_CHE1, QUADSPI_EN1, MCS, FMC_NE3, DCMI_D12, LCD_CR, EVENTOUT - - 92 G10 J14 111 134 F16 PG7 I/O FT_h - HRTIM_CHE2, SAI_MCL	-	-	88	H10	K15	107	130	H15	PG3	I/O	FT_h	-	TIM8_BKIN2_COMP12,	-
- - 89 F8 K14 108 131 H14 PG4 I/O FT_h - TIM1_BKIN2, TIM1_BKIN2, COMP12, FMC_A14/FMC_BA0, EVENTOUT - - - 90 H11 K13 109 132 G14 PG5 I/O FT_h - TIM1_BKIN2, TIM1_BKIN2, FMC_A14/FMC_BA0, EVENTOUT - - - 90 H11 K13 109 132 G14 PG5 I/O FT_h - TIM1_ETR, FMC_A15/FMC_BA1, EVENTOUT - - 91 G9 J15 110 133 G15 PG6 I/O FT_h - TIM1_BKIN, HRTIM_CHE1, QUADSPI_BK1_NCS, FMC_NE3, DCMI_D12, LCD_R7, EVENTOUT - - 92 G10 J14 111 134 F16 PG7 I/O FT_h - HRTIM_CHE2, USART6_CK, FMC_INT, DCMI_D13, LCD_CLK, EVENTOUT - - 93 G11 H14 112 135 F15 PG8 I/O FT_h - TIM8_ETR, SPI6_NSS, USART6_K, FMC_INT, DCMI_D13, LCD_CLK, LCD_G7, EVENTOUT -	-	-	-	-	G7	-	-	-	VSS	S	-	-	-	-
- 89 F8 K14 108 131 H14 PG4 I/O FT_h - TIM1_BKIN2_COMP12, FMC_A14/FMC_BA0, EVENTOUT - - 90 H11 K13 109 132 G14 PG5 I/O FT_h - TIM1_BKIN2_COMP12, FMC_A14/FMC_BA0, EVENTOUT - - 90 H11 K13 109 132 G14 PG5 I/O FT_h - TIM1_BKIN2_COMP12, FMC_A14/FMC_BA0, EVENTOUT - - 90 H11 K13 109 132 G14 PG5 I/O FT_h - TIM1_BKIN, FMC_A15/FMC_BA1, EVENTOUT - 91 G9 J15 110 133 G15 PG6 I/O FT_h - TIM17_BKIN, HRTIM_CHE1, QUADSPI_BK1_NCS, FMC_NE3, OUADSPI_BK1_NCS, ICD_GR, EVENTOUT - - - 92 G10 J14 111 134 F16 PG7 I/O FT_h - HRTIM_CHE2, SA14/FMC_BAS, USART6_CK, FMC_INT, DCMI_DCHL, A, USART6_CK, FMC_INT, DCMI_DCHL, A, USART6_CK, FMC_INT, DCMI_D	-	-	-	-	-	-	-	N7	VDD	S	-	-	-	-
- 90 H11 K13 109 132 G14 PG5 I/O FT_h - FMC_A15/FMC_BA1, EVENTOUT - - 91 G9 J15 110 133 G15 PG6 I/O FT_h - FMC_A15/FMC_BA1, EVENTOUT - - 91 G9 J15 110 133 G15 PG6 I/O FT_h - FMC_A15/FMC_BA1, EVENTOUT - - 91 G9 J15 110 133 G15 PG6 I/O FT_h - FMC_A15/FMC_BA1, EVENTOUT - - 91 G9 J15 110 133 G15 PG6 I/O FT_h - FMC_A15/FMC_BA1, QUADSPI_BK1_NCS, FMC_NE3, DCMI_D12, LCD_R7, EVENTOUT - - 92 G10 J14 111 134 F16 PG7 I/O FT_h - HRTIM_CLK_A, USART6_CK, FMC_INT, DCMI_D13, LCD_CLK, EVENTOUT - - 93 G11 H14 112 135 F15 PG8 I/O FT_h - TIM8_ETR, SPI6_NSS, USART6_RTS, SPDIFRX_IN2	-	-	89	F8	K14	108	131	H14	PG4	I/O	FT_h	-	TIM1_BKIN2_COMP12, FMC_A14/FMC_BA0,	-
- 91 G9 J15 110 133 G15 PG6 I/O FT_h - HRTIM_CHE1, QUADSPI_BK1_NCS, FMC_NE3, DCMI_D12, LCD_R7, EVENTOUT - - - 92 G10 J14 111 134 F16 PG7 I/O FT_h - HRTIM_CHE2, SAI1_MCLK_A, USART6_CK, FMC_INT, DCMI_D13, LCD_CLK, EVENTOUT - - - 93 G11 H14 112 135 F15 PG8 I/O FT_h - HRTIM_CHE2, SAI1_MCLK_A, USART6_RTS, SPDIFRX_IN2, ETH_PPS_OUT, FMC_SDCLK, LCD_G7, EVENTOUT -	-	-	90	H11	K13	109	132	G14	PG5	I/O	FT_h	-	FMC_A15/FMC_BA1,	-
- 92 G10 J14 111 134 F16 PG7 I/O FT_h - SAI1_MCLK_A, USART6_CK, FMC_INT, DCMI_D13, LCD_CLK, EVENTOUT - - - 93 G11 H14 112 135 F15 PG8 I/O FT_h - SAI1_MCLK_A, USART6_CK, FMC_INT, DCMI_D13, LCD_CLK, EVENTOUT - - 93 G11 H14 112 135 F15 PG8 I/O FT_h - SAI1_MCLK_A, USART6_CK, FMC_INT, USART6_RTS, SPDIFRX_IN2, ETH_PPS_OUT, FMC_SDCLK, LCD_G7, EVENTOUT -	-	-	91	G9	J15	110	133	G15	PG6	I/O	FT_h	-	HRTIM_CHE1, QUADSPI_BK1_NCS, FMC_NE3, DCMI_D12,	-
93 G11 H14 112 135 F15 PG8 I/O FT_h - USART6_RTS, SPDIFRX_IN2, ETH_PPS_OUT, FMC_SDCLK, LCD_G7, EVENTOUT	-	-	92	G10	J14	111	134	F16	PG7	I/O	FT_h	-	SAI1_MCLK_A, USART6_CK, FMC_INT, DCMI_D13, LCD_CLK,	-
94 - G12 113 136 - VSS S	-	-	93	G11	H14	112	135	F15	PG8	I/O	FT_h	-	USART6_RTS, SPDIFRX_IN2, ETH_PPS_OUT, FMC_SDCLK, LCD_G7,	-
	-	-	94	-	G12	113	136	-	VSS	S	-	-	-	-

Table 8. STM32H743xI pin/ball definition (continued)

			Pin/ba	ill nam				•				continueuj	
LQFP100	TFBGA100	LQFP144	UFBGA169	UFBGA176+25	LQFP176	LQFP208	TFBGA240 +25	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	G12	-	-	-	G17	VDD50 USB	S	-	-	-	-
-	F6	95	G13	H13	114	137	F17	VDD33 USB	S	-	-	-	-
-	-	-	-	-	-	-	M5	VDD	S	-	I	-	-
63	F10	96	F9	H15	115	138	F14	PC6	I/O	FT_h	-	HRTIM_CHA1, TIM3_CH1, TIM8_CH1, DFSDM_CKIN3, I2S2_MCK, USART6_TX, SDMMC1_D0DIR, FMC_NWAIT, SDMMC2_D6, SDMMC1_D6, DCMI_D0, LCD_HSYNC, EVENTOUT	SWPMI_IO
64	E10	97	F10	G15	116	139	F13	PC7	I/O	FT_h	-	TRGIO, HRTIM_CHA2, TIM3_CH2, TIM8_CH2, DFSDM_DATIN3, I2S3_MCK, USART6_RX, SDMMC1_D123DIR, FMC_NE1, SDMMC2_D7, SWPMI_TX, SDMMC1_D7, DCMI_D1, LCD_G6, EVENTOUT	-
65	F9	98	F12	G14	117	140	E13	PC8	I/O	FT_h	-	TRACED1, HRTIM_CHB1, TIM3_CH3, TIM8_CH3, USART6_CK, UART5_RTS, FMC_NE2/FMC_NCE, SWPMI_RX, SDMMC1_D0, DCMI_D2, EVENTOUT	-
66	E9	99	F11	F14	118	141	E14	PC9	I/O	FT_fh	-	MCO2, TIM3_CH4, TIM8_CH4, I2C3_SDA, I2S_CKIN, UART5_CTS, QUADSPI_BK1_IO0, LCD_G3, SWPMI_SUSPEND, SDMMC1_D1, DCMI_D3, LCD_B2, EVENTOUT	-
-	-	-	-	G8	-	-	-	VSS	S	-	-		-
-	-	-	-	-	-	-	L5	VDD	S	-	-		-

Table 8. STM32H743xI pin/ball definition (continued)

			Pin/ba	all nam	e								
LQFP100	TFBGA100	LQFP144	UFBGA169	UFBGA176+25	LQFP176	LQFP208	TFBGA240 +25	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
67	D9	100	E12	F15	119	142	E15	PA8	I/O	FT_ fha	_	MCO1, TIM1_CH1, HRTIM_CHB2, TIM8_BKIN2, I2C3_SCL, USART1_CK, OTG_FS_SOF, UART7_RX, TIM8_BKIN2_COMP12, LCD_B3, LCD_R6, EVENTOUT	-
68	C9	101	E11	E15	120	143	D15	PA9	I/O	FT_u	-	TIM1_CH2, HRTIM_CHC1, LPUART1_TX, I2C3_SMBA, SPI2_SCK/I2S2_CK, USART1_TX, CAN1_RXFD, ETH_TX_ER, DCMI_D0, LCD_R5, EVENTOUT	OTG_FS_VBUS
69	D10	102	E10	D15	121	144	D14	PA10	I/O	FT_u	-	TIM1_CH3, HRTIM_CHC2, LPUART1_RX, USART1_RX, CAN1_TXFD, OTG_FS_ID, MDIOS_MDIO, LCD_B4, DCMI_D1, LCD_B1, EVENTOUT	-
70	C10	103	F13	C15	122	145	E17	PA11	I/O	FT_u	-	TIM1_CH4, HRTIM_CHD1, LPUART1_CTS, SPI2_NSS/I2S2_WS, UART4_RX, USART1_CTS_NSS, CAN1_RX, OTG_FS_DM, LCD_R4, EVENTOUT	-
71	B10	104	E13	B15	123	146	E16	PA12	I/O	FT_u	-	TIM1_ETR, HRTIM_CHD2, LPUART1_RTS, SPI2_SCK/I2S2_CK, UART4_TX, USART1_RTS, SAI2_FS_B, CAN1_TX, OTG_FS_DP, LCD_R5, EVENTOUT	-
72	A10	105	D11	A15	124	147	C15	PA13(JTM S-SWDIO)	I/O	FT	-	JTMS-SWDIO, EVENTOUT	-

Table 8. STM32H743xI pin/ball definition (continued)

Pin/ball name													
LQFP100	TFBGA100	LQFP144	UFBGA169	UFBGA176+25	LQFP176	LQFP208	TFBGA240 +25	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
73	E7	106	D13	F13	125	148	D17	VCAP2	S	-	-	-	-
74	E5	107	-	F12	126	149	-	VSS	S	-	-	-	-
-	-	-	D12	-	-	-	C17	VDDLDO2		-	-	-	-
75	-	108	-	G13	127	150	K5	VDD	S	-	-	-	-
-	-	-	-	E12	128	151	D16	PH13	I/O	FT_h	-	TIM8_CH1N, UART4_TX, CAN1_TX, FMC_D21, LCD_G2, EVENTOUT	-
-	-	-	-	E13	129	152	B17	PH14	I/O	FT_h	-	TIM8_CH2N, UART4_RX, CAN1_RX, FMC_D22, DCMI_D4, LCD_G3, EVENTOUT	-
-	-	-	-	D13	130	153	B16	PH15	I/O	FT_h	-	TIM8_CH3N, CAN1_TXFD, FMC_D23, DCMI_D11, LCD_G4, EVENTOUT	-
-	-	-	A13	E14	131	154	A16	PIO	I/O	FT_h	-	TIM5_CH4, SPI2_NSS/I2S2_WS, CAN1_RXFD, FMC_D24, DCMI_D13, LCD_G5, EVENTOUT	-
-	-	-	-	G9	-	-	-	VSS	S	-	-	-	-
-	-	-	B13	D14	132	155	A15	PI1	I/O	FT_h	-	TIM8_BKIN2, SPI2_SCK/I2S2_CK, TIM8_BKIN2_COMP12, FMC_D25, DCMI_D8, LCD_G6, EVENTOUT	-
-	-	-	A6	C14	133	156	B15	PI2	I/O	FT_h	-	TIM8_CH4, SPI2_MISO/I2S2_SDI, FMC_D26, DCMI_D9, LCD_G7, EVENTOUT	-
-	-	-	В7	C13	134	157	C14	PI3	I/O	FT_h	-	TIM8_ETR, SPI2_MOSI/I2S2_SDO, FMC_D27, DCMI_D10, EVENTOUT	-
-	-	-	-	D9	135	-	-	VSS	S	-	-	-	-
-	-	-	-	C9	136	158	-	VDD	S	-	-	-	-
76	A9	109	B12	A14	137	159	B14	PA14 (JTCK- SWCLK)	I/O	FT	-	JTCK-SWCLK, EVENTOUT	-

			Pin/ba	ill nam	e								
LQFP100	TFBGA100	LQFP144	UFBGA169	UFBGA176+25	LQFP176	LQFP208	TFBGA240 +25	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
77	A8	110	C11	A13	138	160	A14	PA15 (JTDI)	I/O	FT	-	JTDI, TIM2_CH1/TIM2_ETR, HRTIM_FLT1, HDMI_CEC, SPI1_NSS/I2S1_WS, SPI3_NSS/I2S3_WS, SPI6_NSS, UART4_RTS, UART7_TX, EVENTOUT	-
78	В9	111	A12	B14	139	161	A13	PC10	I/O	FT_ ha	-	HRTIM_EEV1, DFSDM_CKIN5, SPI3_SCK/I2S3_CK, USART3_TX, UART4_TX, QUADSPI_BK1_IO1, SDMMC1_D2, DCMI_D8, LCD_R2, EVENTOUT	-
79	B8	112	B11	B13	140	162	B13	PC11	I/O	FT_h	-	HRTIM_FLT2, DFSDM_DATIN5, SPI3_MISO/I2S3_SDI, USART3_RX, UART4_RX, QUADSPI_BK2_NCS, SDMMC1_D3,DCMI_D4, EVENTOUT	-
80	C8	113	A11	A12	141	163	C12	PC12	I/O	FT_h	-	TRACED3, HRTIM_EEV2, SPI3_MOSI/I2S3_SDO, USART3_CK, UART5_TX, SDMMC1_CK,DCMI_D9, EVENTOUT	-
-	-	-	-	G10	-	-	-	VSS	S	-	-	-	-
81	D8	114	D10	B12	142	164	D13	PD0	I/O	FT_h	-	DFSDM_CKIN6, SAI3_SCK_A, UART4_RX, CAN1_RX, FMC_D2/FMC_DA2, EVENTOUT	-
82	E8	115	C10	C12	143	165	E12	PD1	I/O	FT_h	-	DFSDM_DATIN6, SAI3_SD_A, UART4_TX, CAN1_TX, FMC_D3/FMC_DA3, EVENTOUT	-
83	В7	116	E9	D12	144	166	D12	PD2	I/O	FT_h	-	TRACED2, TIM3_ETR, UART5_RX, SDMMC1_CMD, DCMI_D11, EVENTOUT	-

Table 8. STM32H743xI pin/ball definition (continued)

			Pin/ba	all nam	e			-					
LQFP100	TFBGA100	LQFP144	UFBGA169	UFBGA176+25	LQFP176	LQFP208	TFBGA240 +25	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
84	C7	117	D9	D11	145	167	B12	PD3	I/O	FT_h	-	DFSDM_CKOUT, SPI2_SCK/I2S2_CK, USART2_CTS_NSS, FMC_CLK, DCMI_D5, LCD_G7, EVENTOUT	-
85	D7	118	C9	D10	146	168	A12	PD4	I/O	FT_h	-	HRTIM_FLT3, SAI3_FS_A, USART2_RTS, CAN1_RXFD, FMC_NOE, EVENTOUT	-
86	В6	119	A9	C11	147	169	A11	PD5	I/O	FT_h	-	HRTIM_EEV3, USART2_TX, CAN1_TXFD, FMC_NWE, EVENTOUT	-
-	-	120	-	D8	148	170	R4	VSS	S	-	-	-	-
-	-	121	-	C8	149	171	-	VDD	S	-	-	-	-
87	C6	122	В9	B11	150	172	B11	PD6	I/O	FT_h	_	SAI1_D1, DFSDM_CKIN4, DFSDM_DATIN1, SPI3_MOSI/I2S3_SDO, SAI1_SD_A, USART2_RX, SAI4_SD_A, CAN2_RXFD, SAI4_D1, SDMMC2_CK, FMC_NWAIT, DCMI_D10, LCD_B2, EVENTOUT	-
88	D6	123	D8	A11	151	173	C11	PD7	I/O	FT_h	-	DFSDM_DATIN4, SPI1_MOSI/I2S1_SDO, DFSDM_CKIN1, USART2_CK, SPDIFRX_IN0, SDMMC2_CMD, FMC_NE1, EVENTOUT	-
-	-	-	-	-	-	174	D11	PJ12	I/O	FT	-	TRGOUT, LCD_G3, LCD_B0, EVENTOUT	-
-	-	-	-	-	-	175	E10	PJ13	I/O	FT	-	LCD_B4, LCD_B1, EVENTOUT	-
-	-	-	-	-	-	176	D10	PJ14	I/O	FT	-	LCD_B2, EVENTOUT	-
-	-	-	-	-	-	177	B10	PJ15	I/O	FT	-	LCD_B3, EVENTOUT	-
-	-	-	-	H6	-	-	-	VSS	S	-	-	-	-
-	-	-	A7	-	-	-	-	VDD	S	-	-	-	-

Table 8. STM32H743xI pin/ball definition (continued)

			Pin/ba	all nam	e								
LQFP100	TFBGA100	LQFP144	UFBGA169	UFBGA176+25	LQFP176	LQFP208	TFBGA240 +25	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	124	C8	C10	152	178	A10	PG9	I/O	FT_h	-	SPI1_MISO/I2S1_SDI, USART6_RX, SPDIFRX_IN3, QUADSPI_BK2_IO2, SAI2_FS_B, FMC_NE2/FMC_NCE, DCMI_VSYNC, EVENTOUT	-
-	-	125	A8	B10	153	179	A9	PG10	I/O	FT_h	-	HRTIM_FLT5, SPI1_NSS/I2S1_WS, LCD_G3, SAI2_SD_B, FMC_NE3, DCMI_D2, LCD_B2, EVENTOUT	-
-	-	126	B8	В9	154	180	B9	PG11	I/O	FT_h	-	HRTIM_EEV4, SPI1_SCK/I2S1_CK, SPDIFRX_IN0, SDMMC2_D2, ETH_MII_TX_EN/ETH_R MII_TX_EN, DCMI_D3, LCD_B3, EVENTOUT	-
-	-	127	E8	B8	155	181	C9	PG12	I/O	FT_h	-	LPTIM1_IN1, HRTIM_EEV5, SPI6_MISO, USART6_RTS, SPDIFRX_IN1, LCD_B4, ETH_MII_TXD1/ETH_RM II_TXD1, FMC_NE4, LCD_B1, EVENTOUT	-
-	-	128	D7	A8	156	182	D9	PG13	I/O	FT_h	-	TRACED0, LPTIM1_OUT, HRTIM_EEV10, SPI6_SCK, USART6_CTS_NSS, ETH_MII_TXD0/ETH_RM II_TXD0, FMC_A24, LCD_R0, EVENTOUT	-
-	-	129	C7	A7	157	183	D8	PG14	I/O	FT_h	-	TRACED1, LPTIM1_ETR, SPI6_MOSI, USART6_TX, QUADSPI_BK2_IO3, ETH_MII_TXD1/ETH_RM II_TXD1, FMC_A25, LCD_B0, EVENTOUT	-
-	-	130	-	D7	158	184	-	VSS	S	-	-	-	-
-	-	131	-	C7	159	185	-	VDD	S	-	-	-	-

Table 8. STM32H743xI pin/ball definition (continued)

DocID030538 Rev 3

LQFP100	00			all nam									
LC	TFBGA100	LQFP144	UFBGA169	UFBGA176+25	LQFP176	LQFP208	TFBGA240 +25	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	-	-	-	186	C8	PK3	I/O	FT	-	LCD_B4, EVENTOUT	-
-	-	-	-	-	-	187	B8	PK4	I/O	FT	-	LCD_B5, EVENTOUT	-
-	-	-	-	-	-	188	A8	PK5	I/O	FT	-	LCD_B6, EVENTOUT	-
-	-	-	-	-	-	189	C7	PK6	I/O	FT	-	LCD_B7, EVENTOUT	-
-	-	-	-	-	-	190	D7	PK7	I/O	FT	-	LCD_DE, EVENTOUT	-
-	-	-	-	H7	-	-	-	VSS	S	-	-	-	-
-	-	132	E7	B7	160	191	D6	PG15	I/O	FT_h	-	USART6_CTS_NSS, FMC_SDNCAS, DCMI_D13, EVENTOUT	-
89	Α7	133	F7	A10	161	192	C6	PB3(JTDO		FT	-	JTDO/TRACESWO, TIM2_CH2, HRTIM_FLT4, SPI1_SCK/I2S1_CK, SPI3_SCK/I2S3_CK, SPI6_SCK, SDMMC2_D2, UART7_RX, EVENTOUT	-
90	A6	134	В6	A9	162	193	B7	PB4(NJTR ST)	I/O	FT	-	NJTRST, TIM16_BKIN, TIM3_CH1, HRTIM_EEV6, SPI1_MISO/I2S1_SDI, SPI3_MISO/I2S3_SDI, SPI2_NSS/I2S2_WS, SPI6_MISO, SDMMC2_D3, UART7_TX, EVENTOUT	-
91	C5	135	C6	A6	163	194	A5	PB5	I/O	FT	-	TIM17_BKIN, TIM3_CH2, HRTIM_EEV7, I2C1_SMBA, SPI1_MOSI/I2S1_SDO, I2C4_SMBA, SPI3_MOSI/I2S3_SDO, SPI6_MOSI, CAN2_RX, OTG_HS_ULPI_D7, ETH_PPS_OUT, FMC_SDCKE1, DCMI_D10, UART5_RX, EVENTOUT	-
-	-	-	-	H8	-	-	-	VSS	S	-	-	-	-

Table 8. STM32H743xI pin/ball definition (continued)

			Pin/ba	ll nam	e								
LQFP100	TFBGA100	LQFP144	UFBGA169	UFBGA176+25	LQFP176	LQFP208	TFBGA240 +25	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
92	В5	136	A5	B6	164	195	В5	PB6	I/O	FT_f	-	TIM16_CH1N, TIM4_CH1, HRTIM_EEV8, I2C1_SCL, HDMI_CEC, I2C4_SCL, USART1_TX, LPUART1_TX, CAN2_TX, QUADSPI_BK1_NCS, DFSDM_DATIN5, FMC_SDNE1, DCMI_D5, UART5_TX, EVENTOUT	-
93	A5	137	D6	B5	165	196	C5	PB7	I/O FT_fa -		-	TIM17_CH1N, TIM4_CH2, HRTIM_EEV9, I2C1_SDA, I2C4_SDA, USART1_RX, LPUART1_RX, CAN2_TXFD, DFSDM_CKIN5, FMC_NL, DCMI_VSYNC, EVENTOUT	PVD_IN
94	D5	138	E6	D6	166	197	E8	BOOT0	I	В	-	-	VPP
95	B4	139	В5	A5	167	198	D5	PB8	I/O	FT_fh	-	TIM16_CH1, TIM4_CH3, DFSDM_CKIN7, I2C1_SCL, I2C4_SCL, SDMMC1_CKIN, UART4_RX, CAN1_RX, SDMMC2_D4, ETH_MII_TXD3, SDMMC1_D4, DCMI_D6, LCD_B6, EVENTOUT	-
96	A4	140	C5	Β4	168	199	D4	PB9	I/O	FT_fh	-	TIM17_CH1, TIM4_CH4, DFSDM_DATIN7, I2C1_SDA, SPI2_NSS/I2S2_WS, I2C4_SDA, SDMMC1_CDIR, UART4_TX, CAN1_TX, SDMMC2_D5, I2C4_SMBA, SDMMC1_D5, DCMI_D7, LCD_B7, EVENTOUT	-

Table 8. STM32H743xI pin/ball definition (continued)

			Pin/ba	all nam	е								
LQFP100	TFBGA100	LQFP144	UFBGA169	UFBGA176+25	LQFP176	LQFP208	TFBGA240 +25	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
97	D4	141	D5	A4	169	200	C4	PE0	I/O	FT_h	-	LPTIM1_ETR, TIM4_ETR, HRTIM_SCIN, LPTIM2_ETR, UART8_RX, CAN1_RXFD, SAI2_MCK_A, FMC_NBL0, DCMI_D2, EVENTOUT	-
98	C4	142	D4	A3	170	201	B4	PE1	I/O	FT_h	-	LPTIM1_IN2, HRTIM_SCOUT, UART8_TX, CAN1_TXFD, FMC_NBL1, DCMI_D3, EVENTOUT	-
-	-	-	-	-	-	-	A7	VCAP3	S	-	-	-	-
99	-	-	-	D5	-	202	-	VSS	S	-	-	-	-
-	F7	143	C4	C6	171	203	E7	PDR_ON	S	-	-	-	-
-	F4	-	B4	-	-	-	A6	VDDLDO3	S	-	-	-	-
100	-	144	-	C5	172	204	-	VDD	S	-	-	-	-
-	-	-	-	D4	173	205	A4	Pl4	I/O	FT_h	-	TIM8_BKIN, SAI2_MCK_A, TIM8_BKIN_COMP12, FMC_NBL2, DCMI_D5, LCD_B4, EVENTOUT	-
-	-	-	-	C4	174	206	A3	PI5	I/O	FT_h	-	TIM8_CH1, SAI2_SCK_A, FMC_NBL3, DCMI_VSYNC, LCD_B5, EVENTOUT	-
-	-	-	A4	C3	175	207	A2	Pl6	I/O	FT_h	-	TIM8_CH2, SAI2_SD_A, FMC_D28, DCMI_D6, LCD_B6, EVENTOUT	-
-	-	-	E2	C2	176	208	B3	PI7	I/O	FT_h	-	TIM8_CH3, SAI2_FS_A, FMC_D29, DCMI_D7, LCD_B7, EVENTOUT	-
-	-	-	-	H9	-	-	-	VSS	S	-	-	-	-
-	-	-	-	K9	-	-	-	VSS	S	-	-	-	-
-	-	-	-	K10	-	-	-	VSS	S	-	-	-	-

Table 8. STM32H743xI pin/ball definition (continued)

1. This ball should remain floating.

2. This ball should not remain floating. It can be connected to VSS or VDD. It is reserved for future use.

- 3. This ball should be connected to V_{SS}.
- 4. Pxy_C and Pxy pins/balls are two separate pads (analog switch open). The analog switch is configured through a SYSCFG register. Refer to the product reference manual for a detailed description of the switch configuration bits.
- There is a direct path between Pxy_C and Pxy pins/balls, through an analog switch. Pxy alternate functions are available on Pxy_C when the analog switch is closed. The analog switch is configured through a SYSCFG register. Refer to the product reference manual for a detailed description of the switch configuration bits.
- 6. VREF+ pin, and consequently the internal voltage reference, are not available on the TFBGA100 package. On this package, this pin is double-bonded to VDDA which can be connected to an external reference. The internal voltage reference buffer is not available and must be kept disabled

	AF15	SYS	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT
	AF14	UART5/ LCD	I	LCD_R2	LCD_R1	LCD_B5	LCD_ VSYNC	LCD_R4	LCD_G2	ı	LCD_R6	LCD_R5	LCD_B1	LCD_R4	LCD_R5	ı
	AF13	TIM1/DCMI /LCD/ COMP	I	I	T		DCMI_ HSYN <u>C</u>		DCMI_PIX CLK	I	LCD_B3	DCMI_D0	DCMI_D1	ı	T	ı
	AF12	/SDMMC1/ /SDMMC1/ MDIOS/ 0TG1_FS/ LCD		ı	MDIOS_	ı	OTG_HS_ SOF	ı	TIM1_BKIN _COMP12	FMC_SDN WE	TIM8_BKIN 2_COMP12	ı	LCD_B4	ı	ı	ı
	AF11	12C4/ UART7/ SWPMI1/ TIM1/8/ DFSDM/ SDMMC2/ MDIOS/ ETH	ETH_MII_ CRS	ETH_MII_ RX_CLK/ ETH_RMII_ REF_CLK	ETH_MDIO	ETH_MII_ COL	ı	ı		ETH_MII_ RX_DV/ ETH_RMII_ CRS_DV	UART7_RX	ETH_TX_ ER		ı	ı	ı
	AF10	SAI2/4/ TIM8/ QUADSPI/ SDMMC2/ OTG1_HS/ OTG2_FS/ LCD	SAI2_SD_B	SAI2_MCK_	ı	OTG_HS_ ULPI_D0	ı	OTG_HS_ ULPI_CK	TIM8_BKIN COMP12	I	OTG_FS_ SOF	I	OTG_FS_ID	OTG_FS_ DM	OTG_FS_ DP	I
ions	64V	SAI4/ FDCAN1/2/ TIM13/14/Q UADSPI/F MC/ SDMMC2/ LCD/ SPDIFRX	SDMMC2_ CMD	QUADSPI_ BK1_IO3	-	LCD_B2	-	-	TIM13_CH	TIM14_CH	-	CAN1_RXF D	CAN1TXFD	CAN1_RX	CAN1_TX	ı
9. Port A alternate functions	84A	SPI6/SAI2/ 4/UART4/5/ 8/LPUART/ SDMMC1/S PDIFRX	UART4_TX	UART4_RX	SAI2_SCK_	-	SSN_9I9S	SPI6_SCK	SPI6_MISO	SPI6_MOSI	-	-	ı	ı	SAI2_FS_B	,
A alterna	77A	SP12/3/6/ USART1/2/ 3/6/UART7/ SDMMC1	USART2_ CTS_NSS	USART2_ RTS	USART2_ TX	USART2_ RX	USART2_ CK	-	-	ı	USART1_ CK	USART1_ TX	USART1_ RX	USART1_ CTS_NSS	USART1_ RTS	,
9. Port /	AF6	SPI2/3/SAI1/ 3/I2C4/ UART4/ DFSDM	-	ı	-	-	SPI3_NSS/ I2S3_WS	-	-		-	-	·	UART4_RX	UART4_TX	
Table	AF5	SP11/2/3/4/ 5/6/CEC	I	I		ı	SPI1_NSS/ I2S1_WS	SPI1_SCK //2S1_CK	SPI1_MISO /I2S1_SDI	SPI1_MOSI /I2S1_SDO		SPI2_SCK/ I2S2_CK	ı	SPI2_NSS /I2S2_WS	SPI2_SCK/ I2S2_CK	,
	AF4	12C1/2/3/4/ USART1/ TIM15/ LPTIM2/ DFSDM/CEC	TIM15_BKIN	TIM15_ CH1N	TIM15_CH1	TIM15_CH2					I2C3_SCL	I2C3_SMBA	ı	,		ı
	AF3	LPUART/ TIM8/ LPTIM2/3/4/ 5/HRTIM1/ DFSDM	TIM8_ETR	LPTIM3_ OUT	LPTIM4_ OUT	LPTIM5_ OUT	·	TIM8 CH1N	TIM8_BKIN	TIM8_CH1 N	TIM8_BKIN 2	LPUART1_ TX	LPUART1_ RX	LPUART1_ CTS	LPUART1_ RTS	ı
	AF2	SAI1/TIM3/ 4/5/12/ HRTIM1	TIM5_CH1	TIM5_CH2	TIM5_CH3	TIM5_CH4	TIM5_ETR	-	TIM3_CH1	TIM3_CH2	HRTIM_CH B2	HRTIM_CH C1	HRTIM_CH C2	HRTIM_CH D1	HRTIM_CH D2	,
	AF1	TIM1/2/16/1 7/LPTIM1/ HRTIM1	TIM2_CH1/ TIM2_ETR	тім2_сн2	тім2_снз	TIM2_CH4	-	TIM2_CH1/ TIM2_ETR	TIM1_BKIN	TIM1_CH1N	TIM1_CH1	TIM1_CH2	TIM1_CH3	TIM1_CH4	TIM1_ETR	
	AFO	SYS	I	I	I.					I	MCO1	I				JTMS- SWDIO
		Port	PAO	PA1	PA2	PA3	PA4	PA5	A1 PA6	PA7	PA8	PA9	PA10	PA11	PA12	PA13

57

DocID030538 Rev 3

STM32H743xI

AF15	SYS	EVENT- OUT	EVENT- OUT		AF15	SYS	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT-
AF14	UART5/ LCD		,		AF14	UART5/ LCD	LCD_G1	LCD_G0		,	,	UART5_ RX	UART5_ TX		
AF13	TIM1/DCMI /LCD/ COMP				AF13	TIM1/DCM I/LCD/ COMP				ı		DCMI_D1 0	DCMI_D5	DCMI VSYNC	
AF12	/SDMMC1/ /SDMMC1/ MDIOS/ 0TG1_FS/ LCD		,		AF12	TIM1/8/FMC /SDMMC1/ MDIOS/ OTG1_FS/ LCD	-		ı	'	'	FMC SDCKE1	FMC_SDNE	FMC_NL	
AF11	12C4/ UART7/ SWPMI1/ TIM1/8/ DFSDM/ SDMMC2/ MDIOS/ ETH		UART7_TX		AF11	12C4/ UART7/ SWPMI1/ TIM1/8/ DFSDM/ SDMMC2/ MDIOS/ ETH	ETH_MII_ RXD2	ETH_MII_ RXD3	ETH_TX_ ER	UART7_RX	UART7_TX	ETH_PPS_ OUT	DFSDM_ DATIN5	DFSDM_ CKIN5	
AF10	SAI2/4/ TIM8/ QUADSPI/ SDMMC2/ SDMMC2/ OTG1_HS/ OTG2_FS/ LCD				AF10	SAI2/4/ TIM8/ QUADSPI/ SDMMC2/ OTG1_HS/ OTG2_FS/ LCD	OTG_HS_ ULPI_D1	OTG_HS_ ULPI_D2	SAI4_D1	,	,	OTG_HS_ ULPI_D7	QUADSPI_ BK1_NCS	,	
AF9	SAI4/ SAI4/ FDCAN1/2/ TIM13/14/Q UADSPI/F MC/ SDMMC2/ LCD/ SPDIFRX		,	suo	AF9	SAI4/ FDCAN1/2/ TIM13/14/ QUADSPI/ FMC/ SDMMC2/ LCD/ SPDIFRX	LCD_R3	LCD_R6		SDMMC2_ D2	SDMMC2_ D3	CAN2_RX	CAN2_TX	CAN2_ TXFD	
AF8	SPI6/SA12/ F 4/UART4/5/ 7 1 4/UART/ 8/LPUART/ SDMMC1/S PDIFRX		UART4_ RTS	alternate functions	AF8	SPI6/SAI2/ 4/UART4/5/ 4/UART4/5/ 8/DUART/ SDMMC1/ SPDIFRX	UART4_ CTS	'	SAI4_SD_ A	SPI6_SCK	SPI6_ MISO_	SPI6_ MOSI	LPUART1_ TX	LPUART1_ RX	
AF7	SPI2/3/6/ USART1/2/ 3/6/UART7/ SDMMC1		SPI6_NSS		AF7	SPI2/3/6/ USART1/2/3 /6/UART7/S DMMC1	ı	,	SPI3_ MOSI/1253_ SDO	ı	SPI2_NSS/I 2S2_WS	SPI3_MOSI/ I2S3_SDO	USART1_ TX	USART1_ RX	
AF6	SP12/3/SA11/ 3/12C4/ UART4/ DFSDM		SPI3_NSS/	10. Port B	AF6	SPI2/3/SAI1 /3/I2C4/ UART4/ DFSDM	DFSDM_CK OUT	DFSDM_ DATIN1	SAI1_SD_A	SPI3_SCK/ I2S3_CK	SPI3_MISO/ I2S3_SDI	I2C4_SMBA	I2C4_SCL	I2C4_SDA	
AF5	SP11/2/3/4/ 5/6/CEC		SPI1_NSS/ S I2S1_WS	Table 1	AF5	SP11/2/3/4/5/ 6/CEC	,	,	1	SPI1_SCK/ I2S1_CK	SPI1_MISO/ I2S1_SDI	SPI1_MOSI/ I2S1_SD0	HDMI_CEC		
AF4	I2C1/2/3/4/ USART1/ TIM15/ LPTIM2/ DFSDM/CEC		HDMI_CEC \$		AF4	I2C1/2/3/4/ USART1/ TIM15/ LPTIM2/ DFSDM/ CEC	-		DFSDM_ CKIN1	,	,	I2C1_SMBA	I2C1_SCL	I2C1_SDA	
AF3	LPUART/ TIM8/ LPTIM2/3/4/ 5/HRTIM1/ DFSDM D		, ,		AF3	LPUART/ TIM8/ LPTIM2/3/4 /5/HRTIM1/ DFSDM	TIM8_CH2 N	TIM8_CH3	I	ı	HRTIM_EE V6	HRTIM_ EEV7	HRTIM_ EEV8	HRTIM_ EEV9	
AF2	8A11/TIM3/ 4/5/12/ HRTIM1		HRTIM_ FLT1_		AF2	SAI1/TIM3/ 4/5/12/ HRTIM1	TIM3_CH3	TIM3_CH4	SAI1_D1	HRTIM_ FLT4	TIM3_CH1	TIM3_CH2	TIM4_CH1	TIM4_CH2	
AF1	ТІМ1/2/16/1 S 7/LРТІМ1/ НRTІМ1		TIM2_CH1/ TIM2_ETR		AF1	ТІМ1/2/16/1 7/LРТІМ1/ НRТІМ1	TIM1_CH2N	TIM1_CH3N	,	TIM2_CH2	TIM16_ BKIN	TIM17_ BKIN	TIM16_CH1 N	TIM17_CH1 N	
AFO	SYS	JTCK- SWCLK			AFO	SYS	,		ı	JTDO/TRA CESWO	NJTRST				
	Port	PA14	е РА15			Port	PB0	PB1	PB2	PB3	Pot B PB4	PB5	PB6	PB7	

STM32H743xI

Pin descriptions

AF15	SYS	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT
AF14	UART5/ LCD	LCD_B7	LCD_G4	LCD_65	UART5_ RX	UART5_ TX	ı	
AF13	TIM1/DCM I/LCD/ COMP	DCMI_D7	-		TIM1_ BKIN_ COMP12			-
AF12	TIM1/8/FMC /SDMMC1/ MDIOS/ OTG1_FS/ LCD	SDMMC1_ D5	-	ı	OTG_HS_ ID	-	OTG_HS_ DM	OTG_HS_ DP
AF11	12C4/ UART7/ SWPMI1/ TIM1/8/ DFSDM/ SDMMC2/ MDIOS/ ETH	I2C4_SMB A	ETH_MII_ RX_ER	ETH_MII_ TX_EN/ ETH_RMII_ TX_EN	ETH_MII_ TXD0/ETH_ RMII_TXD0	ETH_MII_ TXD1/ETH_ RMII_TXD1		
AF10	SAI2/4/ TIM8/ QUADSPI/ SDMMC2/ OTG1_HS/ OTG2_FS/ LCD	SDMMC2_ D5	OTG_HS_ ULPI_D3	OTG_HS_ ULPI_D4	OTG_HS_ ULPI_D5	OTG_HS_ ULPI_D6	,	
AF9	SAI4/ FDCAN1/2/ TIM13/14/ QUADSPI/ FMC/ SDMMC2/ LCD/ SPDIFRX	CAN1_TX	QUADSPI_ BK1_NCS	ı	CAN2_RX	CAN2_TX	SDMMC2_ D0	SDMMC2_ D1
AF8	SPI6/SAI2/ 4/UART4/5/ 8/LPUART/ SDMMC1/ SPDIFRX	UART4_TX	-	I	-	-	UART4_ RTS	UART4_ CTS
AF7	SPI2/3/6/ USART1/2/3 /6/UART7/S DMMC1	SDMMC1_ CDIR	USART3_ TX	USART3_ RX	USART3_ CK	USART3_ CTS_NSS	USART3_ RTS	
AF6	SPI2/3/SAI1 /3/12C4/ UART4/ DFSDM	I2C4_SDA	DFSDM_ DATIN7	DFSDM_ CKIN7	DFSDM_ DATIN1_	DFSDM_CK IN1	DFSDM_ DATIN2	DFSDM_CK IN2
AF5	SP11/2/3/4/5/ 6/CEC	SPI2_NSS/ I2S2_WS	SPI2_SCK/ I2S2_CK	ı	SPI2_NSS/ 12S2_WS	SPI2_SCK/ I2S2_CK	SPI2_MISO/ I2S2_SDI	SPI2_MOSI/ I2S2_SDO
AF4	12C1/2/3/4/ USART1/ TIM15/ LPTIM2/ DFSDM/ CEC	I2C1_SDA	I2C2_SCL	I2C2_SDA	I2C2_SMBA	-	USART1_TX	USART1_RX
AF3	LPUART/ TIM8/ LPTIM2/3/4 /5/HRTIM1/ DFSDM	DFSDM_ DATIN7	LPTIM2_IN 1	LPTIM2_ ETR		LPTIM2_ OUT	TIM8_ CH2N	TIM8_CH3 N
AF2	SAI1/TIM3/ 4/5/12/ HRTIM1	TIM4_CH4	HRTIM_ SCOUT	HRTIM_ SCIN_		1	TIM12_CH	TIM12_CH 2
AF1	ТІМ1/2/16/1 7/LРТІМ1/ НКТІМ1	TIM17_CH1 TIM4_CH4	TIM2_CH3	TIM2_CH4	TIM1_BKIN	TIM1_CH1N	TIM1_CH2N	TIM1_CH3N
AFO	SYS	'	'	1	,	1	1	RTC_ REFIN
	Port	PB9	PB10	PB11	PB12	PB13	PB14	PB15

Table 10. Port B alternate functions (continued)

Pin descriptions

5	(A)	Ļ⊢	Ļ⊢	Ļ⊢	Ļ⊢	Ļ⊢	Ļ⊢	Ļ⊢	Ļ⊢	Ļ⊢	Ļ⊢	Ļ⊢	Ļ⊢	Ļ⊢	Ļ⊢
AF15	SYS	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT
AF14	UART5/ LCD	LCD_R5	ı	ı	ı	'	ı	LCD_HSYNC	PCD_G6	'	LCD_B2	LCD_R2		,	'
AF13	TIM1/DCMI /LCD/ COMP	-		-			COMP_1_ OUT	DCMI_D0	DCMI_D1	DCMI_D2	DCMI_D3	DCMI_D8	DCMI_D4	DCMI_D9	-
AF12	/SDMMC1/ /SDMMC1/ MDIOS/ OTG1_FS/ LCD	FMC_ SDNWE		FMC_SDNE	FMC_SDCK E0	FMC_SDNE	FMC_SDCK	SDMMC1_ D6	SDMMC1_ D7	SDMMC1_ D0	SDMMC1_ D1	SDMMC1_ D2	SDMMC1_ D3	SDMMC1_ CK	
AF11	12C4/ UART7/ SWPMI1/ TIM1/8/ DFSDM/ SDMMC2/ MDIOS/ ETH	1	ЕТН_МDС	ETH_MII_ TXD2	ETH_MII_ TX_CLK	ETH_MII_ RXD0/ETH_ RMII_RXD0	ETH_MII_ RXD1/ETH_ RMII_RXD1		SWPMI_TX	SWPMI_RX	SWPMISUSPEND				-
AF10	SAI2/4/ TIM8/ QUADSPI/ SDMMC2/ OTG1_HS/ OTG2_FS/ LCD	OTG_HS_ ULPI_STP	SAI4_D1	OTG_HS_ ULPI_DIR	OTG_HS_ ULPI_NXT	I	SAI4_D3	SDMMC2_ D6	SDMMC2_ D7		LCD_G3				-
AF9	SAI4/ FDCAN1/2/ TIM13/14/ QUADSPI/ FMC/ SDMMC2/ LCD/ SPDIFRX	-	SDMMC2_ CK	-		SPDIFRX_ IN2	SPDIFRX_ IN3	FMC NWAIT	FMC_NE1	FMC_NE2/ FMC_NCE	QUADSPI_ BK1_100	QUADSPI_ BK1_IO1	QUADSPI_ BK2_NCS		-
AF8	SPI6/SAI2/ 4/UART4/5/ 8/LPUART/ SDMMC1/ SPDIFRX	SAI2_FS_B	SAI4_SD_	-				SDMMC1_ DODIR	SDMMC1_ D123DIR	UART5_ RTS	UART5_ CTS	UART4_TX	UART4_RX	UART5_TX	-
AF7	SPI2/3/6/ USART1/2/ 3/6/UART7/ SDMMC1	-	-	-			-	USART6_ TX	USART6_ RX	USART6_ CK		USART3_ TX	USART3_ RX	USART3_ CK	-
AF6	SPI2/3/SAI1 /3/12C4/ UART4/ DFSDM	DFSDM_ DATIN4	SAI1_SD_A	DFSDM_CK OUT	T	,	-		I2S3_MCK			SPI3_SCK/ I2S3_CK	SPI3_MISO/ I2S3_SDI	SPI3_MOSI/ 12S3_SDO	-
AF5	SP11/2/3/4/ 5/6/CEC	-	SPI2_ MOSI/I2S2 SDO	SP12_ MISO/12S2 SD1	SP12_ MOSI/12S2 SDO	I2S1_MCK	-	I2S2_MCK	-		I2S_CKIN				-
AF4	12C1/2/3/4/ USART1/ TIM15/ LPTIM2/ DFSDM/CEC	,	DFSDM_ CKIN4	,	ï	ı	ı	DFSDM_ CKIN3	DFSDM_ DATIN3		I2C3_SDA				
AF3	LPUART/ TIM8/ LPTIM2/3/4 /5/HRTIM1/ DFSDM	DFSDM_ CKIN0	DFSDM_ DATINO	DFSDM_ CKIN1	DFSDM_ DATIN1	DFSDM_ CKIN2	DFSDM_ DATIN2	TIM8_CH1	TIM8_CH2	TIM8_CH3	TIM8_CH4	DFSDM_ CKIN5	DFSDM_ DATIN5		-
AF2	SAI1/TIM3/ 4/5/12/ HRTIM1	-	SAI1_D1		1		SAI1_D3	TIM3_CH1	TIM3_CH2	TIM3_CH3	TIM3_CH4	HRTIM_ EEV1	HRTIM_ FLT2	HRTIM_ EEV2	'
AF1	TIM1/2/16/1 7/LPTIM1/ HRTIM1	-	I	I	I	I	-	HRTIM_CH A1	HRTIM_CH A2	HRTIM_CH B1					
AFO	SYS	-	TRACED0	-	-	ı	-		TRGIO	TRACED1	MCO2			TRACED3	
	Port	PC0	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10	PC11	PC12	PC13
							С	Pott							

DocID030538 Rev 3

	AF15	SYS	EVENT- OUT	EVENT- OUT
	AF14	UART5/ LCD	-	-
	AF13	TIM1/DCMI /LCD/ COMP	ı	ı
	AF12	/SDMMC1/ /SDMMC1/ MDIOS/ OTG1_FS/ LCD	ı	ı
	AF11	I2C4/ UART7/ SWPMI1/ TIM1/8/ DFSDM/ SDMMC2/ MDIOS/ ETH		
· - /	AF10	SAI2/4/ TIM8/ QUADSPI/ SDMMC2/ OTG1_HS/ OTG1_HS/ OTG2_FS/ LCD	-	-
	AF9	SAI4/ FDCAN1/2/ TIM13/14/ QUADSPI/ FMC/ SDMMC2/ LCD/ SPDIFRX		ı
1	AF8	SPI6/SAI2/ 4/UART4/5/ 8/LPUART/ SDMMC1/ SPDIFRX	-	-
	AF7	SPI2/3/6/ USART1/2/ 3/6/UART7/ SDMMC1	-	-
	AF6	SPI2/3/SA11 /3/12C4/ UART4/ DFSDM		
	AF5	SP11/2/3/4/ 5/6/CEC	-	-
	AF4	I2C1/2/3/4/ USART1/ TIM15/ LPTIM2/ DFSDM/CEC		-
	AF3	LPUART/ TIM8/ LPTIM2/3/4 /5/HRTIM1/ DFSDM	-	-
	AF2	IM12/16/1 SAI1/TIM3/ 7/LPTIM1/ 4/5/12/ HRTIM1 HRTIM1	'	
	AF1	TIM1/2/16/1 7/LPTIM1/ HRTIM1	'	'
	AFO	SYS	ı	1
		Port	C14	е РС15

Pin descriptions

Table 11. Port C alternate functions (continued)

AF15	SYS	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT
AF14	UART5/ LCD	ı.			LCD_G7			LCD_B2		-	-	LCD_B3					
AF13	TIM1/DCMI /LCD/ COMP		1	DCMI_D11	DCMI_D5	1	,	DCMI_D10		-	-	-				,	,
AF12	TIM1/8/FMC /SDMMC1/ MDIOS/ OTG1_FS/ LCD	FMC_D2/ FMC_DA2	FMC_D3/ FMC_DA3	SDMMC1_ CMD	FMC_CLK	FMC_NOE	FMC_NWE	FMC NWAIT	FMC_NE1	FMC_D13/ FMC_DA13	FMC_D14/ FMC_DA14	FMC_D15/ FMC_DA15	FMC_A16	FMC_A17	FMC_A18	FMC_D0/ FMC_DA0	FMC_D1/ FMC_DA1
AF11	12C4/ UART7/ SWPMI1/ TIM1/8/ DFSDM/ SDMMC2/ MDIOS/ ETH	-	ı			ı		SDMMC2_ CK	SDMMC2_ CMD		-	-					
AF10	SAI2/4/ TIM8/ QUADSPI/ SDMMC2/ OTG1_HS/ OTG2_FS/ LCD	-	ı			ı		SAI4_D1			-	-	SAI2_SD_A	SAI2_FS_A	SAI2_SCK_		
AF9	SAI4/ FDCAN1/2/ TIM13/14/ QUADSPI/ FMC/ SDMMC2/ LCD/ SPDIFRX	CAN1_RX	CAN1_TX			CAN1_ RXFD	CAN1TXFD	CAN2_ RXFD_	SPDIFRX_ IN0	SPDIFRX_ IN1	CAN2_ RXFD	CAN2_ TXFD_	QUADSPI_ BK1_IO0	QUADSPI_ BK1_I01	QUADSPI_ BK1_I03		
AF8 A	SPI6/SAI2/ 4/UART4/5/ 8/LPUART/ SDMMC1/ SPDIFRX	UART4_RX	UART4_TX	UART5_RX				SAI4_SD_ Ā		-	-	-				UART8_ CTS	UART8_ RTS
AF7	SPI2/3/6/ USART1/2/ 3/6/UART7/ SDMMC1			,	USART2_ CTS_NSS	USART2_ RTS	USART2_ TX	USART2_ RX	USART2_ CK	USART3_ TX	USART3_ RX	USART3_ CK	USART3_ CTS_NSS	USART3_ RTS			,
AF6	SPI2/3/SAI1 /3/I2C4/ UART4/ DFSDM	SAI3_SCK_	SAI3_SD_A	,	,	SAI3_FS_A	,	SAI1_SD_A	DFSDM_CK IN1	SAI3_SCK_	SAI3_SD_B	SAI3_FS_B	,	,	,	SAI3_MCLK _B	SAI3_MCLK _A
AF5	SPI1/2/3/4/ 5/6/CEC		ı		SPI2_SCK/ I2S2_CK	ı		SPI3_ MOSI/I2S3 _SDO	SPI1_ MOSI/I2S1 _SDO	1	-	-				,	
AF4	I2C1/2/3/4/ USART1/ TIM15/ LPTIM2/ DFSDM/CEC	-		,	,		,	DFSDM_ DATIN1_	,	1			I2C4_SMBA	I2C4_SCL	I2C4_SDA		
AF3	LPUART/ TIM8/ LPTIM2/3/4 /5/HRTIM1/ DFSDM	DFSDM_ CKIN6	DFSDM_ DATIN6	,	DFSDM_ CKOUT	,	,	DFSDM CKIN4	DFSDM_ DATIN4_	DFSDM_ CKIN3	DFSDM_ DATIN3	DFSDM_ CKOUT	LPTIM2_IN 2	LPTIM2_IN 1			
AF2	SAI1/TIM3/ 4/5/12/ HRTIM1	ı	ı	TIM3_ETR		HRTIM_ FLT3_	HRTIM_ EEV3	SAI1_D1		ı	-	-		TIM4_CH1	TIM4_CH2	TIM4_CH3	TIM4_CH4
AF1	TIM1/2/16/1 7/LPTIM1/ HRTIM1	-	ı			ı		ı	ı	-		-		LPTIM1_IN1	LPTIM1_ OUT		
AFO	SYS			TRACED2					,								
	Port	PD0	PD1	PD2	PD3	PD4	PD5	PD6	ort D	PD8	PD9	PD10	PD11	PD12	PD13	PD14	PD15

AF15	SYS	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT
AF14	UART5/ LCD	-	-	ı	-	LCD_B0	LCD_G0	LCD_G1	ı	-	-	-	LCD_G3	LCD_B4	LCD_DE	LCD_CLK	LCD_R7
AF13	TIM1/DCMI /LCD/ COMP	DCMI_D2	DCMI_D3	,		DCMI_D4	DCMI_D6	DCMI_D7	,	COMP_2_ OUT	,	,	,	COMP_1_ OUT	COMP_2_ OUT		TIM1_BKIN _COMP12
AF12	IM1/8/FMC /SDMMC1/ MDIOS/ 0TG1_FS/ LCD	FMC_NBL0	FMC_NBL1	FMC_A23	FMC_A19	FMC_A20	FMC_A21	FMC_A22	FMC_D4/ FMC_DA4	FMC_D5/ FMC_DA5	FMC_D6/ FMC_DA6	FMC_D7/ FMC_DA7	FMC_D8/ FMC_DA8	FMC_D9/ FMC_DA9	FMC_D10/ FMC_DA10	FMC_D11/ FMC_DA11	FMC_D12/ FMC_DA12
AF11	12C4/ UART7/ SWPMI1/ TIM1/8/ DFSDM/ SDMMC2/ MDIOS/ ETH	ı		ETH_MII_ TXD3		ı		TIM1_BKIN 2_COMP12	ı					ı	ı		
AF10	SAI2/4/ TIM8/ QUADSPI/ SDMMC2/ OTG1_HS/ OTG2_FS/ LCD	SAI2_MCK _A	ı	SAI4_CK1		SAI4_D2	SAI4_CK2	SAI2_MCK _B	QUADSPI_ BK2_IO0	QUADSPI_ BK2_IO1	QUADSPI_ BK2_IO2	QUADSPI_ BK2_I03	SAI2_SD_B	SAI2_SCK_	SAI2_FS_B	SAI2_MCK _B	
AF9	SAI4/ FDCAN1/2/ TIM13/14/ QUADSPI/ FMC/ SDMMC2/ LCD/ SPDIFRX	CAN1_ RXFD	CAN1_ TXFD	QUADSPI_ BK1_IO2		·		SAI4_D1									
AF8	SPI6/SAI2/ 4/UART4/5/ 8/LPUART4/5/ SDMMC1/ SPDIFRX	UART8_RX	UART8_TX	SAI4_ MCLK_A	SAI4_SD_ B	SAI4_FS_A	SAI4_SCK	SAI4_SD_ A	,	ı	ı	ı	ı	,	,		
AF7	SPI2/3/6/ USART1/2/ 3/6/UART7/ SDMMC1		ı	,		,			UART7_RX	UART7_TX	UART7_ RTS	UART7_ CTS	ı	,	,		
AF6	SPI2/3/SAI1 /3/I2C4/ UART4/ DFSDM	-	-	SAI1_MCLK _A	SAI1_SD_B	SAI1_FS_A	SAI1_SCK_	SAI1_SD_A	ı	-	-	-	-	ı	·		
AF5	SPI1/2/3/4/ 5/6/CEC	-	-	SPI4_SCK	-	SPI4_NSS	SPI4 MISO_	SPI4 MOSI	ı	-	-	-	SPI4_NSS	SPI4_SCK	SPI4 MISO_	SPI4 MOSI_	HDMI TIM1BKIN
AF4	I2C1/2/3/4/ USART1/ TIM15/ LPTIM2/ DFSDM/CEC	LPTIM2_ ETR	-	·	TIM15_BKIN	TIM15_CH1 N	TIM15_CH1	TIM15_CH2	·	-	-	-	-	·	,		
AF3	LPUART/ TIM8/ LPTIM2/3/4 /5/HRTIM1/ DFSDM	HRTIM_ SCIN	HRTIM_ SCOUT		-	DFSDM_ DATIN3	DFSDM_ CKIN3	-	DFSDM_ DATIN2	DFSDM_ CKIN2	DFSDM_ CKOUT	DFSDM_ DATIN4	DFSDM_ CKIN4	DFSDM_ DATIN5	DFSDM_ CKIN5	,	
AF2	SAI1/TIM3/ 4/5/12/ HRTIM1	TIM4_ETR	ı	SAI1_CK1	ı	SAI1_D2	SAI1_CK2	SAI1_D1		ı	ı	ı	ı		1		
AF1	TIM1/2/16/1 7/LPTIM1/ HRTIM1	LPTIM1_ ETR	LPTIM1_IN2	ı		ı	,	TIM1_BKIN 2	TIM1_ETR	TIM1_CH1N	TIM1_CH1	TIM1_CH2N	TIM1_CH2	TIM1_CH3N	TIM1_CH3	TIM1_CH4	TIM1_BKIN
AF0	SYS			TRACE CLK	TRACED0	TRACED1	TRACED2	TRACED3							,		
	Port	PEO	PE1	PE2	PE3	PE4	PE5	PE6	E PE7	Р0 РЕ 8	PE9	PE10	PE11	PE12	PE13	PE14	PE15

Pin descriptions

	AF15	SYS	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT						
	AF14	UART5/ LCD	ı	I	I	-	'	ı	I	I	I	,	LCD_DE	-	'		ı	'
	AF13	TIM1/DCMI /LCD/ COMP	-	-	-	-		ı	-	-	-	-	DCMI_D11	DCMI_D12				-
	AF12	TIM1/8/FMC /SDMMC1/ MDIOS/ OTG1_FS/ LCD	FMC_A0	FMC_A1	FMC_A2	FMC_A3	FMC_A4	FMC_A5	-	-	-	-	ī	FMCSDNRAS	FMC_A6	FMC_A7	FMC_A8	FMC_A9
	AF11	12C4/ UART7/ SWPMI1/ TIM1/8/ DFSDM/ SDMMC2/ MDIOS/ ETH	-		-	-			-	-	-	-		-				-
	AF10	SAI2/4/ TIM8/ QUADSPI/ SDMMC2/ OTG1_HS/ OTG2_FS/ LCD	-	-	-	-	-	-	-	-	QUADSPI_ IADSPI_	QUADSPI_ BK1_IO1	SAI4_D3	SAI2_SD_B	-	-		-
ions	AF9	SAI4/ FDCAN1/2/ TIM13/14/ QUADSPI/ FMC/ SDMMC2/ LCD/ SPDIFRX	-	ı	-	-			QUADSPI_ BK1_IO3	QUADSPI_ BK1_IO2	TIM13_ CH1	TIM14_CH	QUADSPI_ CLK	-				-
alternate functions	AF8	SPI6/SAI2/ 4/UART4/5/ 8/LPUART/ SDMMC1/ SPDIFRX					,		SAI4_SD_	SAI4 MCLK_B	SAI4_SCK _B	SAI4_FS_B	,		,			-
	AF7	SP12/3/6/ USART1/2/ 3/6/UART7/ SDMMC1		ı	ı	1	,		UART7_RX	UART7_TX	UART7_ RTS	UART7_ CTS	,	ı	,	,	,	
Table 14. Port F	AF6	SPI2/3/SAI1 /3/12C4/ UART4/ DFSDM							SAI1_SD_B	SAI1_MCLK _B	SAI1_SCK_	SAI1_FS_B						
Table 1	AF5	SP11/2/3/4/ 5/6/CEC	-	ı	-	-		1	SSN_5I9S	SPI5_SCK	OSIW SPI5	SPI5_		SPI5_				-
	AF4	I2C1/2/3/4/ USART1/ TIM15/ LPTIM2/ DFSDM/CEC	I2C2_SDA	I2C2_SCL	I2C2_SMBA	-		ı	-	-	-	-		-		I2C4_SMBA	I2C4_SCL	I2C4_SDA
	AF3	LPUART/ TIM8/ LPTIM2/3/4 /5/HRTIM1/ DFSDM	ı	-				ı								DFSDM_ DATIN6	DFSDM_ CKIN6	-
	AF2	SA11/TIM3/ 4/5/12/ HRTIM1	-	I	ı			ı	ı	ı	ı		SAI1_D3	ı				
	AF1	ТІМ1/2/16/1 7/LРПМ1/ НКТІМ1	,	'	'		'	,	TIM16_CH1	TIM17_CH1	TIM16_ CH1N	TIM17_ CH1N	TIM16_ BKIN	-	'	'	,	
	AFO	SYS	ı	-	ı	-	,	ı	-	-	-	-	,	-	,	,		-
		Port	PF0	PF1	PF2	PF3	PF4	PF5	PF6	PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15
	5/	7					C)ocID	03053									

	AF15	SYS	EVENT -OUT	EVENT -OUT	EVENT -OUT	EVENT -OUT	EVENT -OUT	EVENT -OUT	EVENT -OUT	EVENT -OUT	EVENT -OUT	EVENT -OUT	EVENT -OUT	EVENT -OUT	EVENT -OUT	EVENT -OUT
	AF14	UART5/ LCD					,		LCD_R		LCD_ G7		LCD_B 2	LCD_B 3_	LCD_ B1	LCD_ R0_
	AF13	TIM1/ DCMI/LCD /COMP	1	,	ı	ı		ı	DCMI_D1 2	DCMI_D1	,	DCMI_ VSYNC	DCMI_D2	рсмі_рз	ı	
	AF12	TIM1/8/FMC /SDMMC1/ MDIOS/ 0TG1_FS/ LCD	FMC_A10	FMC_A11	FMC_A12	FMC_A13	FMC_A14/ FMC_BA0	FMC_A15/ FMC_BA1	FMC_NE3	FMC_INT	FMC_ SDCLK	FMC_NE2/ FMC_NCE	FMC_NE3	I	FMC_NE4	FMC_A24
	AF11	I2C4/UART7 /SWPMI1/ TIM1/8/ DFSDM/ SDMMC2/ MDIOS/ETH			TIM8_BKIN_ COMP12	TIM8_BKIN2 _COMP12	TIM1_BKIN2 COMP12	-	-	-	ETH_PPS_ OUT	1	-	ETH_MII_ TX_EN/ ETH_RMII_ TX_EN	ETH_MII_ TXD1/ETH_ RMII_TXD1	ETH_MII_ TXD0/ETH_ RMII_TXD0
	AF10	SAI2/4/TIM8/ QUADSPI/ SDMMC2/ OTG1_HS/ OTG2_FS/ LCD			-	-		-	QUADSPI_ BK1_NCS	-		SAI2_FS_B	SAI2_SD_B	SDMMC2_D2	ı	
tions	AF9	SAI4/ FDCAN1/2/ TIM13/14/ QUADSPI/ FMC/ SDMMC2/ LCD/SPDIFRX			-	-	ı	-	-	-		QUADSPI_BK 2_102	LCD_G3	ı	LCD_B4	
ate func	AF8	SPI6/SAI2/ 4/UART4/5/ 8/LPUART/ SDMMC1/ SPDIFRX									SPDIFRX_ IN2	SPDIFRX_ IN3	1	SPDIFRX_ IN0	SPDIFRX_ IN1	
G altern	AF7	SP12/3/6/ USART1/2/ 3/6/UART7/ SDMMC1			-	-		-	-	USART6_ CK	USART6_ RTS	USART6_ RX	-	ı	USART6_ RTS	USART6_ CTS_NSS
Table 15. Port G alternate functions	AF6	SPI2/3/SAI1 /3/12C4/ UART4/ DFSDM			ı	ı		ı	ı	SAI1_ MCLK_A	1	ı	ı	I		
Table 1	AF5	SP11/2/3/4/ 5/6/CEC	1	ı	-	-		-	-	-	SPI6_NSS	SP11_ MISO/I2S1 _SD1	SPI1_NSS/ I2S1_WS	SPI1_SCK/ I2S1_CK	SPI6_	SPI6_SCK
	AF4	I2C1/2/3/4/ USART1/ TIM15/ LPTIM2/ DFSDM/CEC	ı	ı	ı	ı		ı	ı	ı	·	ı	ı	I	ı	
	AF3	LPUART/ TIM8/ LPTIM2/3/4 /5/HRTIM1/ DFSDM	1	,	TIM8_BKIN	TIM8_ BKIN2		-	-	-	TIM8_ETR		-	I		
	AF2	SA11/TIM3/ 4/5/12/ HRTIM1	ı		ı	ı		ı	HRTIM_ CHE1	HRTIM_ CHE2	1	ı	HRTIM_ FLT5	HRTIM_ EEV4	HRTIM_ EEV5	HRTIM_ EEV10_
	AF1	TIM1/2/16/1 7/LPTIM1/ HRTIM1	ı	ı	-	ı	TIM1_BKIN	TIM1_ETR	TIM17_ BKIN	-	ı		-	ı	LPTIM1_IN1	LPTIM1_ OUT
	AF0	SYS		,	-	-		-	-	-		,	-		-	TRACED0
		Port	PG0	PG1	PG2	PG3	PG4	PG5	PG6	ط BG7	РG BG8	PG9	PG10	PG11	PG12	PG13

AF15	SYS	EVENT -OUT	EVENT -OUT
AF14	UART5/ LCD	B0 LCD_	-
AF13	TIM1/ DCMI/LCD /COMP		DCMI_ D13
AF12	/SDMMC1/ /SDMMC1/ MDIOS/ OTG1_FS/ LCD	FMC_A25	FMC_ SDNCAS
AF11	I2C4/UART7 /SWPMI1/ TIM1/8/ DFSDM/ SDMMC2/ MDIOS/ETH	ETH_MII_ TXD1/ETH_ RMII_TXD1	ı
AF10	SAI2/4/TIM8/ QUADSPI/ SDMMC2/ OTG1_HS/ OTG2_FS/ LCD	ı	
AF9	SAI4/ FDCAN1/2/ TIM13/14/ QUADSPI/ FMC/ SDMMC2/ LCD/SPDIFRX	QUADSPI_ BK2_103	-
AF8	SPI6/SAI2/ 4/UART4/5/ 8/LPUART/ SDMMC1/ SPDIFRX		'
AF7	SP12/3/6/ USART1/2/ 3/6/UART7/ SDMMC1	USART6_ TX	USART6_ CTS_NSS
AF6	SPI2/3/SAI1 /3/12C4/ UART4/ DFSDM		
AF5	SP11/2/3/4/ 5/6/CEC	ISOM	-
AF4	I2C1/2/3/4/ USART1/ TIM15/ LPTIM2/ DFSDM/CEC	ı	
84A	LPUART/ TIM8/ LPTIM2/3/4 /5/HRTIM1/ DFSDM	-	-
AF2	SAI1/TIM3/ 4/5/12/ HRTIM1	-	-
AF1	TIM1/2/16/1 7/LPTIM1/ HRTIM1	LPTIM1_ ETR	'
AF0	SYS	PG14 TRACED1	'
	Port		<u>м</u> РG15
		0 #1	1

Table 15. Port G alternate functions (continued)

STM32H743xI

DocID030538 Rev 3

AF15	SYS	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT
AF14	UART5/ LCD	ı		LCD_R0	LCD_R1	LCD_G4	,	,	ı	LCD_R2	LCD_R3	LCD_R4	LCD_R5	LCD_R6	LCD_G2	LCD_G3	LCD_G4
AF13	TIM1/DCMI /LCD/ COMP	1	-	,		,		DCMI_D8	DCMI_D9	DCMI_ HSYN <u>C</u>	DCMI_D0	DCMI_D1	DCMI_D2	DCMI_D3	1	DCMI_D4	DCML_D11
AF12	rIM1/8/FMC /SDMMC1/ MDIOS/ 0TG1_FS/ LCD		-	FMC_ SDCKE0	FMC_ SDNE0		FMCSDNWE	FMC_ SDNE1	FMC_ SDCKE1	FMC_D16	FMC_D17	FMC_D18	FMC_D19	FMC_D20	FMC_D21	FMC_D22	FMC_D23
AF11	12C4/ UART7/ SWPMI1/ TIM1/8/ DFSDM/ SDMMC2/ MDIOS/ ETH	1	-	ETH_MII_ CRS	ETH_MII_ COL	1	,	ETH_MII_ RXD2	ETH_MII_ RXD3	-	1	-	,	1	ı		
AF10	SAI2/4/ TIM8/ QUADSPI/ SDMMC2/ OTG1_HS/ OTG2_FS/ LCD	ı		SAI2_SCK_	SAI2_MCK _B	OTG_HS_ ULPI_NXT	,	,			,		,	,	1		
AF9	SAI4/ FDCAN1/2/ TIM13/14/ QUADSPI/ FMC/ SDMMC2/ LCD/ LCD/ SPDIFRX	1	-	QUADSPI_ BK2_100	QUADSPI_ BK2_IO1	LCD_G5	,	,		-	ı		,	ı	CAN1_TX	CAN1_RX	CAN1TXFD
AF8	SPI6/SAI2/ 4/UART4/5/ 8/LPUART/ SDMMC1/ SPDIFRX	1	-						ı			ı		ı	UART4_TX	UART4_RX	
AF7	SP12/3/6/ USART1/2/ 3/6/UART7/ SDMMC1		I	,		,			ı		,	ı		,	,		
AF6	SPI2/3/SAI1 /3/12C4/ UART4/ DFSDM	-	-	ı	-	ı			-	-	ı	-		ı	ı		
AF5	SPI1/2/3/4/ 5/6/CEC		1		-		SPI5_NSS	SPI5_SCK	SPI5_ MISO	-		-	ı			,	
AF4	12C1/2/3/4/ USART1/ TIM15/ LPTIM2/ DFSDM/CEC				-	I2C2_SCL	I2C2_SDA	I2C2_SMBA	I2C3_SCL	I2C3_SDA	I2C3_SMBA	I2C4_SMBA	I2C4_SCL	I2C4_SDA			
AF3	LPUART/ TIM8/ LPTIM2/3/4 /5/HRTIM1/ DFSDM	,	I	,		,			ı		,	ı		,	TIM8_ CH1N	TIM8_µCH 2N	TIM8_ CH3N
AF2	SAI1/TIM3/ 4/5/12/ HRTIM1	-	-	1	-	1	ı	TIM12_ CH1	-	TIM5_ETR	TIM12_ CH2	TIM5_CH1	TIM5_CH2	TIM5_CH3	ı	,	
AF1	ТІМ1/2/16/1 7/LPTIM1/ НRTIM1	1	-	LPTIM1_IN2	,	1	,		ı	-	1		,	1	1		
AFO	SYS	-															
	Port	ОНА	PH1	PH2	PH3	PH4	PH5	9HG	TH9	PH8	6Hd	PH10	PH11	PH12	PH13	PH14	PH15

Pin descriptions

AF15	SYS	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT
AF14	UART5/ LCD	LCD_G5	LCD_G66	LCD_G7		LCD_B4	LCD_B5	LCD_B6	LCD_B7		LCD_ VSYNC	LCD_ HSYNC		LCD_ HSYNC	LCD_ VSYNC	LCD_CLK	LCD_R0
AF13	TIM1/DCMI /LCD/ COMP	DCMI_D13	DCMI_D8	DCMI_D9	DCMI_D10	DCMI_D5		DCMI_D6	DCMI_D7			-	-	-			·
AF12	TIM1/8/FMC /SDMMC1/ MDIOS/ 0TG1_FS/ LCD	FMC_D24	FMC_D25	FMC_D26	FMC_D27	FMC_NBL2	FMC_NBL3	FMC_D28	FMC_D29		FMC_D30	FMC_D31	-	-			
AF11	12C4/ UART7/ SWPMI1/ TIM1/8/ DFSDM/ SDMMC2/ MDIOS/ ETH		TIM8_BKIN 2_COMP12	-		TIM8_BKIN _COMP12	-				,	ETH_MII_ RX_ER	-	ETH_TX_ ER			
AF10	SAI2/4/ TIM8/ QUADSPI/ SDMMC2/ OTG1_HS/ OTG1_HS/ OTG2_FS/ LCD			-	,	SAI2_MCK _A	SAI2_SCK_	SAI2_SD_A	SAI2_FS_A		,	-	OTG_HS_ ULPI_DIR	-		,	ı
AF9	SAI4/ FDCAN1/2/ TIM13/14/ QUADSPI/ FMC/ SDMMC2/ LCD/ LCD/ SPDIFRX	CAN1RXFD_	1	-	,		-				CAN1_RX	CAN1_ RXFD	LCD_G6	-		,	LCD_G2
AF8	SPI6/SAI2/ 4/UART4/5/ 8/LPUART/ SDMMC1/ SPDIFRX		ı	I	,		-				UART4_RX	ı	-	-		ı	ı
AF7	SP12/3/6/ USART1/2/ 3/6/UART7/ SDMMC1		,	ı							,	I				,	ı
AF6	SPI2/3/SAI1 /3/I2C4/ UART4/ DFSDM			-			-				,	-	-	-			
AF5	SPI1/2/3/4/ 5/6/CEC	SPI2_NSS/ I2S2_WS	SPI2_SCK/ I2S2_CK	SPI2_ MISO/I2S2 _SDI	SPI2_ MOSI/I2S2 _SD0		-				ı	ı	-	-		ı	ı
AF4	I2C1/2/3/4/ USART1/ TIM15/ LPTIM2/ DFSDM/CEC	-			,		-						-	-		,	
AF3	LPUART/ TIM8/ /5/HRTIM1/ DFSDM		TIM8_BKIN 2	TIM8_CH4	TIM8_ETR	TIM8_BKIN	TIM8_CH1	TIM8_CH2	TIM8_CH3		,					,	
AF2	SA11/TIM3/ 4/5/12/ НRTIM1	TIM5_CH4	,	-			-				,	-	-	-		,	ı
AF1	ТІМ 1/2/16/1 7/LРТІМ1/ НКТІМ1		1	I	ı		-				1		-	-		,	ı
AF0	SYS			-	,		-				,	-	-	-		,	ı
	Port	PIO	PI1	PI2	PI3	PI4	PI5	PI6	Port I	PI8	PI9	P110	PI11	P112	P113	P114	P115

Table 17. Port I alternate functions

57

AF15	SYS	EVENT- OUT															
AF14	UART5/ LCD	LCD_R1	LCD_R2	LCD_R3	LCD_R4	LCD_R5	LCD_R6	LCD_R7	LCD_G0	LCD_G1	LCD_G2	LCD_G3	LCD_G4	LCD_B0	LCD_B1	LCD_B2	LCD_B3
AF13	TIM1/DCMI /LCD/ COMP		-		-	-		-		-	-		-	-			-
AF12	/SDMMC1/ /SDMMC1/ MDIOS/ 0TG1_FS/ LCD	-	-		-	-		-		-	-		-	-	,	,	1
AF11	I2C4/ UART7/ SWPMI11/ TIM1/8/ DFSDM/ SDMMC2/ MDIOS/ ETH	-	-		-	-		-		-	-		-	-	,	,	1
AF10	SAI2/4/ TIM8/ QUADSPI/ SDMMC2/ OTG1_HS/ OTG2_FS/ LCD	1	ı	ı	ı	ı	ı	-	ı	-	-	ı	ı	ı			ı
AF9	SAI4/ FDCAN1/2/ TIM13/14/ QUADSPI/ FMC/ SDMMC2/ LCD/ SPDIFRX	LCD_R7	1		1	1							1	LCD_G3	LCD_B4		
AF8	SPI6/SAI2/ 4/UART4/5/ 8/LPUART/ SDMMC1/ SPDIFRX		ı	,	ı	ı	,		,	UART8_TX	UART8_RX	,	ı	ı			
AF7	SP12/3/6/ USART1/2/ 3/6/UART7/ SDMMC1																-
AF6	SPI2/3/SAI1 /3/12C4/ UART4/ DFSDM	1	ı	,	ı	ı	,	1	,	1	1	,	ı	ı	,	,	,
AF5	SP11/2/3/4/ 5/6/CEC	1	-	1	-	-	1	-	1	-	-	SPI5 MOSI	SPI5_ MISO	-			,
AF4	I2C1/2/3/4/ USART1/ TIM15/ LPTIM2/ DFSDM/CEC	-															
AF3	LPUART/ TIM8/ LPTIM2/3/4 /5/HRTIM1/ DFSDM	-	-		-	-		TIM8_CH2	TIM8_ CH2N	TIM8_CH1	TIM8_ CH1N	TIM8_CH2	TIM8_ CH2N	-			
AF2	SAI1/TIM3/ 4/5/12/ НRTIM1	-	-	Ţ	-	-	Ţ	-	Ţ	-	-	Ţ	-	-			
AF1	ТІМ 1/2/16/1 7/LРТІМ1/ НКТІМ1	-	-		-	-		-		TIM1_CH3N	TIM1_CH3	TIM1_CH2N	TIM1_CH2	-			
AF0	SYS	-	-		-	-		-	TRGIN	-	-		-	TRGOUT			
	Port	PJO	PJ1	PJ2	PJ3	PJ4	PJ5	PJ6	۴J	PJ8	PJ9	PJ10	PJ11	PJ12	PJ13	PJ14	PJ15

Pin descriptions

DocID030538 Rev 3

57

AF15	SYS	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT	EVENT- OUT
AF14	UART5/ LCD	LCD_G5	LCD_G6	LCD_G7	LCD_B4	LCD_B5	LCD_B6	LCD_B7	LCD_DE
AF13	TIM1/DCMI /LCD/ COMP	ı				-			
AF12	/SDMMC1/ /SDMMC1/ MDIOS/ OTG1_FS/ LCD	-	-	-	-	-	-	-	-
AF11	12C4/ UART7/ SWPMI1/ TIM1/8/ DFSDM/ SDMMC2/ MDIOS/ ETH	1	·	TIM1_BKIN _COMP12	·	ı	·	·	
AF10	SAI2/4/ TIM8/ QUADSPI/ SDMMC2/ OTG1_HS/ OTG2_FS/ LCD		ı	TIM8_BKIN _COMP12	ı	I	ı	ı	
AF9	SAI4/ FDCAN1/2/ TIM13/14/ QUADSPI/ FMC/ SDMMC2/ LCD/ SPDIFRX	-				-			
AF8	SPI6/SAI2/ 4/UART4/5/ 8/LPUART/ SDMMC1/ SPDIFRX	-	-	-	-	I	-	-	
AF7	SP12/3/6/ USART1/2/ 3/6/UART7/ SDMMC1	-	-	-	-	-	-	-	-
AF6	SPI2/3/SA11 /3/12C4/ UART4/ DFSDM	-	-	-	-	-	-	-	
AF5	SP11/2/3/4/ 5/6/CEC	SPI5_SCK	SPI5_NSS			-			
AF4	I2C1/2/3/4/ USART1/ TIM15/ LPTIM2/ DFSDM/CEC	-				ı			
AF3	LPUART/ TIM8/ LPTIM2/3/4 /5/HRTIM1/ DFSDM	TIM8_CH3	TIM8_ CH3N	TIM8_BKIN		ı			
AF2	SAI1/TIM3/ 4/5/12/ HRTIM1	1	ı	ı	ı	-	ı	ı	
AF1	ТІМ1/2/16/1 7/LPTIM1/ НRTIM1	TIM1_CH1N	TIM1_CH1	TIM1_BKIN	ı	ı	ı	ı	
AFO	SYS	,	,			'	,	,	'
	Port	PK0	PK1	PK2	РK3 тк	PK4	PK5	PK6	PK7

Table 19. Port K alternate functions

STM32H743xI

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of junction temperature, supply voltage and frequencies by tests in production on 100% of the devices with an junction temperature at $T_J = 25$ °C and $T_J = T_{Jmax}$ (given by the selected temperature range).

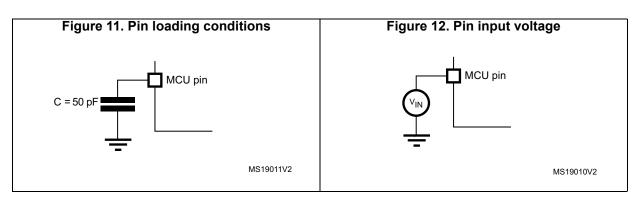
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

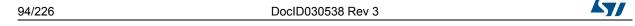
6.1.2 Typical values

Unless otherwise specified, typical data are based on $T_J = 25$ °C, $V_{DD} = 3.3$ V (for the 1.7 V $\leq V_{DD} \leq 3.6$ V voltage range). They are given only as design guidelines and are not tested.

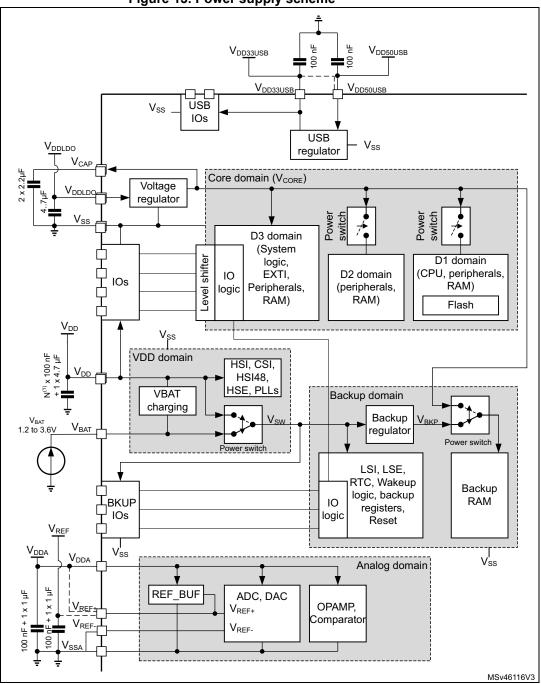
Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

6.1.3 Typical curves


Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

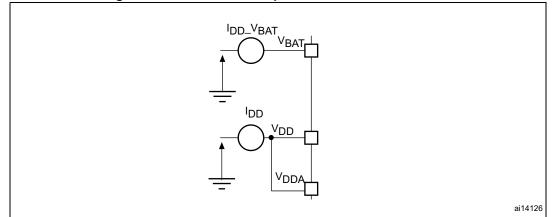

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 11*.


6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 12*.

6.1.6 Power supply scheme


Figure 13. Power supply scheme

1. N corresponds to the number of VDD pins available on the package...

Caution: Each power supply pair (V_{DD}/V_{SS}, V_{DDA}/V_{SSA} ...) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure good operation of the device. It is not recommended to remove filtering capacitors to reduce PCB size or cost. This might cause incorrect operation of the device.

6.1.7 Current consumption measurement

Figure 14. Current consumption measurement scheme

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 20: Voltage characteristics*, *Table 21: Current characteristics*, and *Table 22: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and the functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbols	Ratings	Min	Мах	Unit
V _{DDX} - V _{SS}	External main supply voltage (including V_{DD} , V_{DDLDO} , V_{DDA} , $V_{DD33USB}$, V_{BAT})	-0.3	4.0	V
	Input voltage on FT_xxx pins	V _{SS} -0.3	$\begin{array}{l} \text{Min}(\text{V}_{\text{DD}},\text{V}_{\text{DDA}},\\ \text{V}_{\text{DD33USB}},\text{V}_{\text{BAT}})\\ +4.0^{(3)(4)} \end{array}$	V
V _{IN} ⁽²⁾	Input voltage on TT_xx pins	V _{SS} -0.3	4.0	V
	Input voltage on BOOT0 pin	V_{SS}	9.0	V
	Input voltage on any other pins	V _{SS} -0.3	4.0	V
$ \Delta V_{DDX} $	Variations between different V_{DDX} power pins of the same domain	-	50	mV
V _{SSx} -V _{SS}	Variations between all the different ground pins	-	50	mV

Table 20. Voltage characteristics ⁽¹⁾

 All main power (V_{DD}, V_{DDA}, V_{DD33USB}, V_{BAT}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. V_{IN} maximum must always be respected. Refer to *Table 57* for the maximum allowed injected current values.

3. This formula has to be applied on power supplies related to the IO structure described by the pin definition table.

4. To sustain a voltage higher than 4V the internal pull-up/pull-down resistors must be disabled.

Symbols	Ratings	Max	Unit
ΣIV _{DD}	Total current into sum of all V_{DD} power lines (source) ⁽¹⁾	620	
ΣIV _{SS}	Total current out of sum of all V_{SS} ground lines (sink) ⁽¹⁾	620	
IV _{DD}	Maximum current into each V _{DD} power pin (source) ⁽¹⁾	100	
IV _{SS}	Maximum current out of each V_{SS} ground pin (sink) ⁽¹⁾	100	
I _{IO}	Output current sunk by any I/O and control pin	20	
21	Total output current sunk by sum of all I/Os and control pins ⁽²⁾	140	mA
ΣI _(PIN)	Total output current sourced by sum of all I/Os and control pins ⁽²⁾	140	
I _{INJ(PIN)} ⁽³⁾⁽⁴⁾	Injected current on FT_xxx, TT_xx, RST and B pins except PA4, PA5	-5/+0	
	Injected current on PA4, PA5	-0/0	
ΣΙ _{INJ(PIN)}	Total injected current (sum of all I/Os and control pins) ⁽⁵⁾	±25	

Table 21. Current characteristics

1. All main power (V_{DD}, V_{DDA}, V_{DD33USB}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supplies, in the permitted range.

 This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.

3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.

 A positive injection is induced by V_{IN}>V_{DD} while a negative injection is induced by V_{IN}<V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer also to *Table 20: Voltage characteristics* for the maximum allowed input voltage values.

5. When several inputs are submitted to a current injection, the maximum $\sum I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Table 22. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	– 65 to +150	°C
TJ	Maximum junction temperature	125	0

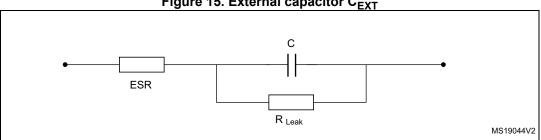
6.3 Operating conditions

6.3.1 General operating conditions

Symbol	Paramete	Operating conditions	Min	Max	Unit		
V _{DD}	Standard operatin	-	1.62 ⁽²⁾	3.6			
V _{DDLDO}	Supply voltage for the in	ternal regulator	V _{DDLDO} ≤V _{DD}	1.62 ⁽²⁾	3.6		
			USB used	3.0	3.6		
V _{DD33USB}	Standard operating volta	ge, USB domain	USB not used	0	3.6		
			ADC or COMP used	1.62			
			DAC used	1.8			
			OPAMP used	2.0	1		
V _{DDA}	Analog operating	voltage	VREFBUF used	1.8	3.6	V	
			ADC, DAC, OPAMP, COMP, VREFBUF not used	0			
			TT_xx I/O	-0.3	V _{DD} +0.3	1	
			BOOT0	0	9		
V _{IN}	I/O Input vol	age	All I/O except BOOT0 and TT_xx	-0.3	$\begin{array}{l} {\rm Min}({\rm V}_{\rm DD},{\rm V}_{\rm DDA},\\ {\rm V}_{\rm DD33USB}){+}3.6{\rm V}\\ {<}5.5{\rm V}^{(3)(4)} \end{array}$		
		TFBGA240+25	-	-	1093		
		LQFP208	-	-	943		
		LQFP176	-	-	930		
PD	Power dissipation at	UFBGA176+25	-	-	1070		
ΓD	$T_A = 85 \text{ °C for suffix } 6^{(5)}$	UFBGA169	-	-	1061	mW	
		LQFP144	-	-	915		
		LQFP100	-	-	889		
		TFBGA100	-	-	1018		
	Ambient temperature for	Maximum power	dissipation	-40	85		
Та	the suffix 6 version	Low-power dissi	pation ⁽⁶⁾	-40	105	°C	
	Ambient temperature for	Maximum power	dissipation	-40	125		
	the suffix 3 version	Low-power dissi	pation ⁽⁶⁾	-40	130		
TJ	Junction temperature range	Suffix 6 version		-40	125	°C	

1. TBD stands for "to be defined".

2. When RESET is released functionality is guaranteed down to $V_{\mbox{BOR0}}$ min


3. This formula has to be applied on power supplies related to the IO structure described by the pin definition table.

- For operation with voltage higher than Min (V_{DD}, V_{DDA}, V_{DD33USB}) +0.3V, the internal Pull-up and Pull-Down resistors must 4. be disabled.
- 5. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} (see Section 7.9: Thermal characteristics).
- In low-power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} (see Section 7.9: Thermal characteristics).

6.3.2 VCAP1/VCAP2/VCAP3 external capacitor

Stabilization for the main regulator is achieved by connecting an external capacitor CEXT to the VCAP1/VCAP2/VCAP3 pins. C_{EXT} is specified in Table 24. Two external capacitors can be connected to VCAPx pins.

Figure 15. External capacitor C_{EXT}

1. Legend: ESR is the equivalent series resistance.

Table 24. VCAP1/VCAP2/VCAP3 operating conditions⁽¹⁾

Symbol	Parameter	Conditions
CEXT	Capacitance of external capacitor	2.2 µF
ESR	ESR of external capacitor	< 100 mΩ

1. When bypassing the voltage regulator, the two 2.2 μ F V_{CAP} capacitors are not required and should be replaced by two 100 nF decoupling capacitors.

6.3.3 Operating conditions at power-up / power-down

Subject to general operating conditions for T_A .

Table 25. Operating conditions at power-up / power-down (regulator ON)

Symbol	Parameter	Min	Мах	Unit
+	V _{DD} rise time rate	0	œ	
t _{VDD}	V _{DD} fall time rate	10	œ	
+	V _{DDA} rise time rate	0	80	μs/V
t _{VDDA}	V _{DDA} fall time rate	10	œ	μ5/ν
+	V _{DDUSB} rise time rate	0	œ	
t _{VDDUSB}	V _{DDUSB} fall time rate	10	œ	

6.3.4 Embedded reset and power control block characteristics

The parameters given in *Table 26* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 23: General operating conditions*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{RSTTEMPO} ⁽¹⁾ Reset temporization after BOR0 released		-	-	377	-	μs
		Rising edge ⁽¹⁾	1.62	1.67	1.71	
V _{BOR0}	Brown-out reset threshold 0 -	Falling edge	1.58	1.62	1.68	
M	Drown out react thread and 1	Rising edge	2.04	2.10	2.15	
V _{BOR1}	Brown-out reset threshold 1 -	Falling edge	1.95	2.00	2.06	
N/		Rising edge	2.34	2.41	2.47	
V _{BOR2}	Brown-out reset threshold 2 -	Falling edge	2.25	2.31	2.37	
M	Drown out react thread and 2	Rising edge	2.63	2.70	2.78	
V _{BOR3}	Brown-out reset threshold 3 -	Falling edge	2.54	2.61	2.68	
	Programmable Voltage	Rising edge	1.90	1.96	2.01	
V _{PVD0}	Detector threshold 0	Falling edge	1.81	1.86	1.91	
	Programmable Voltage	Rising edge	2.05	2.10	2.16	
V _{PVD1}	Detector threshold 1	Falling edge	1.96	2.01	2.06	V
	Programmable Voltage	Rising edge	2.19	2.26	2.32	
V _{PVD2}	Detector threshold 2	Falling edge	2.10	2.15	2.21	
	Programmable Voltage	Rising edge	2.35	2.41	2.47	
V _{PVD3}	Detector threshold 3	Falling edge	2.25	2.31	2.37	
	Programmable Voltage	Rising edge	2.49	2.56	2.62	
V _{PVD4}	Detector threshold 4	Falling edge	2.39	2.45	2.51	
N/	Programmable Voltage	Rising edge	2.64	2.71	2.78	
V _{PVD5}	Detector threshold 5	Falling edge	2.55	2.61	2.68	
	Programmable Voltage	Rising edge	2.78	2.86	2.94	
V _{PVD6}	Detector threshold 6	Falling edge in Run mode	2.69	2.76	2.83	
V _{hyst_BOR_PVD}	Hysteresis voltage of BOR (unless BOR0) and PVD	Hysteresis in Run mode	-	100	-	mV
I _{DD_BOR_PVD} ⁽¹⁾	${\rm BOR}^{(2)}$ (unless BOR0) and PVD consumption from V_{DD}	-	-		0.630	μA

Table 26. Reset and	b power control block characteristics

Symbol	Parameter	rameter Conditions		Тур	Max	Unit	
	Analog voltage detector for	Rising edge	1.66	1.71	1.76		
V _{AVM_0}	V _{DDA} threshold 0	Falling edge	1.56	1.61	1.66		
N	Analog voltage detector for	Rising edge	2.06	2.12	2.19		
V _{AVM_1}	V _{DDA} threshold 1	Falling edge	1.96	2.02	2.08	V	
N	Analog voltage detector for	Rising edge	2.42	2.50	2.58	V	
V _{AVM_2}	V _{DDA} threshold 2	Falling edge	2.35	2.42	2.49		
N	Analog voltage detector for	Rising edge	2.74	2.83	2.91		
V _{AVM_3}	V _{DDA} threshold 3	Falling edge	2.64	2.72	2.80		
V _{hyst_VDDA}	Hysteresis of V _{DDA} voltage detector	-	-	100	-	mV	
I _{DD_PVM}	PVM consumption from V _{DD(1)}	-	-	-	0.25	μA	
I _{DD_VDDA}	Voltage detector consumption on $V_{DDA}^{(1)}$	Resistor bridge	-	-	2.5	μA	

Table 26. Reset and power control block characteristics (continued)

1. Guaranteed by design.

2. BOR0 is enabled in all modes (except Shutdown) and its consumption is therefore included in the supply current characteristics tables (refer to Section 6.3.6: Supply current characteristics).

6.3.5 Embedded reference voltage

The parameters given in *Table 27* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 23: General operating conditions*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{REFINT}	Internal reference voltages	-40°C < TJ < 105°C	1.180	1.216	1.255	V
t _{S_vrefint} ⁽¹⁾⁽²⁾	ADC sampling time when reading the internal reference voltage	-	4.3	-	-	
t _{S_vbat} (1)	VBAT sampling time when reading the internal VBAT reference voltage	-	9	-	-	μs
I _{refbuf} ⁽²⁾	Reference Buffer consumption for ADC	V _{DDA} =3.3 V	9	13.5	23	μA
$\Delta V_{\text{REFINT}}^{(2)}$	Internal reference voltage spread over the temperature range	-40°C < T _J < 105°C	-	5	15	mV
T _{coeff}	Average temperature coefficient	Average temperature coefficient	-	20	70	ppm/°C
V _{DDcoeff}	Average Voltage coefficient	3.0V < V _{DD} < 3.6V	-	10	1370	ppm/V

Symbol	Parameter	Parameter Conditions		Тур	Max	Unit
V _{REFINT_DIV1}	1/4 reference voltage	-	-	25	-	
V _{REFINT_DIV2}	1/2 reference voltage	-	-	50	-	% V _{REFINT}
V _{REFINT_DIV3}	3/4 reference voltage	-	-	75	_	

Table 27. Embedded reference voltage (continued)

1. The shortest sampling time for the application can be determined by multiple iterations.

2. Guaranteed by design.

Table 28	Internal	reference	voltage	calibration values
	memai	reference	vonage	

Symbol	Parameter	Memory address
V_{REFIN} CAL	Raw data acquired at temperature of 30 °C, V _{DDA} = 3.3 V	1FF1E860 - 1FF1E861

6.3.6 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 14: Current consumption measurement scheme*.

All the run-mode current consumption measurements given in this section are performed with a CoreMark code.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in analog input mode.
- All peripherals are disabled except when explicitly mentioned.
- The Flash memory access time is adjusted with the minimum wait states number, depending on the f_{ACLK} frequency (refer to the table "Number of wait states according to CPU clock (ACLK) frequency and V_{CORE} range" available in the reference manual).
- When the peripherals are enabled, the AHB clock frequency is the CPU frequency divided by 2 and the APB clock frequency is AHB clock frequency divided by 2.

The parameters given in *Table 29* to *Table 37* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 23: General operating conditions*.

				f		Max ⁽²⁾					
Symbol	Parameter	Conditions		f _{rcc_c_ck} (MHz)	Тур	Т _Ј = 25°С	Т _Ј = 85°С	Т _Ј = 105°С	T _J = 125°C	unit	
			VOS1	400	71	110	210	290	540		
			0001	300	56	-	-	-	-		
				300	50	72	170	230	370		
			VOS2	216	37	58	150	210	380		
	Supply current in Run mode	All peripherals disabled		200	35.5	-	-	-	-	- mA	
			VOS3	200	33	50	130	190	300		
				180	30	47	130	180	290		
				168	28	45	130	180	290		
I _{DD}				144	25	41	120	180	290		
				60	13	28	110	160	280		
				25	10	24	99	160	270		
			VOS1	400	165	220	400	500 ⁽³⁾	840		
		All	VU31	300	130	-	-	-	-		
		peripherals		300	120	170	300	390	570		
		enabled	VOS2	200	83	-	-	-	-		
				VOS3	200	78	110	220	300	470	

Table 29. Typical and maximum current consumption in Run mode, code with data processing running from ITCM, regulator $ON^{(1)}$

1. Data are in DTCM for best computation performance, cache has no influence on consumption in this case.

2. Guaranteed by characterization results unless otherwise specified.

3. Guaranteed by test in production.

-	running from Flash memory, cache ON, regulator ON													
				£			Ма	x ⁽¹⁾						
Symbol	Parameter	Conditions		f _{rcc_c_ck} (MHz)	Тур	Т _Ј = 25°С	Т _Ј = 85°С	T _J = 105°C	T _J = 125°C	unit				
			VOS1	400	105	160	310	420	750					
			0001	300	55	-	-	-	-					
				300	50	72	160	230	370					
		All peripherals disabled	VOS2	216	38	-	-	-	-					
				200	36	-	-	-	-	- mA				
	Supply current in Run		VOS3	200	33	50	130	190	300					
				180	30	-	-	-	-					
				168	29	-	-	-	-					
I _{DD}	mode			144	26	-	-	-	-					
				60	14	-	-	-	-					
				25	14	-	-	-	-					
			VOS1	400	160	220	400	500 ⁽²⁾	750					
		All	V031	300	130	-	-	-	-	-				
		peripherals enabled	VOS2	300	120	160	300	390	560					
			VOS2	200	81	-	-	-	-					
L			VOS3	200	77	110	220	300	460					

Table 30. Typical and maximum current consumption in Run mode, code with data processingrunning from Flash memory, cache ON, regulator ON

1. Guaranteed by characterization results unless otherwise specified.

2. Guaranteed by by test in production.

Table 31. Typical and maximum current consumption in Run mode, code with data processingrunning from Flash memory, cache OFF, regulator ON

		Conditions		f _{rcc_c_ck} (MHz)	Тур					
Symbol	Parameter					Т _Ј = 25°С	Т _Ј = 85°С	T _J = 105°C	T _J = 125°C	unit
		All	VOS1	400	73	110	220	290	540	
		peripherals	VOS2	300	52	75	170	230	370	
	Supply current in Run	disabled	VOS3	200	34	52	130	190	300	m۸
IDD	mode	All peripherals enabled	VOS1	400	135	190	360	470	730	mA
			VOS2	300	100	150	270	370	550	-
			VOS3	200	70	100	210	300	460	

1. Guaranteed by characterization results.

Symbol	Parameter	Conditi	ons	f _{rcc_c_c}	Coremar	Tun	Unit	IDD/	Unit	
Symbol	Farameter	Peripheral	Code	_k (MHz)	k	Тур	Unit	Coremark	Onit	
			ITCM	400	2012	71		35		
		All	FLASH A	ASHA 400 2012 105		52				
		peripherals disabled,	AXI SRAM	400	2012	105		52	μΑ/ Coremar k	
		cache ON	SRAM1	400	2012	105		52		
	Supply current		SRAM4	400	2012	105	mA	52		
I _{DD}	in Run mode		ITCM	400	2012	71		35		
		All	FLASH A	400	593	70.5		119		
		peripherals disabled	AXI SRAM	400	344	70.5		205		
		cache OFF	SRAM1	400	472	74.5		158		
			SRAM4	400	432	72		167		

Table 32. Typical consumption in Run mode and corresponding performanceversus code position

Table 33. Typical current consumption batch acquisition mode

Symbol	Parameter	Condition	S	f _{rcc_ahb_ck(AHB4)} (MHz)	Тур	unit
I _{DD}	Supply current in batch acquisition	D1Standby, D2Standby, D3Run	VOS3	64	6.5	mA
	mode	D1Stop, D2Stop, D3Run	D1Stop, D2Stop, VOS3		12	

Table 34. Typical and maximum current consumption in Sleep mode, regulator ON

		Conditions		f _{rcc_c_ck} (MHz)						
Symbol	Parameter				Тур	Т _Ј = 25°С	Т _Ј = 85°С	Т _Ј = 105°С	Т _Ј = 125°С	unit
		All	VOS1	400	31.0	64	220	330	660	
	Supply			300	24.5	57	210	330	650	
I _{DD(Sleep)}		peripherals	VOS2	300	22.0	48	180	270	500	mA
Sle		disabled	VOS2	200	17.0	42	170	270	490	
			VOS3	200	15.5	37	150	230	400	

1. Guaranteed by characterization results.

						-	x ⁽¹⁾			
Symbol	Parameter	Conditi	Conditions			Т _Ј = 85°С	Т _Ј = 105°С	T _J = 125°C	unit	
		Flash memory OFF, no	SVOS5	1.4	7.2	49	75	140		
			SVOS4	1.95	11	66	110	200		
	D1Stop,	IWDG	SVOS3	2.85	16	91	150	240		
	D2Stop, D3Stop	Flash	SVOS5	1.65	7.2	49	75	140		
		memory ON,	SVOS4	2.2	11	66	110	180		
		no IWDG	SVOS3	3.15	16	91	150	300	mA	
		Flash memory OFF, no IWDG Flash memory ON, no IWDG	SVOS5	0.99	5.1	35	60	97		
			SVOS4	1.4	7.5	47	79	130		
	D1Stop, D2Standby, D3Stop		SVOS3	2.05	12	64	110	170		
I _{DD(Stop)}			SVOS5	1.25	5.5	35	61	98		
			SVOS4	1.65	7.8	47	80	130		
			SVOS3	2.3	12	65	110	170		
	D1Standby,		SVOS5	0.57	3	21	36	57		
	D2Stop,		SVOS4	0.805	4.5	27	47	74		
	D3Stop	Flash OFF,	SVOS3	1.2	6.7	37	63	99		
	D1Standby,	no IWDG	SVOS5	0.17	1.1	8	13	20		
	D2Standby,		SVOS4	0.245	1.5	11	17	26		
	D3Stop		SVOS3	0.405	2.4	15	23	35		

Table 35. Typical and maximum current consumption in Stop mode, regulator ON

1. Guaranteed by characterization results.

Table 36. Typical and maximum current consumption in Standby mode

Symbol	Parameter	Conditions		Тур				Max (3 V) ⁽¹⁾				
		Backup SRAM	RTC & LSE	1.62 V	2.4 V	3 V	3.3 V	Т _Ј = 25°С	Т _Ј = 85°С	T _J = 105°C	T _J = 125°C	Unit
(Standby) Standb	Quanta	OFF	OFF	1.8	1.9	1.95	2.05	3	9.1	19	42	
	current in	ON	OFF	3.4	3.4	3.5	3.7	6.8	27	64	96	
	Standby mode	OFF	ON	2	2.1	2.2	2.3	-	-	-	-	μA
		ON	ON	3.55	3.7	3.8	4.15	-	-	-	-	

1. Guaranteed by characterization results.

Symbol	Parameter	Conditions			Ту	р		Max (3 V) ⁽¹⁾				
		Backup SRAM	RTC & LSE	1.2 V	2 V	3 V	3.4 V	Т _Ј = 25°С	Т _Ј = 85°С	T _J = 105°C	T _J = 125°C	Unit
IDD Supply (VBAT) standby mode	Quanha	OFF	OFF	0.024	0.035	0.062	0.096	0.074	1.5	4.1	11	
	ON	OFF	1.4	1.6	1.8	1.8	3.2	19	42	74		
	-	OFF	ON	0.225	0.23	0.25	0.31	-	-	-	-	μA
	mode	ON	ON	1.95	2.15	2.2	2.35	-	-	-	-	

Table 37. Typical and maximum current consumption in VBAT mode

1. Guaranteed by characterization results.

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate a current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 58: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

An additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid a current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption (see *Table 38: Peripheral current consumption in Run mode*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DDx} \times f_{SW} \times C_L$$

where

 I_{SW} is the current sunk by a switching I/O to charge/discharge the capacitive load V_{DDx} is the MCU supply voltage

 $\rm f_{SW}$ is the I/O switching frequency

 C_L is the total capacitance seen by the I/O pin: C = C_{INT} + C_{EXT}

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

On-chip peripheral current consumption

The MCU is placed under the following conditions:

- At startup, all I/O pins are in analog input configuration.
- All peripherals are disabled unless otherwise mentioned.
- The I/O compensation cell is enabled.
- f_{ACLK} is the system clock. $f_{PCLK} = f_{ACLK}/4$, and $f_{HCLK} = f_{ACLK}/2$.
 - The given value is calculated by measuring the difference of current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
 - $f_{ACLK} = 400 \text{ MHz} \text{ (Scale 1), } f_{ACLK} = 300 \text{ MHz} \text{ (Scale 2),} \\ f_{ACLK} = 200 \text{ MHz} \text{ (Scale 3)}$
- The ambient operating temperature is 25 °C and V_{DD} =3.3 V.

-	-		I _{DD} (Typ)		l lasiá
F	Peripheral	VOS1	VOS2	VOS3	– Unit
	MDMA	8.3	7.6	7	
	DMA2D	21	20	18	
	JPEG	24	23	21	
	FLASH	9.9	9	8.3	
	FMC registers	0.9	0.9	0.8	
	FMC kernel	6.1	5.5	5.3	
	QUADSPI registers	1.5	1.4	1.3	
AHB3	QUADSPI kernel	0.9	0.8	0.7	
	SDMMC1 registers	8	7.2	6.8	
	SDMMC1 kernel	2.4	2	1.8	
	DTCM1	5.7	5	4.5	
	DTCM2	5.5	4.8	4.3	
	ITCM	3.2	2.9	2.6	
	D1SRAM1	7.6	6.8	6.1	
	Bridge AHB3	7.5	6.8	6.3	μA/MHz
	DMA1	1.1	1	1	μΑνινιιίΖ
	DMA2	1.7	1.4	1.1	
	ADC1/2 registers	3.9	3.2	3.1	
	ADC1/2 kernel	0.9	0.8	0.7	
	ART	5.5	4.5	4.2	
	ETH1MAC			13	
	ETH1TX	16	14		
	ETH1RX				
AHB1	USB1OTG registers	15	14	13	
	USB10TG kernel	-	8.5	8.5	
	USB1ULPI	0.3	0.3	0.1	
	USB2OTG registers	15	13	12	
	USB2OTG kernel	-	8.6	8.6	
	USB2ULPI	16	16	16	
	Bridge AHB1	10	9.6	8.6	

Table 38. Peripheral current consumption in Run mode

DocID030538 Rev 3

			I _{DD} (Typ)		,
Peripheral		VOS1	VOS2	VOS3	Unit
	DCMI	1.7	1.7	1.7	
	RNG registers	1.8	1.4	1.2	
	RNG kernel	-	9.6	9.6	
	SDMMC2 registers	13	12	11	
	SDMMC2 kernel	2.7	2.5	2.4	
AHB2	D2SRAM1	3.3	3.1	2.8	
	D2SRAM2	2.9	2.7	2.5	
	D2SRAM3	1.9	1.8	1.7	
	Bridge AHB2	0.1	0.1	0.1	
	GPIOA	1.1	1	0.9	
	GPIOB	1	0.9	0.9	
	GPIOC	1.4	1.3	1.3	
	GPIOD	1.1	1	0.9	
	GPIOE	1	0.9	0.8	µA/MHz
	GPIOF	0.9	0.8	0.8	
	GPIOG	0.9	0.7	0.7	
	GPIOH	1	0.9	0.9	
AHB4	GPIOI	0.9	0.9	0.8	
	GPIOJ	0.9	0.8	0.8	
	GPIOK	0.9	0.8	0.7	
	CRC	0.5	0.4	0.4	
	BDMA	6.2	5.8	5.5	
	ADC3 registers	1.8	1.7	1.7	
	ADC3 kernel	0.1	0.1	0.1	
	Backup SRAM	1.9	1.8	1.8	
	Bridge AHB4	0.1	0.1	0.1	
	LCD-TFT	12	11	10	
	WWDG1	0.5	0.4	0.3]
APB3	Bridge APB3	0.5	0.2	0.1	µA/MHz

 Table 38. Peripheral current consumption in Run mode (continued)

	able 38. Peripheral		I _{DD} (Typ)	<u>_</u>	
Peripheral		VOS1	VOS2	VOS3	Unit
	TIM2	3.5	3.2	2.9	
	TIM3	3.4	3.1	2.7	
	TIM4	2.7	2.5	1.9	
	TIM5	3.2	2.9	2.5	
	TIM6	1	0.8	0.7	
	TIM7	1	0.9	0.7	
	TIM12	1.7	1.5	1.2	
	TIM13	1.5	1.3	1	
	TIM14	1.4	1.3	0.9	
	LPTIM1 registers	0.7	0.6	0.5	
	LPTIM1 kernel	2.3	2.1	1.9	
	WWDG2	0.6	0.4	0.4	
APB1	SPI2 registers	1.8	1.5	1.2	µA/MHz
	SPI2 kernel	0.6	0.5	0.5	
	SPI3 registers	1.5	1.3	1.1	
	SPI3 kernel	0.6	0.5	0.5	
	SPDIFRX registers	0.6	0.5	0.3	
	SPDIFRX kernel	2.9	2.4	2.4	
	USART2 registers	1.4	1.3	1	
	USART2 kernel	4.7	4.1	4	
	USART3 registers	1.4	1.3	1	
	USART3 kernel	4.2	3.8	3.5	
	UART4 registers	1.5	1.1	1	
	UART4 kernel	3.7	3.6	3.2	

D	-		I _{DD} (Typ)		Unit
Peripheral		VOS1	VOS2	VOS3	Onit
	UART5 registers	1.4	1.4	1	
	UART5 kernel	3.6	3.2	3.1	
	I2C1 registers	0.8	0.8	0.6	
	I2C1 kernel	2	1.8	1.7	
	I2C2 registers	0.7	0.7	0.4	
	I2C2 kernel	1.9	1.7	1.6	
	I2C3 registers	0.9	0.7	0.6	
	I2C3 kernel	2.1	1.9	1.9	
	HDMI-CEC registers	0.5	0.3	0.3	
	DAC1/2	1.4	1.1	0.9	
APB1	USART7 registers	1.9	1.8	1.3	
(continued)	USART7 kernel	4	3.5	3.3	µA/MHz
	USART8 registers	1.6	1.5	1.2	
	USART8 kernel	4	3.6	3.3	
	CRS	3.4	3.1	2.9	
	SWPMI registers	2.3	2	2	
	SWPMI kernel	0.1	0.1	0.1	
	OPAMP	0.5	0.4	0.4	
	MDIO	2.7	2.4	2.3	
	FDCAN registers	16	15	14	
	FDCAN kernel	7.8	7.6	7.1	
	Bridge APB1	0.1	0.1	0.1	

Table 38. Peripheral current consumption in Run mode (continued)

112/226

	able 38. Peripheral		I _{DD} (Typ)		
Peripheral		VOS1	VOS2	VOS3	– Unit
	TIM1	5.1	4.8	4.3	
	TIM8	5.4	4.9	4.6	
	USART1 registers	2.7	2.6	2.5	
	USART1 kernel	0.1	0.1	0.1	
	USART6 registers	2.6	2.5	2.5	
	USART6 kernel	0.1	0.1	0.1	
	SPI1 registers	1.8	1.6	1.6	
	SPI1 kernel	1	0.8	0.6	
	SPI4 registers	1.6	1.5	1.5	
	SPI4 kernel	0.5	0.4	0.4	
	TIM15	3.1	2.8	2.7	
	TIM16	2.4	2.1	2.1	
APB2	TIM17	2.2	2	1.9	µA/MHz
	SPI5 registers	1.8	1.7	1.7	
	SPI5 kernel	0.6	0.5	0.3	
	SAI1 registers	1.5	1.4	1.4	
	SAI1 kernel	2	1.7	1.5	
	SAI2 registers	1.5	1.5	1.3	
	SAI2 kernel	2.2	1.9	1.8	
	SAI3 registers	1.8	1.6	1.6	
	SAI3 kernel	2.5	2.3	2.1	
	DFSDM1 registers	6	5.4	5.2	
	DFSDM1 kernel	0.9	0.8	0.7	1
	HRTIM	40	37	35]
	Bridge APB2	0.1	0.1	0.1]

Table 38. Peripheral current consumption in Run mode (continued)
--

			I _{DD} (Typ)		
Peripheral		VOS1	VOS2	VOS3	Unit
	SYSCFG	1	0.7	0.7	
	LPUART1 registers	1.1	1.1	1.1	
	LPUART1 kernel	2.6	2.4	2.1	
	SPI6 registers	1.6	1.5	1.4	
	SPI6 kernel	0.2	0.2	0.2	
	I2C4 registers	0.1	0.1	0.1	
	l2C4 kernel	2.4	2.1	2	
	LPTIM2 registers	0.5	0.5	0.5	
	LPTIM2 kernel	2.3	2.1	1.8	
	LPTIM3 registers	0.5	0.5	0.5	
APB4	LPTIM3 kernel	2	2.1	1.5	µA/MHz
	LPTIM4 registers	0.5	0.5	0.5	
	LPTIM4 kernel	2	2	1.9	
	LPTIM5 registers	0.5	0.5	0.5	
	LPTIM5 kernel	2	1.8	1.5	
	COMP1/2	0.7	0.5	0.5	
	VREFBUF	0.6	0.4	0.4	
	RTC	1.2	1.1	1.1	
	SAI4 registers	1.6	1.5	1.4	
	SAI4 kernel	1.3	1.3	1.2	
	Bridge APB4	0.1	0.1	0.1	

 Table 38. Peripheral current consumption in Run mode (continued)

Table 39. Peripheral current consumption in Stop, Standby and VBAT mode

Symbol	Parameter	Conditions	Тур	Unit
Cymbol	i arameter	Conditions	3 V	onit
	RTC+LSE low drive	-	2.32	
	RTC+LSE medium- low drive	-	2.4	μA
IDD	RTC+LSE medium- high drive - 2.7	2.7	μΛ	
	RTC+LSE High drive	-	3	

6.3.7 Wakeup time from low-power modes

The wakeup times given in *Table 40* are measured starting from the wakeup event trigger up to the first instruction executed by the CPU:

- For Stop or Sleep modes: the wakeup event is WFE.
- WKUP (PC1) pin is used to wakeup from Standby, Stop and Sleep modes.

All timings are derived from tests performed under ambient temperature and V_{DD} =3.3 V.

Symbol	Parameter	Conditions	Typ ⁽¹⁾	Max ⁽¹⁾	Unit
t _{WUSLEEP} ⁽²⁾	Wakeup from Sleep	-	9	10	CPU clock cycles
		VOS3, HSI, Flash memory in normal mode	4.4	5.6	
		VOS3, HSI, Flash memory in low-power mode	12	15	
		VOS4, HSI, Flash memory in normal mode	15	20	
		VOS4, HSI, Flash memory in low-power mode	23	10 5.6 15	
		VOS5, HSI, Flash memory in normal mode	30	71	
+ (2)	Wakoup from Stop	ikeup from Sleep-9100VOS3, HSI, Flash memory in normal mode4.45.6VOS3, HSI, Flash memory in low-power mode1215VOS4, HSI, Flash memory in normal mode1520VOS4, HSI, Flash memory in normal mode1520VOS4, HSI, Flash memory in normal mode3071VOS5, HSI, Flash memory in normal mode3071VOS5, HSI, Flash memory in normal mode3071VOS5, HSI, Flash memory in normal mode3071VOS3, CSI, Flash memory in normal mode2737VOS3, CSI, Flash memory in normal mode3848VOS4, CSI, Flash memory in normal mode3848VOS4, CSI, Flash memory in normal mode3848VOS4, CSI, Flash memory in normal mode5264VOS5, CSI, Flash memory in low-power mode6277akeup from Stop, pock kept runningVOS3, CSI, Flash memory in normal mode2.63.4vOS3, CSI, Flash memory in normal mode2.63.4			
twustop ⁽²⁾		VOS3, CSI, Flash memory in normal mode	27	10 5.6 15 20 28 71 47 37 50 48 61 64 77 3.4 36	
			36	50	μs
		VOS4, CSI, Flash memory in normal mode	38	48	
		-910VOS3, HSI, Flash memory in normal mode4.45.6VOS3, HSI, Flash memory in low-power mode1215VOS4, HSI, Flash memory in normal mode1520VOS4, HSI, Flash memory in normal mode1520VOS4, HSI, Flash memory in low-power mode2328VOS5, HSI, Flash memory in normal mode3071VOS5, HSI, Flash memory in normal mode3071VOS5, HSI, Flash memory in low-power mode3847VOS3, CSI, Flash memory in normal mode2737VOS3, CSI, Flash memory in normal mode3848VOS4, CSI, Flash memory in normal mode3848VOS4, CSI, Flash memory in normal mode5264VOS5, CSI, Flash memory in normal mode5264VOS5, CSI, Flash memory in normal mode5264VOS5, CSI, Flash memory in normal mode2.63.4VOS3, CSI, Flash memory in normal mode2.63.4VOS3, CSI, Flash memory in normal mode2.63.4			
		p from Sleep-910vOS3, HSI, Flash memory in normal mode4.45.6vOS3, HSI, Flash memory in low-power mode1215vOS4, HSI, Flash memory in normal mode1520vOS4, HSI, Flash memory in normal mode1520vOS4, HSI, Flash memory in normal mode3071vOS5, HSI, Flash memory in normal mode3071vOS5, HSI, Flash memory in normal mode3071vOS3, CSI, Flash memory in normal mode2737vOS3, CSI, Flash memory in normal mode3848vOS4, CSI, Flash memory in normal mode3848vOS4, CSI, Flash memory in normal mode3848vOS4, CSI, Flash memory in normal mode5264vOS5, CSI, Flash memory in normal mode5264vOS5, CSI, Flash memory in normal mode5264vOS5, CSI, Flash memory in normal mode2.63.4vOS3, HSI, Flash memory in normal mode2.63.4vOS3, CSI, Flash memory in normal mode2.63.6from Standby-390500			
			62	77	
+ (2)	Wakeup from Stop,	VOS3, HSI, Flash memory in normal mode	2.6	3.4	
t _{WUSTOP2} ⁽²⁾	clock kept running	VOS3, HSI, Flash memory in normal mode4.45.6VOS3, HSI, Flash memory in low-power mode1215VOS4, HSI, Flash memory in normal mode1520VOS4, HSI, Flash memory in normal mode1520VOS4, HSI, Flash memory in low-power mode2328VOS5, HSI, Flash memory in normal mode3071VOS5, HSI, Flash memory in normal mode3071VOS5, HSI, Flash memory in normal mode2737VOS3, CSI, Flash memory in normal mode2737VOS3, CSI, Flash memory in normal mode3848VOS4, CSI, Flash memory in normal mode3848VOS4, CSI, Flash memory in normal mode3848VOS4, CSI, Flash memory in normal mode5264VOS5, CSI, Flash memory in normal mode5264VOS5, CSI, Flash memory in normal mode2.63.4VOS3, HSI, Flash memory in normal mode2.63.4VOS3, CSI, Flash memory in normal mode2.63.6			
t _{WUSTDBY} ⁽²⁾	Wakeup from Standby mode	-	390	500	

Table 40. Low-power mode wakeup timings

1. Guaranteed by characterization results.

2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first instruction.

6.3.8 External clock source characteristics

High-speed external user clock generated from an external source


In bypass mode the HSE oscillator is switched off and the input pin is a standard I/O.

The external clock signal has to respect the *Table 58: I/O static characteristics*. However, the recommended clock input waveform is shown in *Figure 16*.

Symbol	Parameter	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency	4	25	50	MHz
V _{SW} (V _{HSEH} -V _{HSEL)}	OSC_IN amplitude	0.7V _{DD}	-	V _{DD}	v
V _{DC}	OSC_IN input voltage	V_{SS}	-	0.3V _{SS}	
t _{W(HSE)}	OSC_IN high or low time	7	_	-	ns

 Table 41. High-speed external user clock characteristics⁽¹⁾

1. Guaranteed by design.

Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The external clock signal has to respect the *Table 58: I/O static characteristics*. However, the recommended clock input waveform is shown in *Figure 17*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{LSE_ext}	User external clock source frequency	-	-	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage	-	0.7 V _{DDIOx}	-	V _{DDIOx}	V
V _{LSEL}	OSC32_IN input pin low level voltage	-	V _{SS}	-	0.3 V _{DDIOx}	
t _{w(LSEH)} t _{w(LSEL)}	OSC32_IN high or low time	-	250	-	-	ns

Table 42. Low-speed external user clock characteristics ⁽¹⁾
--

1. Guaranteed by design.

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

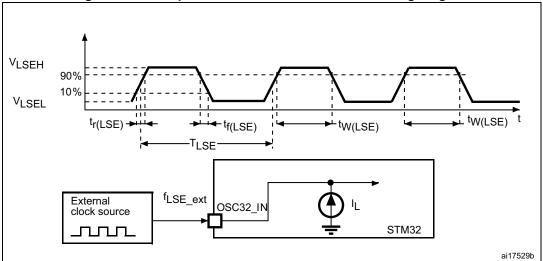


Figure 17. Low-speed external clock source AC timing diagram

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 48 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 43*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Operating conditions ⁽²⁾	Min	Тур	Мах	Unit
F	Oscillator frequency	-	4	-	48	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
		During startup ⁽³⁾	-	-	4	
	HSE current consumption	V _{DD} =3 V, Rm=30 Ω C _L =10pF@4MHz	-	0.35	-	
		V _{DD} =3 V, Rm=30 Ω C _L =10 pF at 8 MHz	-	0.40	_	
I _{DD(HSE)}		V _{DD} =3 V, Rm=30 Ω C _L =10 pF at 16 MHz	-	0.45	-	mA
		V_{DD} =3 V, Rm=30 Ω C _L =10 pF at 32 MHz	-	0.65	-	
		V_{DD} =3 V, Rm=30 Ω C _L =10 pF at 48 MHz	-	0.95	-	1
Gm _{critmax}	Maximum critical crystal gm	Startup	-	-	1.5	mA/V
t _{SU} ⁽⁴⁾	Start-up time	V _{DD} is stabilized	-	2	-	ms

Table 43. 4-48 MHz HSE oscillator characteristics⁽¹⁾

1. Guaranteed by design.

2. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

3. This consumption level occurs during the first 2/3 of the $t_{SU(HSE)}$ startup time.

4. t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typical), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 18*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . The PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

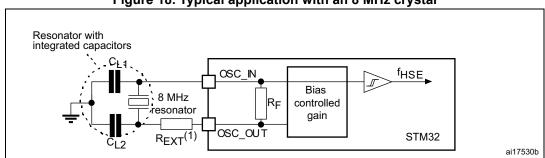


Figure 18. Typical application with an 8 MHz crystal

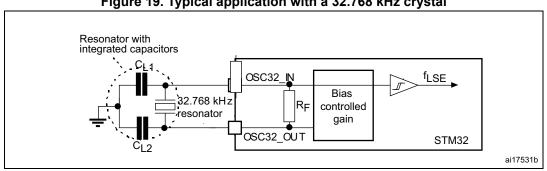
1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 44*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Operating conditions ⁽²⁾	Min	Тур	Max	Unit
F	Oscillator frequency	-	-	32.768	-	kHz
		LSEDRV[1:0] = 00, Low drive capability	-	290	-	
	LSE current	LSEDRV[1:0] = 01, Medium Low drive capability	-	390	-	nA
DD	I _{DD} consumption	LSEDRV[1:0] = 10, Medium high drive capability	-	550	-	
		LSEDRV[1:0] = 11, High drive capability	-	900	-	
	Maximum critical crystal gm	LSEDRV[1:0] = 00, Low drive capability	-	-	0.5	
Cm		LSEDRV[1:0] = 01, Medium Low drive capability	-	-	0.75	
Gm _{critmax}		LSEDRV[1:0] = 10, Medium high drive capability	-	-	1.7	μΑ/V
		LSEDRV[1:0] = 11, High drive capability	-	-	2.7	
t _{SU} ⁽³⁾	Startup time	VDD is stabilized	-	2	-	s

Table 44 I ow-s	need external	user clock	characteristics ⁽¹⁾
	peeu externar	USEI CIUCK	characteristics


1. Guaranteed by design.

2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers.

 t_{SU} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768k Hz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

1. An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

6.3.9 Internal clock source characteristics

The parameters given in Table 45 and Table 48 are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in Table 23: General operating conditions.

48 MHz high-speed internal RC oscillator (HSI48)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI48}	HSI48 frequency	V _{DD} =3.3 V, TJ=30 °C	-	48	-	MHz
TRIM ⁽¹⁾	USER trimming step	-	-	0.17	-	%
USER TRIM COVERAGE ⁽²⁾	USER TRIMMING Coverage	± 32 steps	-	±5.45	-	%
DuCy(HSI48) ⁽¹⁾	Duty Cycle	-	-	50	-	%
ACCHSI48_REL ⁽²⁾	Accuracy of the HSI48 oscillator over temperature (factory calibrated)	V _{DD} =1.62 to 3.6 V, T _J =-40 to 105 °C	-5	-	4	%
DVDD(HSI48) ⁽²⁾	HSI48 oscillator frequency drift with	V _{DD} =3 to 3.6 V	-	0.025	0.05	%
DVDD(113140)(**	V _{DD} ⁽³⁾	V _{DD} =1.62 V to 3.6 V	-	0.05	0.1	70
t _{su(HSI48)} (1)	HSI48 oscillator start-up time	-	-	2.1	3.5	μs
I _{DD(HSI48)} ⁽¹⁾	HSI48 oscillator power consumption	-	-	350	400	μA
N _T jitter	Next transition jitter Accumulated jitter on 28 cycles ⁽⁴⁾	-	-	± 0.15	-	ns
P _T jitter	Paired transition jitter Accumulated jitter on 56 cycles ⁽⁴⁾	-	-	± 0.25	-	ns

Table 45. HSI48 oscillator characteristics

1. Guaranteed by design.

2 Guaranteed by characterization.

These values are obtained by using the formula: (Freq(3.6V) - Freq(3.0V)) / Freq(3.0V) or (Freq(3.6V) - Freq(1.62V)) / Freq(1.62V). 3.

4. Jitter measurements are performed without clock source activated in parallel.

DocID030538 Rev 3

64 MHz high-speed internal RC oscillator (HSI)

Symbol	Parameter Conditions		Min	Тур	Мах	Unit
f _{HSI}	HSI frequency	V _{DD} =3.3 V, T _J =30 °C	-	64	-	MHz
		Trimming is not a multiple of 32	-	0.24	0.32	
TRIM		Trimming is 128, 256 and 384	-5.2	-1.8	-	
	HSI user trimming step	Trimming is 64, 192, 320 and 448	-1.4	-0.8	-	%
		Other trimming are a multiple of 32 (not including multiple of 64 and 128)	-0.6	-0.25	-	
DuCy(HSI)	Duty Cycle	-	45	-	55	%
$\Delta_{VDD (HSI)}$	HSI oscillator frequency drift over V _{DD} (reference is 3.3 V)	V _{DD} =1.62 to 3.6 V	-0.12	-	0.03	%
٨	HSI oscillator frequency drift over	T _J =-20 to 105 °C	-1 ⁽²⁾	-	1 ⁽²⁾	%
Δ_{TEMP} (HSI)	temperature (reference is 64 MHz)	T _J =−40 to T _J max °C	-2 ⁽²⁾		1 ⁽²⁾	
t _{su} (HSI)	HSI oscillator start-up time	-	-	1.4	2	μs
t _{stab} (HSI)	HSI oscillator stabilization time	at 1% of target frequency	-	3	5	μs
I _{DD} (HSI)	HSI oscillator power consumption	-	-	300	400	μA

Table 46. HSI oscillator characteristics⁽¹⁾

1. Guaranteed by design unless otherwise specified.

2. Guaranteed by characterization.

4 MHz low-power internal RC oscillator (CSI)

Table 47. CSI oscillator characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{CSI}	CSI frequency	V _{DD} =3.3 V, T _J =30 °C	3.96 ⁽²⁾	4	4.04 ⁽²⁾	MHz
TRIM	Trimming step	-	-	0.35	-	%
DuCy(CSI)	Duty Cycle	-	45	-	55	%
Δ _{VDD} (CSI) + Δ _{TEMP} (CSI)	CSI oscillator frequency drift over V _{DD} & drift over temperature	V _{DD} =1.62 to 3.6 V T _J = 0 to 85 °C	-	±1 ⁽³⁾	-	%
t _{su(CSI)}	CSI oscillator startup time	-	-	1	-	μs
t _{stab(CSI)}	$\begin{array}{c} CSI \text{ oscillator stabilization time} \\ (\text{to reach } \pm 3\% \text{ of } f_{CSI}) \end{array}$		-	-	4	cycle
I _{DD(CSI)}	CSI oscillator power consumption	-	-	23	30	μA

1. Guaranteed by design.

2. Guaranteed by test in production.

3. Guaranteed by characterization results.

Low-speed internal (LSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
f _{LSI}	LSI frequency	$V_{DD} = 3.3 V,$ T _J = 25 °C (after calibration)	31.4	32	32.6	kHz	
201		$T_J = -40$ to 105 °C, V _{DD} = 1.62 to 3.6 V	29.76	-	33.60		
t _{su(LSI)} ⁽¹⁾	LSI oscillator startup time	-	-	80	130		
t _{stab(LSI)} ⁽¹⁾	LSI oscillator stabilization time (5% of final value)	-	-	120	170	μs	
I _{DD(LSI)} ⁽¹⁾	LSI oscillator power consumption	-	-	130	280	nA	

Table 48. LSI oscillator characteristics

1. Guaranteed by design.

6.3.10 PLL characteristics

The parameters given in *Table 49* are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 23: General operating conditions*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f	PLL input clock	-	2	-	16	MHz
f _{PLL_IN}	PLL input clock duty cycle	-	10	-	90	%
f _{PLL_P_OUT}		Voltage scaling range 1	1.5	-	400 ⁽²⁾	
	PLL multiplier output clock P	Voltage scaling range 2	1.5	-	300	
		Voltage scaling range 3	1.5	-	200	
		Voltage scaling range 1	1.5	-	400 ⁽²⁾	MHz
f _{PLL_Q_OUT}	PLL multiplier output clock Q/R	Voltage scaling range 2	1.5	-	300	
		Voltage scaling range 3	1.5	-	200	
f _{VCO_ОUT}	PLL VCO output	-	192	-	836	
	PLL lock time	Normal mode	-	50 ⁽³⁾	150 ⁽³⁾	
t _{LOCK}		Sigma-delta mode (CKIN ≥ 8 MHz)	-	58 ⁽³⁾	166 ⁽³⁾	μs

Table 49. Main PLL characteristics⁽¹⁾

				,			
Symbol	Parameter	Condition	S	Min	Тур	Max	Unit
Jitter		VCO = 192 MHz		-	134	-	
	Cuelo to ovelo iittor	VCO = 200 MHz		-	134	-	+00
	Cycle-to-cycle jitter	VCO = 400 MHz		-	76	-	±ps
		VCO = 800 MHz		-	39	-	
	Long term jitter	Normal mode		-	±0.7	-	
		Sigma-delta mode (CKIN = 16 MHz)	0	-	±0.8	-	%
	PLL power consumption on V_{DD}	VCO freq =	V _{DDA}	-	590	1500	
L(3)		836 MHz	V _{CORE}	-	720	-	μA
I _{DD(PLL)} ⁽³⁾		VCO freq =	V _{DDA}	-	180	600	μΑ
		192 MHz	V _{CORE}	-	280	-	

Table 49. Main PLL characteristics⁽¹⁾ (continued)

1. Guaranteed by design unless otherwise specified.

2. Due to product limitation to 400 MHz.

3. Guaranteed by characterization results.

6.3.11 Memory characteristics

Flash memory

The characteristics are given at $T_{\rm J}$ = –40 to 125 $^\circ C$ unless otherwise specified.

The devices are shipped to customers with the Flash memory erased.

Table 50. Flash memor	y characteristics
-----------------------	-------------------

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
I _{DD} Sup		Write / Erase 8-bit mode	-	6.5	-	
	Supply current	Write / Erase 16-bit mode	-	11.5	-	
		Write / Erase 32-bit mode	-	20	-	mA
		Write / Erase 64-bit mode	-	35	-	

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
		Program/erase parallelism x 8	-	290	580 ⁽²⁾	
Symbol t _{prog} t _{ERASE128KB}	Word (266 bits) programming	Program/erase parallelism x 16	-	180	360	
	time	Program/erase parallelism x 32	-	130	260	μs
		Program/erase parallelism x 64	-	100	200	
		Program/erase parallelism x 8	-	2	4	
t _{ERASE128KB}	Sector (128 KB) erase time	Program/erase parallelism x 16	-	1.8	8 3.6	
		Program/erase parallelism x 32	-			
		Program/erase parallelism x 8	-	13	26	s
4	Maga areas time	Program/erase parallelism x 16	-	8	16	
t _{ME} V _{prog}	Mass erase time	Program/erase parallelism x 32	-	6	12	
		Program/erase parallelism x 64	-	5	10	
		Program parallelism x 8				
	Dreamming voltage	Program parallelism x 16	1.62	-	3.6	V
	Programming voltage	Program parallelism x 32				V
		Program parallelism x 64	1.8	-	3.6	

Table 51, Flash memory programming	(single bank configuration nDBANK=1)
Tuble of the fusit memory programming	

2. The maximum programming time is measured after 10K erase operations.

T	able \$	52. Flash	memory	endurance	and data	retention

Symbol			Value		
	Parameter	Conditions	Min ⁽¹⁾	Unit	
N _{END}	Endurance	$T_J = -40$ to +125 °C (6 suffix versions)	10	kcycles	
+	Data retention	1 kcycle at T _A = 85 °C	30	Years	
t _{RET}		10 kcycles at T _A = 55 °C	20	Tears	

1. Guaranteed by characterization results.

6.3.12 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 53*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	$V_{DD} = 3.3 \text{ V}, T_A = +25 \text{ °C},$	3B
V _{FTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$V_{DD} = 3.3 \text{ V}, 1_{A} = +25 \text{ °C},$ - UFBGA240, f _{rcc_c_ck} = 400 MHz, conforms to IEC 61000-4-2	4B

Table 53. EMS characteristics

As a consequence, it is recommended to add a serial resistor (1 k Ω) located as close as possible to the MCU to the pins exposed to noise (connected to tracks longer than 50 mm on PCB).

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application, executing EEMBC code, is running. This emission test is compliant with SAE IEC61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	Conditions	Monitored frequency band	Max vs. [f _{HSE} /f _{CPU}] 8/400 MHz	Unit
			0.1 to 30 MHz	6	
			30 to 130 MHz	5 13	dDu)/
S _{EMI}	Peak level	V_{DD} = 3.6 V, T _A = 25 °C, UFBGA240 package, conforming to IEC61967-2	130 MHz to 1 GHz		dBµV
			1 GHz to 2 GHz	7	
			EMI Level	2.5	-

Table 54. EMI ch	aracteristics
------------------	---------------

6.3.13 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse) are applied to the pins of each sample according to each pin combination. This test conforms to the ANSI/ESDA/JEDEC JS-001 and ANSI/ESDA/JEDEC JS-002 standards.

Symbol	Ratings	Conditions	Packages	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	T _A = +25 °C conforming to ANSI/ESDA/JEDEC JS- 001	All	1C	1000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	T _A = +25 °C conforming to ANSI/ESDA/JEDEC JS- 002	All	C1	250	v

Table 55. ESD absolute maximum ratings

1. Guaranteed by characterization results.

Static latchup

Two complementary static tests are required on six parts to assess the latchup performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with JESD78 IC latchup standard.

Table {	56. E	Electrical	sensitivities
10010		=1000110001	00110111100

Symbol	Parameter	Conditions	Class
LU	Static latchup class	T_A = +25 °C conforming to JESD78	II level A

6.3.14 I/O current injection characteristics

As a general rule, a current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3.3 V-capable I/O pins) should be avoided during the normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when an abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during the device characterization.

Functional susceptibilty to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of $-5 \mu A/+0 \mu A$ range), or other functional failure (for example reset, oscillator frequency deviation).

The following tables are the compilation of the SIC1/SIC2 and functional ESD results.

Negative induced A negative induced leakage current is caused by negative injection and positive induced leakage current by positive injection.

		E11 0 NA		
F I _{INJ} F	Description	-		Unit
	PA7, PC5, PG1, PB14, PJ7, PA11, PA12, PA13, PA14, PA15, PJ12, PB4	5	0	
	PA2, PH2, PH3, PE8, PA6, PA7, PC4, PE7, PE10, PE11	0	NA	mA
'INJ	PA0, PA_C, PA1, PA1_C, PC2, PC2_C, PC3, PC3_C, PA4, PA5, PH4, PH5, BOOT0	0	NA 0	ШA
	All other I/Os	5	NA	

Table 57. I/O current injection susceptibility⁽¹⁾

1. Guaranteed by characterization.

6.3.15 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 58: I/O static characteristics* are derived from tests performed under the conditions summarized in *Table 23: General operating conditions*. All I/Os are CMOS and TTL compliant (except for BOOT0).

Symbol	Parameter	Condition	Min	Тур	Max	Unit
Symbol V _{IL} ⁽¹⁾ V _{IH} ⁽¹⁾ V _{HYS} ⁽¹⁾ R _{PU}	I/O input low level voltage except BOOT0		-	-	0.3xV _{DD}	
	I/O input low level voltage except BOOT0	1.62 V <v<sub>DD<3.6 V</v<sub>	-	-	0.4xV _{DD} - 0.1	V
	BOOT0 I/O input low level voltage		-	-	0.19xV _{DD} +0.1	
V _{IH} ⁽¹⁾	I/O input high level voltage except BOOT0		0.7xV _{DD}	-	-	V
	I/O input low level voltage except BOOT0	1.62 V <v<sub>DD<3.6 V</v<sub>	0.47xV _{DD} + 0.25	-	-	
	BOOT0 I/O input high level voltage		0.17xV _{DD} + 0.6	-	-	
V _{HYS} ⁽¹⁾	TT_xx, FT_xxx and NRST I/O input hysteresis	1.62 V< V _{DD} <3.6 V	-	250	-	mV
-	BOOT0 I/O input hysteresis		-			
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	V _{IN} =V _{SS}	30	40	50	kΩ
V _{IH} ⁽¹⁾ V _{IH} ⁽¹⁾ BC VO BC VO BC VO BC VO BC VO RC BC VO RC BC VO RC BC VO RC BC VO RC BC VO RC BC VO RC RC VO RC RC VO RC RC VO RC RC RC RC RC RC RC RC RC RC	Weak pull-down equivalent resistor ⁽²⁾	$V_{IN} = V_{DD}^{(3)}$	30	40	50	K17
C _{IO}	I/O pin capacitance	-	-	5	-	pF

1. Guaranteed by design.

 The pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10% order).

3. Max(VDDXXX) is the maximum value of all the I/O supplies.

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements for FT I/Os is shown in *Figure 20*.

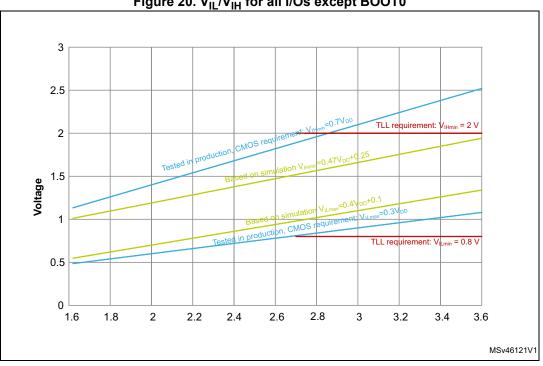


Figure 20. VIL/VIH for all I/Os except BOOT0

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or source up to ± 20 mA (with a relaxed V_{OI}/V_{OH}).

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2. In particular:

- The sum of the currents sourced by all the I/Os on $V_{\text{DD},}$ plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see Table 21).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating ΣI_{VSS} (see Table 21).

Output voltage levels

Unless otherwise specified, the parameters given in *Table 59* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 23: General operating conditions*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions ⁽³⁾	Min	Max	Unit
V _{OL}	Output low level voltage	CMOS port ⁽²⁾ I _{IO} =8 mA 2.7 V≤ V _{DD} ≤3.6 V		0.4	
V _{OH}	Output high level voltage	CMOS port ⁽²⁾ I _{IO} =-8 mA 2.7 V≤ V _{DD} ≤3.6 V	V _{DD} -0.4		
V _{OL} ⁽³⁾	Output low level voltage	TTL port ⁽²⁾ I _{IO} =8 mA 2.7 V≤ V _{DD} ≤3.6 V		0.4	
V _{OH} ⁽³⁾	Output high level voltage	TTL port ⁽²⁾ I _{IO} =-8 mA 2.7 V≤ V _{DD} ≤3.6 V	2.4		
V _{OL} ⁽³⁾	Output low level voltage	I _{IO} =20 mA 2.7 V≤ V _{DD} ≤3.6 V		1.3	V
V _{OH} ⁽³⁾	Output high level voltage	I _{IO} =-20 mA 2.7 V≤ V _{DD} ≤3.6 V	V _{DD} -1.3		
V _{OL} ⁽³⁾	Output low level voltage	I _{IO} =4 mA 1.62 V≤ V _{DD} ≤3.6 V		0.4	
V _{OH} ⁽³⁾	Output high level voltage	I _{IO} =-4 mA 1.62 V≤V _{DD} <3.6 V	V _{DD} 0.4		
V _{OLFM+} ⁽³⁾	Output low level voltage for an FTf	I _{IO} = 20 mA 2.3 V≤ V _{DD} ≤3.6 V	- (0.4	
	IO pin in FM+ mode	I _{IO} = 10 mA 1.62 V≤ V _{DD} ≤3.6 V	-	0.4	

Table 59. Output voltage characteristics ⁽¹⁾

 The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 20: <u>Voltage characteristics</u>, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always respect the absolute maximum ratings ΣIIO.

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. Guaranteed by design.

Output buffer timing characteristics (HSLV option disabled)

The HSLV bit of SYSCFG_CCCSR register can be used to optimize the I/O speed when the product voltage is below 2.5 V.

Speed	Symbol	Parameter	conditions	Min	Max	Unit	
				C=50 pF, 2.7 V≤ V _{DD} ≤3.6 V	-	12	
		(2)	C=50 pF, 1.62 V≤V _{DD} ≤2.7 V	-	3		
	г (2)		C=30 pF, 2.7 V≤V _{DD} ≤3.6 V	-	12	– MHz	
	F _{max} ⁽²⁾	Maximum frequency	C=30 pF, 1.62 V≤V _{DD} ≤2.7 V	-	3		
			C=10 pF, 2.7 V≤V _{DD} ≤3.6 V	-	16		
00			C=10 pF, 1.62 V≤V _{DD} ≤2.7 V	-	4		
00			C=50 pF, 2.7 V≤ V _{DD} ≤3.6 V	-	16.6		
			C=50 pF, 1.62 V≤V _{DD} ≤2.7 V	-	33.3		
	t _r /t _f ⁽³⁾	Output high to low level	C=30 pF, 2.7 V≤V _{DD} ≤3.6 V	-	13.3		
	ι _τ /ι _f 、* /	fall time and output low to high level rise time	C=30 pF, 1.62 V≤V _{DD} ≤2.7 V	-	25	- ns -	
			C=10 pF, 2.7 V≤V _{DD} ≤3.6 V	-	10		
			C=10 pF, 1.62 V≤V _{DD} ≤2.7 V	-	20		
	F _{max} ⁽²⁾		C=50 pF, 2.7 V≤ V _{DD} ≤3.6 V	-	60	_	
			C=50 pF, 1.62 V≤V _{DD} ≤2.7 V	-	15		
			Maximum fraguanay	C=30 pF, 2.7 V≤V _{DD} ≤3.6 V	-	80	MHz
		Maximum frequency	C=30 pF, 1.62 V≤V _{DD} ≤2.7 V	-	15		
			C=10 pF, 2.7 V≤V _{DD} ≤3.6 V	-	110		
01			C=10 pF, 1.62 V≤V _{DD} ≤2.7 V	-	20		
01			C=50 pF, 2.7 V≤ V _{DD} ≤3.6 V	-	5.2		
			C=50 pF, 1.62 V≤V _{DD} ≤2.7 V	-	10		
	t _r /t _f (3)	Output high to low level	C=30 pF, 2.7 V≤V _{DD} ≤3.6 V	-	4.2	ns	
	۲/ ۱۴ ^{、- ۲}	fall time and output low to high level rise time	C=30 pF, 1.62 V≤V _{DD} ≤2.7 V	-	7.5		
			C=10 pF, 2.7 V≤V _{DD} ≤3.6 V	-	2.8		
			C=10 pF, 1.62 V≤V _{DD} ≤2.7 V	-	5.2		

Table 60. Output timing characteristics (HSLV OFF)⁽¹⁾

Speed	Symbol	Parameter	conditions	Min	Мах	Unit
		F _{max} ⁽²⁾ Maximum frequency	C=50 pF, 2.7 V≤V _{DD} ≤3.6 V ⁽⁴⁾	-	85	
			C=50 pF, 1.62 V≤V _{DD} ≤2.7 V ⁽⁴⁾	-	35	
	г (2)		C=30 pF, 2.7 V≤V _{DD} ≤3.6 V ⁽⁴⁾	-	110	N411-
	Fmax ^{(-/}		C=30 pF, 1.62 V≤V _{DD} ≤2.7 V ⁽⁴⁾	-	40	- MHz
			C=10 pF, 2.7 V≤V _{DD} ≤3.6 V ⁽⁴⁾	-	166	
10			C=10 pF, 1.62 V≤V _{DD} ≤2.7 V ⁽⁴⁾	-	100	
10			C=50 pF, 2.7 V≤V _{DD} ≤3.6 V ⁽⁴⁾	-	3.8	
			C=50 pF, 1.62 V≤V _{DD} ≤2.7 V ⁽⁴⁾	-	6.9	
	t _r /t _f ⁽³⁾	Output high to low level	C=30 pF, 2.7 V≤V _{DD} ≤3.6 V ⁽⁴⁾	-	2.8	
		fall time and output low to high level rise time	C=30 pF, 1.62 V≤V _{DD} ≤2.7 V ⁽⁴⁾	-	5.2	ns
			C=10 pF, 2.7 V≤V _{DD} ≤3.6 V ⁽⁴⁾	-	1.8	
			C=10 pF, 1.62 V≤V _{DD} ≤2.7 V ⁽⁴⁾	-	3.3	
	F _{max} ⁽²⁾ Maximum frequency		C=50 pF, 2.7 V≤V _{DD} ≤3.6 V ⁽⁴⁾	-	100	-
			C=50 pF, 1.62 V≤V _{DD} ≤2.7 V ⁽⁴⁾	-	50	
			C=30 pF, 2.7 V≤V _{DD} ≤3.6 V ⁽⁴⁾	-	133	MHz
		Maximum requency	C=30 pF, 1.62 V≤V _{DD} ≤2.7 V ⁽⁴⁾	-	66	
			C=10 pF, 2.7 V≤V _{DD} ≤3.6 V ⁽⁴⁾	-	220	
11			C=10 pF, 1.62 V≤V _{DD} ≤2.7 V ⁽⁴⁾	-	85	
11			C=50 pF, 2.7 V≤V _{DD} ≤3.6 V ⁽⁴⁾	-	3.3	
			C=50 pF, 1.62 V≤V _{DD} ≤2.7 V ⁽⁴⁾	-	6.6	- ns
	(3)	Output high to low level	C=30 pF, 2.7 V≤V _{DD} ≤3.6 V ⁽⁴⁾	-	2.4	
	$t_r/t_f^{(3)}$	fall time and output low to high level rise time	C=30 pF, 1.62 V≤V _{DD} ≤2.7 V ⁽⁴⁾	-	4.5	
			C=10 pF, 2.7 V≤V _{DD} ≤3.6 V ⁽⁴⁾	-	1.5	
			C=10 pF, 1.62 V≤V _{DD} ≤2.7 V ⁽⁴⁾	-	2.7	

Table 60. Output timing	characteristics (HSLV OFF)	⁽¹⁾ (continued)

1. Guaranteed by design.

2. The maximum frequency is defined with the following conditions: $(t_r+t_f) \le 2/3 \text{ T}$ Skew $\le 1/20 \text{ T}$ 45%<Duty cycle<55%

3. The fall and rise times are defined between 90% and 10% and between 10% and 90% of the output waveform, respectively.

4. Compensation system enabled.

Output buffer timing characteristics (HSLV option enabled)

Speed	Symbol	Parameter	conditions	Min	Max	Unit	
			C=50 pF, 1.62 V≤V _{DD} ≤2.7 V	-	10		
	$F_{max}^{(2)}$	(2) Maximum frequency	C=30 pF, 1.62 V≤V _{DD} ≤2.7 V	-	10	MHz	
00			C=10 pF, 1.62 V≤V _{DD} ≤2.7 V	-	10		
00	Output high to low level	C=50 pF, 1.62 V≤V _{DD} ≤2.7 V	-	11			
	$t_r/t_f^{(3)}$	fall time and output low	C=30 pF, 1.62 V≤V _{DD} ≤2.7 V	-	9	ns	
		to high level rise time	C=10 pF, 1.62 V≤V _{DD} ≤2.7 V	-	6.6		
			C=50 pF, 1.62 V≤V _{DD} ≤2.7 V	-	50		
	F _{max} ⁽²⁾ Maximum frequency	C=30 pF, 1.62 V≤V _{DD} ≤2.7 V	-	58	MHz		
01			C=10 pF, 1.62 V≤V _{DD} ≤2.7 V	-	66		
01 -	t _r /t _f ⁽³⁾	$t_r/t_f^{(3)}$ Output high to low level fall time and output low to high level rise time	C=50 pF, 1.62 V≤V _{DD} ≤2.7 V	-	6.6	ns	
			C=30 pF, 1.62 V≤V _{DD} ≤2.7 V	-	4.8		
			C=10 pF, 1.62 V≤V _{DD} ≤2.7 V	-	3		
	F _{max} ⁽²⁾	F _{max} ⁽²⁾ Maximum frequency	C=50 pF, 1.62 V≤V _{DD} ≤2.7 V ⁽⁴⁾	-	55	MHz	
			C=30 pF, 1.62 V≤V _{DD} ≤2.7 V ⁽⁴⁾	-	80		
10			C=10 pF, 1.62 V≤V _{DD} ≤2.7 V ⁽⁴⁾	-	133		
10		Output high to low level	C=50 pF, 1.62 V≤V _{DD} ≤2.7 V ⁽⁴⁾	-	5.8		
	$t_r/t_f^{(3)}$	fall time and output low	C=30 pF, 1.62 V≤V _{DD} ≤2.7 V ⁽⁴⁾	-	4	ns	
		to high level rise time	C=10 pF, 1.62 V≤V _{DD} ≤2.7 V ⁽⁴⁾	-	2.4		
			C=50 pF, 1.62 V≤V _{DD} ≤2.7 V ⁽⁴⁾	-	60		
	F _{max} ⁽²⁾	F _{max} ⁽²⁾ Maximu	Maximum frequency	C=30 pF, 1.62 V≤V _{DD} ≤2.7 V ⁽⁴⁾	_	90 MH	MHz
			C=10 pF, 1.62 V≤V _{DD} ≤2.7 V ⁽⁴⁾	-	175	1	
11		Output high to low level	C=50 pF, 1.62 V≤V _{DD} ≤2.7 V ⁽⁴⁾	-	5.3		
	$t_r/t_f^{(3)}$	fall time and output low	C=30 pF, 1.62 V≤V _{DD} ≤2.7 V ⁽⁴⁾	-	3.6	ns	
		to high level rise time	C=10 pF, 1.62 V≤V _{DD} ≤2.7 V ⁽⁴⁾	-	1.9	1	

Table 61. Output timing characteristics (HSLV ON)⁽¹⁾

1. Guaranteed by design.

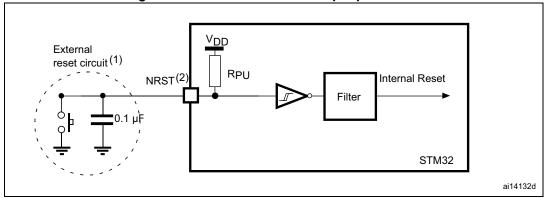
2. The maximum frequency is defined with the following conditions: $(t_r+t_f)\leq 2/3$ T Skew $\leq 1/20$ T 45%<Duty cycle<55%

3. The fall and rise times are defined between 90% and 10% and between 10% and 90% of the output waveform, respectively.

4. Compensation system enabled.

6.3.16 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 58: I/O static characteristics*).


Unless otherwise specified, the parameters given in *Table 62* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 23: General operating conditions*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{PU} ⁽²⁾	Weak pull-up equivalent resistor ⁽¹⁾	V _{IN} = V _{SS}	30	40	50	kΩ
V _{F(NRST)} ⁽²⁾	NRST Input filtered pulse	1.71 V < V _{DD} < 3.6 V	-	-	50	
V _{NF(NRST)} ⁽²⁾	NRST Input not filtered pulse	1.71 V < V _{DD} < 3.6 V	300	-	-	ns
	INKST INPUT NOT TILTERED PUISE	1.62 V < V _{DD} < 3.6 V	1000	-	-	

Table 62. NRST pin characteristics

1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order).

2. Guaranteed by design.

Figure 21. Recommended NRST pin protection

1. The reset network protects the device against parasitic resets.

 The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 62. Otherwise the reset is not taken into account by the device.

6.3.17 FMC characteristics

Unless otherwise specified, the parameters given in *Table 63* to *Table 76* for the FMC interface are derived from tests performed under the ambient temperature, $f_{rcc_c_ck}$ frequency and V_{DD} supply voltage conditions summarized in *Table 23: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 6.3.15: I/O port characteristics for more details on the input/output characteristics.

Asynchronous waveforms and timings

Figure 22 through *Figure 25* represent asynchronous waveforms and *Table 63* through *Table 70* provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

- AddressSetupTime = 0x1
- AddressHoldTime = 0x1
- DataSetupTime = 0x1 (except for asynchronous NWAIT mode, DataSetupTime = 0x5)
- BusTurnAroundDuration = 0x0
- Capcitive load CL = 30 pF

In all timing tables, the T_{KERCK} is the fmc_ker_ck clock period.

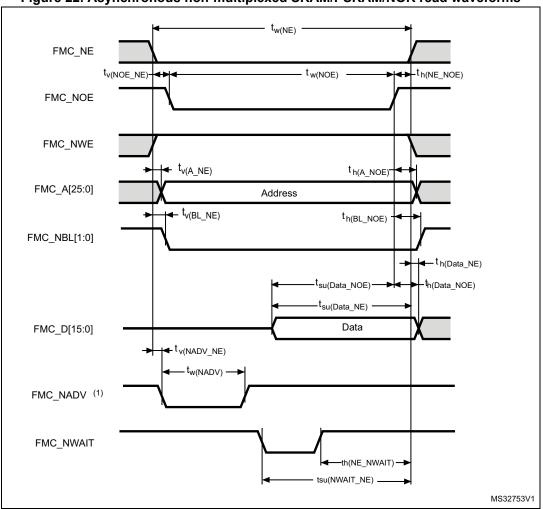


Figure 22. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms

1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.

136/226

DocID030538 Rev 3

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	2T _{fmc_ker_ck} − 1	2 T _{fmc_ker_ck} +1	
t _{v(NOE_NE)}	FMC_NEx low to FMC_NOE low	0	0.5	
t _{w(NOE)}	FMC_NOE low time	2T _{fmc_ker_ck} − 1	2T _{fmc_ker_ck} + 1	
t _{h(NE_NOE)}	FMC_NOE high to FMC_NE high hold time	0	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	0.5	
t _{h(A_NOE)}	Address hold time after FMC_NOE high	0	-	
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	0.5	
t _{h(BL_NOE)}	FMC_BL hold time after FMC_NOE high	0	-	ns
t _{su(Data_NE)}	Data to FMC_NEx high setup time	11	-	
t _{su(Data_NOE)}	Data to FMC_NOEx high setup time	11	-	
t _{h(Data_NOE)}	Data hold time after FMC_NOE high	0	-	
t _{h(Data_NE)}	Data hold time after FMC_NEx high	0	-	1
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	-	0	1
t _{w(NADV)}	FMC_NADV low time	-	T _{fmc_ker_ck} + 1	1

Table 63. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings⁽¹⁾

Table 64. Asynchronous non-multiplexed SRAM/PSRAM/NOR read - NWAIT ti	mings ⁽¹⁾⁽²⁾
---	-------------------------

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	7T _{fmc_ker_ck} +1	7T _{fmc_ker_ck} +1	
t _{w(NOE)}	FMC_NWE low time	5T _{fmc_ker_ck} −1	5T _{fmc_ker_ck} +1	ns
t _{w(NWAIT)}	FMC_NWAIT low time	T _{fmc_ker_ck} −0.5		115
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	4T _{fmc_ker_ck} +11	-	
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	3T _{fmc_ker_ck} +11.5	-	

1. Guaranteed by characterization results.

2. N_{WAIT} pulse width is equal to 1 AHB cycle.

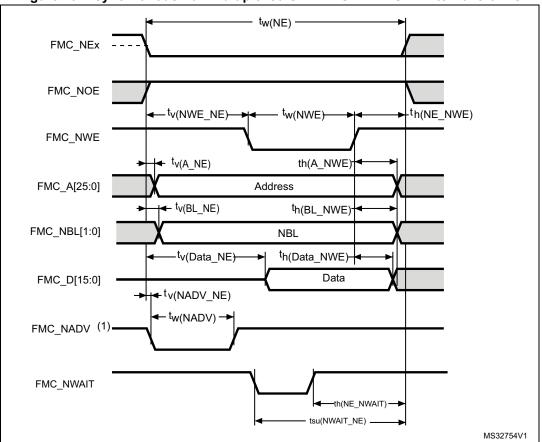
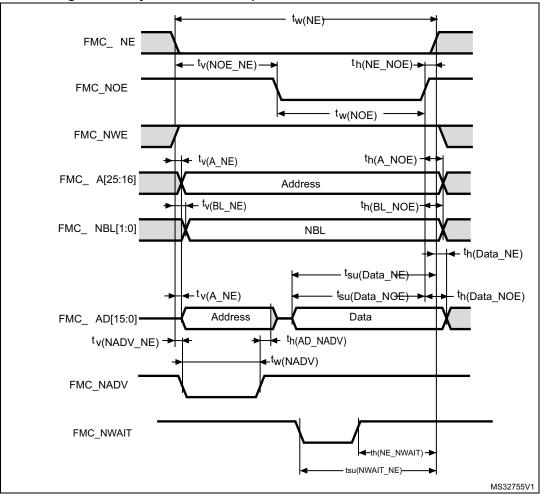


Figure 23. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms

1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.

Table 65, Asynchronous non-mult	iplexed SRAM/PSRAM/NOR write timings ⁽¹⁾
Table 05. Asylicillollous non-indit	iplexed SIXAM/I SIXAM/INOIX write timings

Symbol	pol Parameter		Max	Unit
t _{w(NE)}	FMC_NE low time	3T _{fmc_ker_ck} − 1	3T _{fmc_ker_ck}	
t _{v(NWE_NE)}	FMC_NEx low to FMC_NWE low	T _{fmc_ker_ck}	T _{fmc_ker_ck} + 1	
t _{w(NWE)}	FMC_NWE low time	T _{fmc_ker_ck} - 0.5	T _{fmc_ker_ck} + 0.5	
t _{h(NE_NWE)}	FMC_NWE high to FMC_NE high hold time	T _{fmc_ker_ck}	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	2	
t _{h(A_NWE)}	Address hold time after FMC_NWE high	T _{fmc_ker_ck} - 0.5	-	20
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	0.5	ns
t _{h(BL_NWE)}	FMC_BL hold time after FMC_NWE high	T _{fmc_ker_ck} - 0.5	-	
t _{v(Data_NE)}	Data to FMC_NEx low to Data valid	-	T _{fmc_ker_ck} + 2.5	
t _{h(Data_NWE)}	Data hold time after FMC_NWE high	T _{fmc_ker_ck} +0.5	-	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	-	0	
t _{w(NADV)}	FMC_NADV low time	-	T _{fmc_ker_ck} + 1	


1. Guaranteed by characterization results.

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	8T _{fmc_ker_ck} – 1	8T _{fmc_ker_ck} + 1	
t _{w(NWE)}	FMC_NWE low time	6T _{fmc_ker_ck} − 1.5	6T _{fmc_ker_ck} + 0.5	ns
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	5T _{fmc_ker_ck} + 13	-	
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{fmc_ker_ck} + 13	-	

Table 66. Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings⁽¹⁾⁽²⁾

2. N_{WAIT} pulse width is equal to 1 AHB cycle.

Figure 24. Asynchronous multiplexed PSRAM/NOR read waveforms

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	3T _{fmc_ker_ck} − 1	3T _{fmc_ker_ck} + 1	
t _{v(NOE_NE)}	FMC_NEx low to FMC_NOE low	2T _{fmc_ker_ck}	$2T_{fmc_ker_ck} + 0.5$	
t _{tw(NOE)}	FMC_NOE low time	T _{fmc_ker_ck} − 1	T _{fmc_ker_ck} + 1	
t _{h(NE_NOE)}	FMC_NOE high to FMC_NE high hold time	0	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	0.5	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	0	0.5	
t _{w(NADV)}	FMC_NADV low time	T _{fmc_ker_ck} – 0.5	T _{fmc_ker_ck} +1	
t _{h(AD_NADV)}	FMC_AD(address) valid hold time after FMC_NADV high	T _{fmc_ker_ck} + 0.5	-	ns
t _{h(A_NOE)}	Address hold time after FMC_NOE high	T _{fmc_ker_ck} - 0.5	-	
t _{h(BL_NOE)}	FMC_BL time after FMC_NOE high	0	-	
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	0.5	
t _{su(Data_NE)}	Data to FMC_NEx high setup time	T _{fmc_ker_ck} – 2	-	
t _{su(Data_NOE)}	Data to FMC_NOE high setup time	T _{fmc_ker_ck} - 2	-	
t _{h(Data_NE)}	Data hold time after FMC_NEx high	0	-	
t _{h(Data_NOE)}	Data hold time after FMC_NOE high	0	-	

Т	able 67. Asynchronous multiplexed PSRAM/NOR read timings	;(1)

Table 68. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings ⁽¹⁾	
--	--

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	8T _{fmc_ker_ck} – 1	8T _{fmc_ker_ck}	
t _{w(NOE)}	FMC_NWE low time	5T _{fmc_ker_ck} - 1.5	5T _{fmc_ker_ck} + 0.5	ns
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	5T _{fmc_ker_ck} + 3	-	
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{fmc_ker_ck}	-	

1. Guaranteed by characterization results.

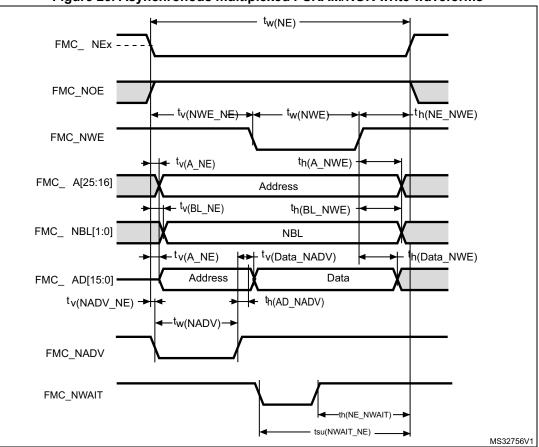


Figure 25. Asynchronous multiplexed PSRAM/NOR write waveforms

Table 69. As	synchronous multiplexed PSRAM/NOR write timings ⁽¹⁾
--------------	--

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	4T _{fmc_ker_c} − 1	4T _{fmc_ker_ck}	
t _{v(NWE_NE)}	FMC_NEx low to FMC_NWE low	T _{fmc_ker_c} − 1	T _{fmc_ker_ck} + 0.5	
t _{w(NWE)}	FMC_NWE low time	2T _{fmc_ker_ck} - 0.5	2T _{fmc_ker_ck} + 0.5	
t _{h(NE_NWE)}	FMC_NWE high to FMC_NE high hold time	T _{fmc_ker_ck} - 0.5	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	0	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	0	0.5	
t _{w(NADV)}	FMC_NADV low time	T _{fmc_ker_ck}	T _{fmc_ker_ck} + 1	ns
t _{h(AD_NADV)}	FMC_AD(address) valid hold time after FMC_NADV high	T _{fmc_ker_ck} +0.5	-	
t _{h(A_NWE)}	Address hold time after FMC_NWE high	T _{fmc_ker_ck} +0.5	-	
t _{h(BL_NWE)}	FMC_BL hold time after FMC_NWE high	T _{fmc_ker_ck} - 0.5	-	
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	0.5	
t _{v(Data_NADV)}	FMC_NADV high to Data valid	-	T _{fmc_ker_ck} + 2	
t _{h(Data_NWE)}	Data hold time after FMC_NWE high	T _{fmc_ker_ck} +0.5	-	

			-	
Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	9T _{fmc_ker_ck} – 1	9T _{fmc_ker_ck}	
t _{w(NWE)}	FMC_NWE low time	$7T_{fmc_ker_ck} - 0.5$	7T _{fmc_ker_ck} + 0.5	ns
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	6T _{fmc_ker_ck} + 3	-	
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{fmc_ker_ck}	-	

Table 70. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings⁽¹⁾

Synchronous waveforms and timings

Figure 26 through *Figure 29* represent synchronous waveforms and *Table 71* through *Table 74* provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

- BurstAccessMode = FMC_BurstAccessMode_Enable
- MemoryType = FMC_MemoryType_CRAM
- WriteBurst = FMC_WriteBurst_Enable
- CLKDivision = 1
- DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM

In all the timing tables, the $T_{fmc_ker_ck}$ is the fmc_ker_ck clock period, with the following FMC_CLK maximum values:

- For 2.7 V<V_{DD}<3.6 V, FMC_CLK =133 MHz at 20 pF
- For 1.8 V<V_{DD}<1.9 V, FMC_CLK =100 MHz at 20 pF
- For 1.62 V<V_{DD}<1.8 V, FMC_CLK =100 MHz at 15 pF

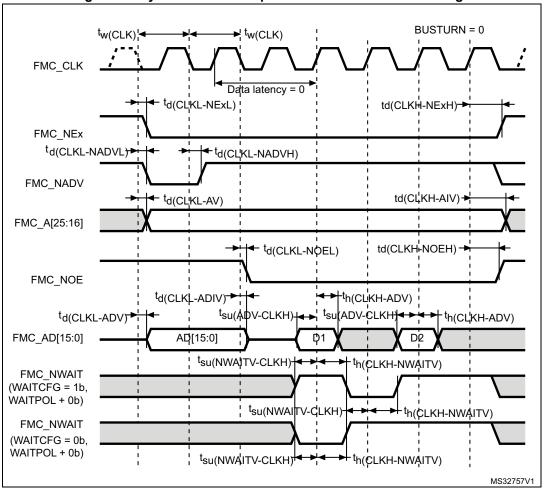


Figure 26. Synchronous multiplexed NOR/PSRAM read timings

Symbol	Parameter	Min	Мах	Unit
t _{w(CLK)}	FMC_CLK period	2T _{fmc_ker_ck} – 1	-	
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	1	
t _{d(CLKH_NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	T _{fmc_ker_ck} + 0.5	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	1.	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	2.5	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	T _{fmc_ker_ck}	-	
t _{d(CLKL-NOEL)}	FMC_CLK low to FMC_NOE low	-	1.5	ns
t _{d(CLKH-NOEH)}	FMC_CLK high to FMC_NOE high	T _{fmc_ker_ck} - 0.5	-	
t _{d(CLKL-ADV)}	FMC_CLK low to FMC_AD[15:0] valid	-	3	
t _{d(CLKL-ADIV)}	FMC_CLK low to FMC_AD[15:0] invalid	0	-	
t _{su(ADV-CLKH)}	FMC_A/D[15:0] valid data before FMC_CLK high	2	-	
t _{h(CLKH-ADV)}	FMC_A/D[15:0] valid data after FMC_CLK high	1	-	
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	2	-	
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	2	-	

			(4)
Table 71.	Synchronous multi	iplexed NOR/PSRAM	read timings ⁽¹⁾

144/226

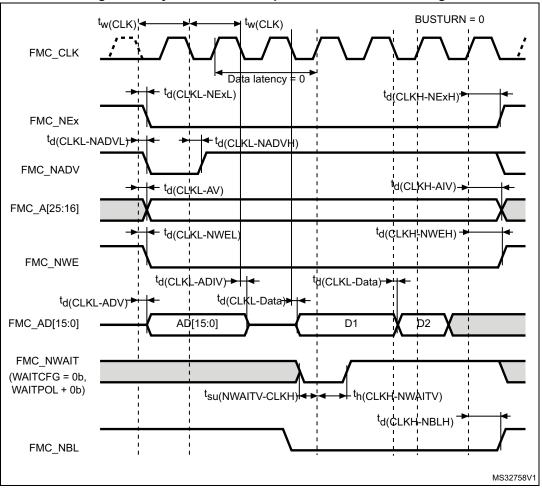


Figure 27. Synchronous multiplexed PSRAM write timings

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FMC_CLK period	2T _{fmc_ker_ck} - 1	-	
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	1	
t _{d(CLKH-NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	T _{fmc_ker_ck} + 0.5	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	1.5	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	2	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	T _{fmc_ker_ck}	-	
t _{d(CLKL-NWEL)}	FMC_CLK low to FMC_NWE low	-	1.5	
t _(CLKH-NWEH)	FMC_CLK high to FMC_NWE high	T _{fmc_ker_ck} + 0.5	-	– ns
t _{d(CLKL-ADV)}	FMC_CLK low to FMC_AD[15:0] valid	-	2.5	
t _{d(CLKL-ADIV)}	FMC_CLK low to FMC_AD[15:0] invalid	0	-	
t _{d(CLKL-DATA)}	FMC_A/D[15:0] valid data after FMC_CLK low	-	2.5	
t _{d(CLKL-NBLL)}	FMC_CLK low to FMC_NBL low	-	2	
t _{d(CLKH-NBLH)}	FMC_CLK high to FMC_NBL high	T _{fmc_ker_ck} + 0.5	-	
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	2	-	
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	2	-	

Table 72. Synchronous multiplexed PSRAM write timings⁽¹⁾

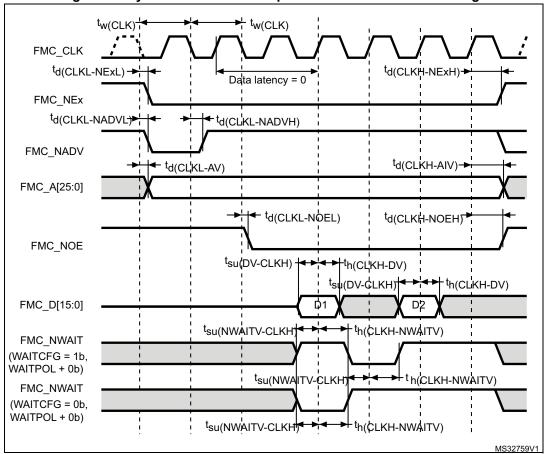
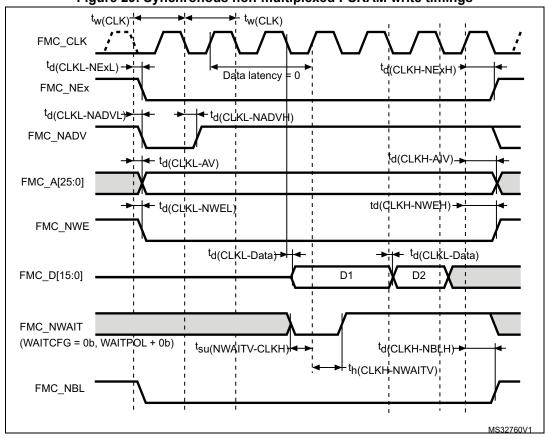
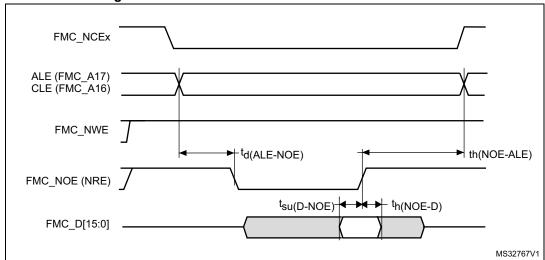



Table 73. Synchronous non-multiplexed NOR/PSRAM read timings⁽¹⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(CLK)}	FMC_CLK period	2T _{fmc_ker_ck} - 1	-	
t _(CLKL-NExL)	FMC_CLK low to FMC_NEx low (x=02)	-	2	
t _{d(CLKH-NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	T _{fmc_ker_ck} + 0.5	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	0.5	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	2	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	T _{fmc_ker_ck}	-	ns
t _{d(CLKL-NOEL)}	FMC_CLK low to FMC_NOE low	-	1.5	
t _{d(CLKH-NOEH)}	FMC_CLK high to FMC_NOE high	T _{fmc_ker_ck} + 0.5	-	
t _{su(DV-CLKH)}	FMC_D[15:0] valid data before FMC_CLK high	2	-	
t _{h(CLKH-DV)}	FMC_D[15:0] valid data after FMC_CLK high	1	-	
t _(NWAIT-CLKH)	FMC_NWAIT valid before FMC_CLK high	2	-	
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	2	-	

Table 74. Synchronous non-multiplexed PSRAM write timings ⁽¹⁾	Table 74, S	vnchronous non-multi	iplexed PSRAM	write timinas ⁽¹⁾
--	-------------	----------------------	---------------	------------------------------

Symbol	Parameter	Min	Мах	Unit
t _(CLK)	FMC_CLK period	2T _{fmc_ker_ck} - 1	-	
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	2	
t _(CLKH-NExH)	FMC_CLK high to FMC_NEx high (x= 02)	T _{fmc_ker_ck} + 0.5	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	0.5	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	2	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	T _{fmc_ker_ck}	-	20
t _{d(CLKL-NWEL)}	FMC_CLK low to FMC_NWE low	-	1.5	— ns
t _{d(CLKH-NWEH)}	FMC_CLK high to FMC_NWE high	T _{fmc_ker_ck} + 1	-	
t _{d(CLKL-Data)}	FMC_D[15:0] valid data after FMC_CLK low	-	3.5	
t _{d(CLKL-NBLL)}	FMC_CLK low to FMC_NBL low	-	2	
t _{d(CLKH-NBLH)}	FMC_CLK high to FMC_NBL high	T _{fmc_ker_ck} + 1	-	
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	2	-	
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	2	-	



NAND controller waveforms and timings

Figure 30 through *Figure 33* represent synchronous waveforms, and *Table 75* and *Table 76* provide the corresponding timings. The results shown in this table are obtained with the following FMC configuration:

- COM.FMC_SetupTime = 0x01
- COM.FMC_WaitSetupTime = 0x03
- COM.FMC_HoldSetupTime = 0x02
- COM.FMC_HiZSetupTime = 0x01
- ATT.FMC_SetupTime = 0x01
- ATT.FMC_WaitSetupTime = 0x03
- ATT.FMC_HoldSetupTime = 0x02
- ATT.FMC HiZSetupTime = 0x01
- Bank = FMC_Bank_NAND
- MemoryDataWidth = FMC_MemoryDataWidth_16b
- ECC = FMC_ECC_Enable
- ECCPageSize = FMC_ECCPageSize_512Bytes
- TCLRSetupTime = 0
- TARSetupTime = 0
- C_L = 30 pF

In all timing tables, the T_{fmc ker ck} is the fmc_ker_ck clock period.

Figure 30. NAND controller waveforms for read access

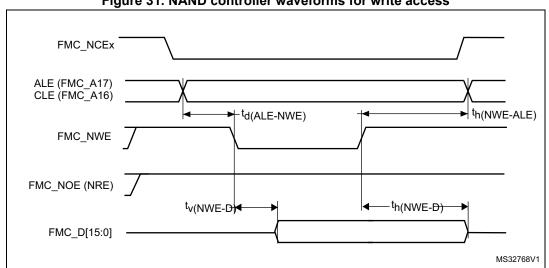
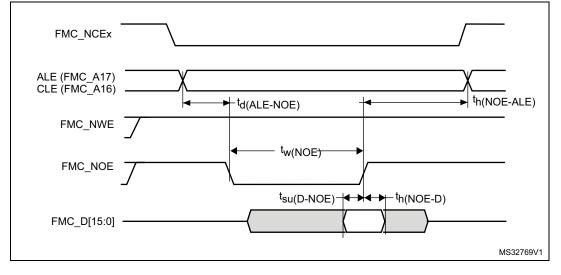



Figure 31. NAND controller waveforms for write access

Figure 32. NAND controller waveforms for common memory read access

150/226

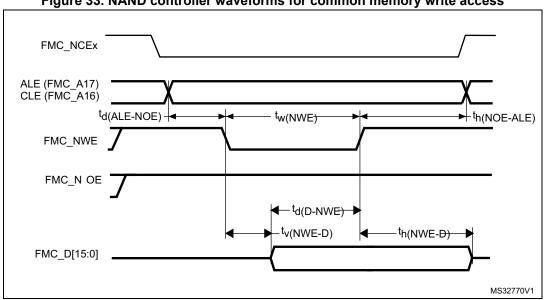
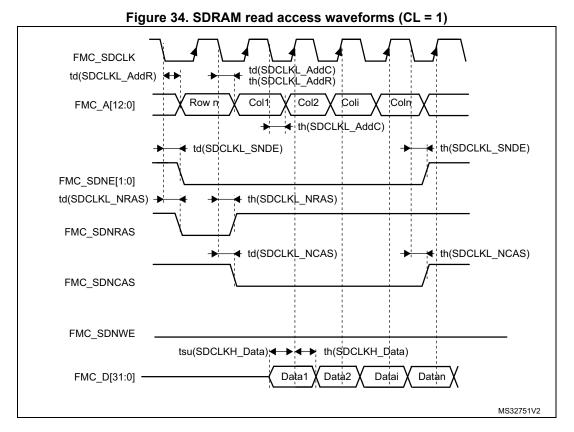


Figure 33. NAND controller waveforms for common memory write access

Table 75. Switching	characteristics fo	r NAND Fla	sh read cvcles ⁽¹⁾
			511 1044 090100

Symbol	Parameter	Min	Мах	Unit
t _{w(N0E)}	FMC_NOE low width	4T _{fmc_ker_ck} - 0.5	$4T_{fmc_ker_ck} + 0.5$	
t _{su(D-NOE)}	FMC_D[15-0] valid data before FMC_NOE high	8	-	
t _{h(NOE-D)}	FMC_D[15-0] valid data after FMC_NOE high	0	-	ns
t _{d(ALE-NOE)}	FMC_ALE valid before FMC_NOE low	-	3T _{fmc_ker_ck} + 1	
t _{h(NOE-ALE)}	FMC_NWE high to FMC_ALE invalid	4T _{fmc_ker_ck} - 2	-	

Table 76. Switching characteristics for NAND Flash write cycles⁽¹⁾

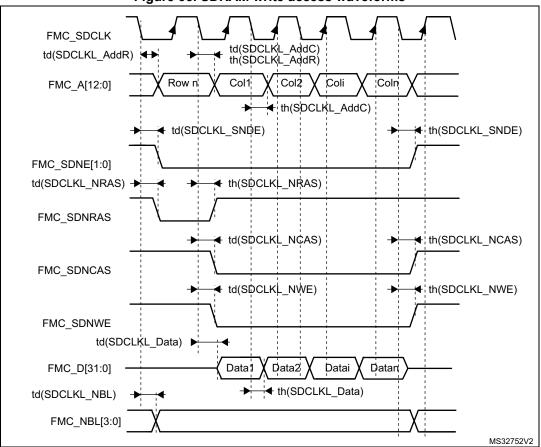

Symbol	Parameter	Min	Мах	Unit
t _{w(NWE)}	FMC_NWE low width	4T _{fmc_ker_ck} - 0.5	4T _{fmc_ker_ck} + 0.5	
t _{v(NWE-D)}	FMC_NWE low to FMC_D[15-0] valid	0	-	
t _{h(NWE-D)}	FMC_NWE high to FMC_D[15-0] invalid	2T _{fmc_ker_ck} - 0.5	-	ns
t _{d(D-NWE)}	FMC_D[15-0] valid before FMC_NWE high	5T _{fmc_ker_ck} – 1	-	115
t _{d(ALE-NWE)}	FMC_ALE valid before FMC_NWE low	-	3T _{fmc_ker_ck} + 0.5	
t _{h(NWE-ALE)}	FMC_NWE high to FMC_ALE invalid	2T _{fmc_ker_ck} − 1	-	

SDRAM waveforms and timings

In all timing tables, the $T_{fmc_ker_ck}$ is the fmc_ker_ck clock period, with the following FMC_SDCLK maximum values:

- For 1.8 V<V_{DD}<3.6V: FMC_CLK =100 MHz at 20 pF
- For 1.62 V<_{DD}<1.8 V, FMC_CLK =100 MHz at 30 pF

Table 77. SDRAM read timings⁽¹⁾


Symbol	Parameter	Min	Мах	Unit
t _{w(SDCLK)}	FMC_SDCLK period	2T _{fmc_ker_ck} − 1	$2T_{fmc_ker_ck} + 0.5$	
t _{su(SDCLKH _Data)}	Data input setup time	2	-	
t _{h(SDCLKH_Data)}	Data input hold time	1	-	
t _{d(SDCLKL_Add)}	Address valid time	-	1.5	
t _{d(SDCLKL} - SDNE)	Chip select valid time	-	1.5	ns
t _{h(SDCLKL_SDNE)}	Chip select hold time	0.5	-	115
$t_{d(SDCLKL_SDNRAS)}$	SDNRAS valid time	-	1	
t _{h(SDCLKL_SDNRAS)}	SDNRAS hold time	0.5	-	
t _{d(SDCLKL_SDNCAS)}	SDNCAS valid time	-	0.5	
t _{h(SDCLKL_SDNCAS)}	SDNCAS hold time	0	-	

Symbol	Parameter	Min	Мах	Unit
t _{W(SDCLK)}	FMC_SDCLK period	2T _{fmc_ker_ck} - 1	2T _{fmc_ker_ck} + 0.5	
t _{su(SDCLKH_Data)}	Data input setup time	2	-	
t _{h(SDCLKH_Data)}	Data input hold time	1.5	-	
t _{d(SDCLKL_Add)}	Address valid time	-	2.5	
t _{d(SDCLKL_SDNE)}	Chip select valid time	-	2.5	ns
t _{h(SDCLKL_SDNE)}	Chip select hold time	0	-	115
t _{d(SDCLKL_SDNRAS}	SDNRAS valid time	-	0.5	
$t_{h(SDCLKL_SDNRAS)}$	SDNRAS hold time	0	-	
t _{d(SDCLKL_SDNCAS)}	SDNCAS valid time	-	1.5	
$t_{h(SDCLKL_SDNCAS)}$	SDNCAS hold time	0	-	

Table 78. LPSDR SDRAM read timings⁽¹⁾

1. Guaranteed by characterization results.

Symbol	Parameter	Min	Мах	Unit
t _{w(SDCLK)}	FMC_SDCLK period	2T _{fmc_ker_ck} − 1	$2T_{fmc_ker_ck} + 0.5$	
t _{d(SDCLKL_Data})	Data output valid time	-	3	
t _{h(SDCLKL} _Data)	Data output hold time	0	-	
$t_{d(SDCLKL_Add)}$	Address valid time	-	1.5	
t _{d(SDCLKL_SDNWE)}	SDNWE valid time	-	1.5	
t _{h(SDCLKL_SDNWE)}	SDNWE hold time	0.5	-	ns
t _{d(SDCLKL_SDNE)}	Chip select valid time	-	1.5	115
t _{h(SDCLKLSDNE)}	Chip select hold time	0.5	-	
$t_{d(SDCLKL_SDNRAS)}$	SDNRAS valid time	-	1	
$t_{h(SDCLKL_SDNRAS)}$	SDNRAS hold time	0.5	-	
t _{d(SDCLKL_SDNCAS)}	SDNCAS valid time	-	1	
$t_{d(SDCLKL_SDNCAS)}$	SDNCAS hold time	0.5	-	

Table 79. SDRAM write timings⁽¹⁾

1. Guaranteed by characterization results.

Table 80. LPSDR SDRAM write timings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(SDCLK)}	FMC_SDCLK period	2T _{fmc_ker_ck} - 1	2T _{fmc_ker_ck} + 0.5	
t _{d(SDCLKL_Data})	Data output valid time	-	2.5	
t _{h(SDCLKL} _Data)	Data output hold time	0	-	
t _{d(SDCLKL_Add)}	Address valid time	-	2.5	
t _{d(SDCLKL-SDNWE)}	SDNWE valid time	-	2.5	
t _{h(SDCLKL-SDNWE)}	SDNWE hold time	0	-	ns
t _{d(SDCLKL} - SDNE)	Chip select valid time	-	3	115
t _{h(SDCLKL} - SDNE)	Chip select hold time	0	-	
t _{d(SDCLKL-SDNRAS)}	SDNRAS valid time	-	1.5	
t _{h(SDCLKL-SDNRAS)}	SDNRAS hold time	0	-	
t _{d(SDCLKL-SDNCAS)}	SDNCAS valid time	-	1.5	
t _{d(SDCLKL} -SDNCAS)	SDNCAS hold time	0	_	

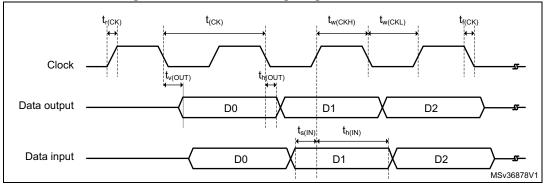
6.3.18 Quad-SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 81* and *Table 82* for Quad-SPI are derived from tests performed under the ambient temperature, $f_{rcc_c_k}$ frequency and V_{DD} supply voltage conditions summarized in *Table 23: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Measurement points are done at CMOS levels: 0.5V_{DD}
- I/O compensation cell enabled
- HSLV activated when V_{DD}≤2.7 V

Refer to Section 6.3.15: I/O port characteristics for more details on the input/output alternate function characteristics.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
F	Quad-SPI clock frequency	2.7 V ≤ V _{DD} <3.6 V C _L =20 pF	-	-	133	MHz
F _{ck1/t(CK)}		1.62 V <v<sub>DD<3.6 V C_L=15 pF</v<sub>	-	-	100	IVITIZ
t _{w(CKH)}	Quad-SPI clock high and low	_	t _(CK) /2 -0.5	-	t _(CK) /2	
t _{w(CKL)}	time	-	t _(CK) /2	-	t _(CK) /2 + 0.5	
t _{s(IN)}	Data input setup time	_	1.5	-	-	ns
t _{h(IN)}	Data input hold time	-	2	-	-	115
t _{v(OUT)}	Data output valid time	-	-	1.5	2	
t _{h(OUT)}	Data output hold time	_	0.5	-	-	


Table 81. Quad-SPI characteristics in SDR mode

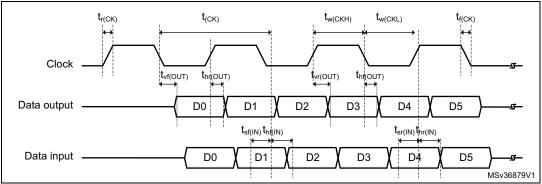

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
E	Quad-SPI clock frequency	2.7 V <v<sub>DD<3.6 V CL=20 pF</v<sub>	-	-	100	MHz
F _{ck1/t(CK)}		1.62 V <v<sub>DD<3.6 V CL=15 pF</v<sub>		-	100	
t _{w(CKH)}	Quad-SPI clock high and	_	t _(CK) /2 - 0.5	-	t _(CK) /2	
t _{w(CKL)}	low time	-	t _(CK) /2	-	t _(CK) /2+0.5	
t _{sr(IN)} , t _{sf(IN)}	Data input setup time	-	2	-	-	
t _{hr(IN)} , t _{hf(IN)}	Data input hold time	-	2	-	-	
		DHHC=0	-	3.5	4	ns
t _{vr(OUT)} , t _{vf(OUT)}	Data output valid time	DHHC=1 Pres=1, 2	-	t _(CK) /4+3.5	t _(CK) /4+4	
		DHHC=0	3	-	-	
t _{hr(OUT)} , t _{hf(OUT)}	Data output hold time	DHHC=1 Pres=1, 2	t _(CK) /4+3	-	-	

Table 82. Quad SPI characteristics in DDR mode

Figure 36. Quad-SPI timing diagram - SDR mode

Figure 37. Quad-SPI timing diagram - DDR mode

6.3.19 Delay block (DLYB) characteristics

Unless otherwise specified, the parameters given in *Table 84* for the delay block are derived from tests performed under the ambient temperature, $f_{rcc_c_ck}$ frequency and V_{DD} supply voltage summarized in *Table 23: General operating conditions*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
t _{init}	Initial delay	-	1400	2200	2400	De
t_{Δ}	Unit Delay	-	35	40	45	ps

 Table 83. Dynamics characteristics: Delay Block characteristics

6.3.20 16-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 84* are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage conditions summarized in *Table 23: General operating conditions*.

Symbol	Parameter	Conditio	ons	Min	Тур	Max	Unit
V _{DDA}	Analog power supply	-		1.62	-	3.6	
M	Desitive reference veltage	$V_{DDA} \ge 2$	2 V	2	-	V _{DDA}	V
V _{REF+}	Positive reference voltage	V _{DDA} < 2	2 V		V _{DDA}		
V _{REF-}	Negative reference voltage	-	-		V_{SSA}		
£	ADC clock frequency	2 V ≤ V _{DDA} ≤ 3.3 V	BOOST = 1	-	-	36	MHz
f _{ADC}		$2 \vee \leq \vee_{\text{DDA}} \leq 3.3 \vee$	BOOST = 0	-	-	20	INITIZ
		16-bit resol	ution	-	-	3.60	
	Sampling rate for Fast channels, BOOST = 1, f _{ADC} = 36 MHz	14-bit resolution		-	-	4.00	
		12-bit resolution		-	-	4.50	
		10-bit resolution		-	-	5.00	
		8-bit resolution				6.00	
		16-bit resolution		-	-	2.00	
	Sampling rate for Fast	14-bit resol	ution	-	-	2.20	
f _S	channels, BOOST = 0,	12-bit resolution		-	-	2.50	MSPS
	f _{ADC} = 20 MHz	10-bit resol	ution	-	-	2.80	
		8-bit resolu	ition			3.30	
		16-bit resol	ution	-	-	1.00	
	Sampling rate for Fast	14-bit resolution		-	-	1.00	
	channels, BOOST = 0,	12-bit resolution		-	-	1.00	
	f _{ADC} = 10 MHz	10-bit resol	ution	-	-	1.00	
		8-bit resolu	ition			1.00	

Table 84. ADC characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
£	External trigger frequency	f _{ADC} = 36 MHz	-	-	3.6	MHz
f _{TRIG}	External trigger frequency	16-bit resolution	-	-	10	1/f _{ADC}
V _{AIN} ⁽²⁾	Conversion voltage range	-	0	-	V _{REF+}	
V _{CMIV}	Common mode input voltage	-	V _{REF} /2- 10% V _{REF} /2 V _{REF} /2- 10%		V _{REF} /2+ 10%	V
R _{AIN}	External input impedance	See Equation 1 for details	50		50	kΩ
C _{ADC}	Internal sample and hold capacitor	-	- 4 -		-	pF
t _{ADCREG} STUP	ADC LDO startup time	-	- 5		10	μs
t _{STAB}	ADC power-up time	LDO already started			conversion cycle	
t _{CAL}	Offset and linearity calibration time	-	16384			
t _{OFF_CAL}	Offset calibration time	-		1280		
	Trigger conversion latency	CKMODE = 00	1.5	2	2.5	
t	for regular and injected	CKMODE = 01	-	- 2		
t _{latr}	channels without aborting the conversion	CKMODE = 10			2.25	
		CKMODE = 11			2.125	1/f _{ADC}
	Trigger conversion latency	CKMODE = 00	2.5	3	3.5	
4	for regular and injected	CKMODE = 01	-	-	3	
t _{LATRINJ}	channels when a regular	CKMODE = 10	-	-	3.25	
	conversion is aborted	CKMODE = 11	-	-	3.125	1
t _S	Sampling time	-	1.5 - 640.5		1	
t _{CONV}	Total conversion time (including sampling time)	N-bit resolution		t _S + 0.5 + N/2 (9 to 648 cycles in 14-bit mode)		

Table 84.	ADC	characteristics ⁽¹⁾	(continued)
-----------	-----	--------------------------------	-------------

1. Guaranteed by design.

2. Depending on the package, $V_{\mathsf{REF}*}$ can be internally connected to V_{DDA} and $V_{\mathsf{REF}*}$ to $V_{\mathsf{SSA}}.$

Equation 1: R_{AIN} max formula

$$R_{AIN} < \frac{(k - 0.5)}{f_{ADC} \times C_{ADC} \times \ln(2^{N+2})} - R_{ADC}$$

The formula above (*Equation 1*) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution).

		lable	85. ADC accu					
Symbol	Parameter	Condi	tions ⁽⁴⁾	Min	Тур	Max	Unit	
		Single	BOOST = 1	-	±6	-		
CT.	Total	ended	BOOST = 0	-	±8	-		
ET	unadjusted error	Differential	BOOST = 1	-	±10	-		
		Differential	BOOST = 0	-	±16	-		
		Single	BOOST = 1	-	2	-		
ED	Differential	ended	BOOST = 0	-	1	-		
ED	linearity error	Differential	BOOST = 1	-	8	-	- ±LSB	
		Differential	BOOST = 0	-	2	-		
		Single	BOOST = 1	-	±6	-		
EL	Integral	ended	BOOST = 0	-	±4	-		
EL	error	linearity error		BOOST = 1	-	±6	-	
			Differential	BOOST = 0	-	±4	-	
	Effective	Single	BOOST = 1	-	11.6	-		
ENOB ⁽⁵⁾	number of bits	ended	BOOST = 0	-	12	-	hite	
ENOB			BOOST = 1	-	13.3	-	— bits	
	(2 MSPS)	Differential	BOOST = 0	-	13.5	-		
	Signal-to-	Single	BOOST = 1	-	71.6	-		
SINAD ⁽⁵⁾	noise and distortion	ended	BOOST = 0	-	74	-		
SINAD	ratio		BOOST = 1	-	81.83	-		
	(2 MSPS)	Differential	BOOST = 0	-	83	-		
		Single	BOOST = 1	-	72	-		
SNR ⁽⁵⁾	Signal-to- noise ratio	ended	BOOST = 0	-	74	-		
SNR	(2 MSPS)	Differential	BOOST = 1	-	82	-	dB	
	, ,	Differential	BOOST = 0	-	83	-		
		Single ended	BOOST = 1	-	-78	-		
THD ⁽⁵⁾	Total harmonic	Single	BOOST = 0	-	-80	-	1	
	distortion	ended	BOOST = 1	-	-90	-		
		Differential	BOOST = 0	-	-95	-		

Table 85. ADC accuracy⁽¹⁾⁽²⁾⁽³⁾

1. Guaranteed by characterization for BGA packages, the values for LQFP packages might differ.

2. ADC DC accuracy values are measured after internal calibration.

3. The above table gives the ADC performance in 16-bit mode.

4. ADC clock frequency ≤ 36 MHz, 2 V ≤ V_{DDA} ≤3.3 V, 1.6 V ≤ V_{REF} ≤ V_{DDA} , BOOSTEN (for I/O) = 1.

5. ENOB, SINAD, SNR and THD are specified for $V_{DDA} = V_{REF} = 3.3 \text{ V}.$

Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 6.3.15 does not affect the ADC accuracy.

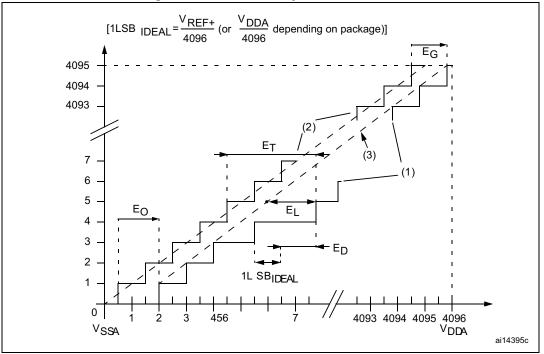
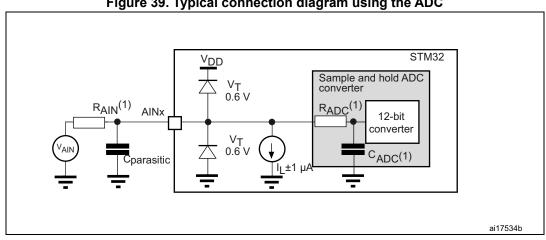


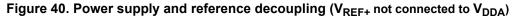
Figure 38. ADC accuracy characteristics

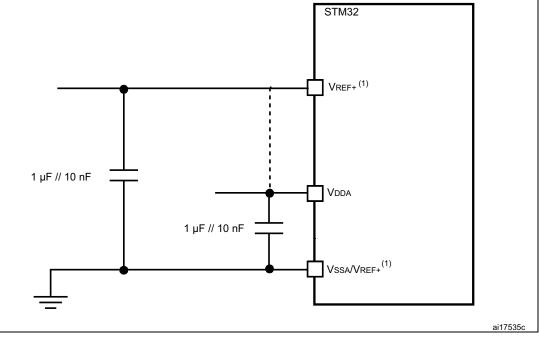
- 1. Example of an actual transfer curve.
- 2. Ideal transfer curve.
- 3. End point correlation line.
- 4. E_T = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO = Offset Error: deviation between the first actual transition and the first ideal one. EG = Gain Error: deviation between the last ideal transition and the last actual one. ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.

ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one. EL = Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line.

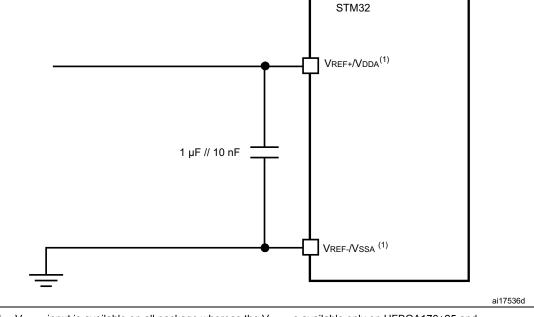
160/226




Figure 39. Typical connection diagram using the ADC


- Refer to Table 84 for the values of $\mathsf{R}_{AIN},\,\mathsf{R}_{ADC}$ and $\mathsf{C}_{ADC}.$ 1.
- $C_{parasitic}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 5 pF). A high $C_{parasitic}$ value downgrades conversion accuracy. To remedy this, f_{ADC} should be reduced. 2.

General PCB design guidelines


Power supply decoupling should be performed as shown in *Figure 40* or *Figure 41*, depending on whether V_{REF+} is connected to V_{DDA} or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip.

1. V_{REF+} input is available on all package whereas the V_{REF-} s available only on UFBGA176+25 and TFBGA240+25. When V_{REF-} is not available, it is internally connected to V_{DDA} and V_{SSA}.

1. V_{REF+} input is available on all package whereas the V_{REF-} s available only on UFBGA176+25 and TFBGA240+25. When V_{REF-} is not available, it is internally connected to V_{DDA} and V_{SSA} .

6.3.21 DAC electrical characteristics

Symbol	Parameter	Cond	itions	Min	Тур	Max	Unit
V _{DDA}	Analog supply voltage		-	1.8	3.3	3.6	
V_{REF} +	Positive reference voltage		-	1.80	-	V _{DDA}	v
V _{REF-}	Negative reference voltage		-	-	V _{SSA}	-	
RL	Resistive Load	DAC output	connected to V _{SSA}	5	-	-	
		buffer ON	connected to V _{DDA}	25	-	-	kΩ
$R_0^{(1)}$	Output Impedance	DAC output	t buffer OFF	10.3	13	16	
	Output impedance sample	DAC output	V _{DD} = 2.7 V	-	-	1.6	
R _{BON} and hold mod buffer ON	and hold mode, output buffer ON	buffer ON	V _{DD} = 2.0 V	-	-	2.6	kΩ
P	Output impedance sample	DAC output buffer OFF	V _{DD} = 2.7 V	-	-	17.8	
R _{BOFF}	and hold mode, output buffer OFF		V _{DD} = 2.0 V	-	-	18.7	kΩ
C _L ⁽¹⁾		DAC output	t buffer OFF	-	_	50	pF
C _{SH} ⁽¹⁾	Capacitive Load	Sample and	d Hold mode	-	0.1	1	μF
V _{DAC_OUT}	Voltage on DAC_OUT	DAC outpu	it buffer ON	0.2	-	V _{REF+} -0.2	v
2,10_001	output	DAC output	t buffer OFF	0	-	V _{REF+}	
tSETTLING	Settling time (full scale: for a 12-bit code transition between the lowest and the highest input codes when DAC_OUT reaches the final value of ±0.5LSB, ±1LSB, ±2LSB, ±4LSB, ±8LSB)	Normal mode, DAC output buffer OFF, ±1LSB C _L =10 pF		-	1.7 ⁽¹⁾	2 ⁽¹⁾	μs
t _{WAKEUP} ⁽²⁾	Wakeup time from off state (setting the Enx bit in the DAC Control register) until the ±1LSB final value	Normal mode, D ON, C _L ≤ 50	-	5	7.5	μs	
V _{offset} ⁽¹⁾	Middle code offset for 1	V _{REF+}	= 3.6 V	-	850	-	μV
• offset`	trim code step	V _{REF+}	= 1.8 V	-	425	-	μv

Table 86. DAC characteristics

Electrical characteristics

Symbol	Parameter	Cond	itions	Min	Тур	Мах	Unit
		DAC output	No load, middle code (0x800)	-	360	-	
I _{DDA(DAC)}	DAC quiescent	buffer ON	No load, worst code (0xF1C)	-	490	-	
	consumption from V _{DDA}	DAC output buffer OFF	No load, middle/worst code (0x800)	-	20	-	
		Sample and Hold mode, C _{SH} =100 nF		-	360*T _{ON} / (T _{ON} +T _{OFF})	-	
	DAC consumption from V _{REF+}	DAC output	No load, middle code (0x800)	-	170	-	μA
		buffer ON	No load, worst code (0xF1C)	-	170	-	
I _{DDV} (DAC)		DAC output buffer OFF	No load, middle/worst code (0x800)	-	160	-	
		Sample and Hold mode, Buffer ON, C _{SH} =100 nF (worst code)		-	170*T _{ON} / (T _{ON} +T _{OFF})	-	
			old mode, Buffer nF (worst code)	-	160*T _{ON} / (T _{ON} +T _{OFF})	-	

Table 86. DAC characteristics (continued)

1. Guaranteed by design.

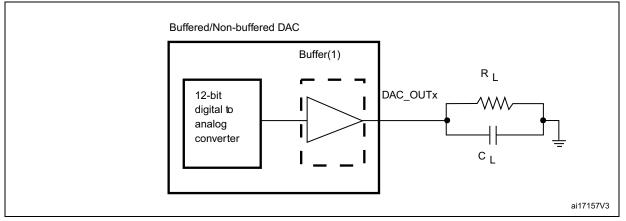
2. In buffered mode, the output can overshoot above the final value for low input code (starting from the minimum value).

Symbol	Parameter	Cond	itions	Min	Тур	Max	Unit			
DNL	Differential non	DAC outpu	t buffer ON	-	±2	-	LSB			
DINL	linearity ⁽²⁾	DAC output	DAC output buffer OFF		±2	-	LOD			
INI	INL Integral non linearity ⁽³⁾		r ON, C _L ≤ 50 pF, 5 kΩ	-	±4	-	LSB			
INL		DAC output buffer OFF, C _L ≤ 50 pF, no R _L		-	±4	-	LOD			
		DAC output buffer ON,	V _{REF+} = 3.6 V	-	-	±12				
Offset	Offset error at code 0x800 ⁽³⁾	C _L ≤ 50 pF, R _L ≥ 5 kΩ	V _{REF+} = 1.8 V	-	-	±25	LSB			
		DAC output buffer OFF, C _L ≤ 50 pF, no R _L		-	-	±8				
Offset1	Offset error at code 0x001 ⁽⁴⁾		buffer OFF, pF, no R _L	-	-	±5	LSB			

Table 87. DAC accuracy⁽¹⁾

164/226

Symbol	Parameter	Cond	itions	Min	Тур	Мах	Unit
OffsetCal	Offset error at code 0x800 after factory	DAC output buffer ON,	V _{REF+} = 3.6 V	-	-	±5	LSB
Olisetoal	calibration	C _L ≤ 50 pF, R _L ≥ 5 kΩ	V _{REF+} = 1.8 V	-	-	±7	LOD
Gain	Gain error ⁽⁵⁾		DAC output buffer ON, $C_L \le 50 \text{ pF}$, $R_L \ge 5 \text{ k}\Omega$		-	±1	%
Gain			DAC output buffer OFF, $C_L \le 50 \text{ pF}$, no R_L		-	±1	70
TUE	Total unadjusted error	DAC output buffer OFF, C _L ≤ 50 pF, no R _L		-	-	±12	LSB
SNR	Signal-to-noise ratio ⁽⁶⁾		DAC output buffer ON,C _L \leq 50 pF, R _L \geq 5 k Ω , 1 kHz, BW = 500 KHz		67.8	-	dB
SINAD	Signal-to-noise and distortion ratio ⁽⁶⁾	DAC output buffer ON, C _L ≤ 50 pF, R _L ≥ 5 kΩ , 1 kHz		-	67.5	-	dB
ENOB	Effective number of bits	-	t buffer ON, _ ≥ 5 kΩ , 1 kHz	-	10.9	-	bits


Table 87. DAC accuracy⁽¹⁾ (continued)

1. Guaranteed by characterization.

2. Difference between two consecutive codes minus 1 LSB.

- 3. Difference between the value measured at Code i and the value measured at Code i on a line drawn between Code 0 and last Code 4095.
- 4. Difference between the value measured at Code (0x001) and the ideal value.
- 5. Difference between the ideal slope of the transfer function and the measured slope computed from code 0x000 and 0xFFF when the buffer is OFF, and from code giving 0.2 V and (V_{REF+} 0.2 V) when the buffer is ON.
- 6. Signal is -0.5dBFS with $F_{sampling}$ =1 MHz.

 The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

6.3.22 Voltage reference buffer characteristics

Table 88. VREFBUF characteristics ⁽¹⁾										
Symbol	Parameter	Conditio	ns	Min	Тур	Max	Unit			
			VSCALE = 000	2.8	3.3	3.6				
		Normal mode	VSCALE = 001	2.4	-	3.6				
		Normai mode	VSCALE = 010	2.1	-	3.6				
N/			VSCALE = 011	1.8	-	3.6				
V _{DDA}	Analog supply voltage		VSCALE = 000	1.62	-	2.80				
		Degraded mode	VSCALE = 001	1.62	-	2.40				
		Degraded mode	VSCALE = 010	1.62	-	2.10				
			VSCALE = 011	1.62	-	1.80				
			VSCALE = 000	-	2.5	-				
		Normal mode	VSCALE = 001	-	2.048	-	V			
		Normai mode	VSCALE = 010	-	1.8	-				
			VSCALE = 011	-	1.5	-				
V _{REFBUF}	Voltage Reference Buffer Output	Degraded mode ⁽²⁾	VSCALE = 000	V _{DDA} - 150 mV	-	V _{DDA}				
_OUT			VSCALE = 001	V _{DDA} - 150 mV	-	V _{DDA}				
			VSCALE = 010	V _{DDA} - 150 mV	-	V _{DDA}				
			VSCALE = 011	V _{DDA} - 150 mV	-	V _{DDA}				
TRIM	Trim step resolution	-	-	-	±0.05	±0.2	%			
CL	Load capacitor	-	-	0.5	1	1.50	uF			
esr	Equivalent Serial Resistor of C _L	-	-	-	-	2	Ω			
I _{load}	Static load current	-	-	-	-	4	mA			
			I _{load} = 500 μΑ	-	200	-				
I _{line_reg}	Line regulation	$2.8 \text{ V} \leq \text{V}_{\text{DDA}} \leq 3.6 \text{ V}$	I _{load} = 4 mA	-	100	-	ppm/V			
I _{load_reg}	Load regulation	500 µA ≤ I _{LOAD} ≤ 4 mA	Normal Mode	-	50	-	ppm/ mA			
Т	Temperature coefficient	−40 °C < T _J < +105 °C	-	-	-	T _{coeff} xV _{REFINT} + 50	ppm/			
T _{coeff}	remperature coefficient	0 °C < T _J < +50 °C	-	-	-	T _{coeff} xV _{REFINT} + 50	°C			
PSRR	Power supply rejection	DC	-	-	60	-	dP			
FORK		100KHz	-	-	40	-	dB			

Table 88. VREFBUF characteristics⁽¹⁾

166/226

Symbol	Parameter	Conditio	Min	Тур	Max	Unit	
t _{start}		C _L =0.5 μF	-	-	300	-	
	Start-up time	C _L =1 μF	-	-	500	-	μs
		C _L =1.5 μF	-	-	650	-	
I _{INRUSH}	Control of maximum DC current drive on V _{REFBUF_OUT} during startup phase ⁽³⁾	-		-	8	-	mA
. VREFBUF		I _{LOAD} = 0 μA	-	-	15	25	
I _{DDA(VRE} FBUF)	consumption from	l _{LOAD} = 500 μA	-	-	16	30	μA
1001)	V _{DDA}	I _{LOAD} = 4 mA	_	-	32	50	

Table 88. VREFBUF characteristics⁽¹⁾ (continued)

1. Guaranteed by design.

2. In degraded mode, the voltage reference buffer cannot accurately maintain the output voltage (V_{DDA}-drop voltage).

3. To properly control VREFBUF I_{INRUSH} current during the startup phase and the change of scaling, V_{DDA} voltage should be in the range of 1.8 V-3.6 V, 2.1 V-3.6 V, 2.4 V-3.6 V and 2.8 V-3.6 V for VSCALE = 011, 010, 001 and 000, respectively.

6.3.23 Temperature sensor characteristics

Table 89. Temperature sensor character	istics
--	--------

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	-	3	°C
Avg_Slope ⁽²⁾	Average slope	-	2	-	mV/°C
V ₃₀ ⁽³⁾	Voltage at 30°C ± 5 °C	-	0.62	-	V
t _{start_run} (1)	Startup time in Run mode (buffer startup)	-	-	25.2	110
t _{S_temp} ⁽¹⁾	ADC sampling time when reading the temperature	9	-	-	μs
I _{sens} (1)	Sensor consumption	-	0.18	0.31	μA
I _{sensbuf} ⁽¹⁾	Sensor buffer consumption	-	3.8	6.5	μΛ

1. Guaranteed by design.

2. Guaranteed by characterization.

3. Measured at V_{DDA} = 3.3 V \pm 10 mV. The V₃₀ ADC conversion result is stored in the TS_CAL1 byte.

Symbol	Parameter	Memory address
TS_CAL1	Temperature sensor raw data acquired value at 30 °C, V_{DDA} =3.3 V	0x1FF1 E820 -0x1FF1 E821
TS_CAL2	Temperature sensor raw data acquired value at 110 °C, V_{DDA} =3.3 V	0x1FF1 E840 - 0x1FF1 E841

Table 90	. Temperature	sensor	calibration	values
----------	---------------	--------	-------------	--------

6.3.24 V_{BAT} monitoring characteristics

Symbol	Parameter	Min	Тур	Мах	Unit
R	Resistor bridge for V _{BAT}	-	26	-	KΩ
Q	Ratio on V _{BAT} measurement	-	4	-	-
Er ⁽¹⁾	Error on Q	-10	-	+10	%
t _{S_vbat} ⁽¹⁾	ADC sampling time when reading V_{BAT} input				μs

1. Guaranteed by design.

Symbol	Parameter	arameter Condition		Тур	Мах	Unit		
R _{BC} Battery charging resistor	VBRS in PWR_CR3= 0	-	5	-	ΚΩ			
	VBRS in PWR_CR3= 1		1.5	-	1112			

Table 92. V_{BAT} charging characteristics

6.3.25 Voltage booster for analog switch

Table 93. Voltage booster for analog switch characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{DD}	Supply voltage	-	1.62	2-6	3.6	V
t _{SU(BOOST)}	Booster startup time	-	-	-	50	μs
1	Booster consumption	1.62 V ≤ V _{DD} ≤ 2.7 V	-	-	125	μA
IDD(BOOST)		2.7 V < V _{DD} < 3.6 V	-	-	250	μΑ

6.3.26 Comparator characteristics

Symbol	Parameter	Co	onditions	Min	Тур	Мах	Unit	
V _{DDA}	Analog supply voltage		-	1.62	3.3	3.6		
V _{IN}	Comparator input voltage range		-	0	-	V _{DDA}	V	
$V_{BG}^{(2)}$	Scaler input voltage		-	Refe	er to V _{RI}	EFINT		
V _{SC}	Scaler offset voltage		-	-	±5	±10	mV	
1	Scaler static consumption	BRG_EN=	0 (bridge disable)	-	0.2	0.3		
I _{DDA(SCALER)}	from V _{DDA}	BRG_EN=	1 (bridge enable)	-	0.8	1	μA	
t _{START_SCALER}	Scaler startup time		-	-	140	250	μs	
	Comparator startup time to	High-	speed mode	-	2	5		
t _{START}	reach propagation delay	Med	dium mode	-	5	20	μs	
	specification	Ultra-lo	w-power mode	-	15	80		
t _D	Propagation delay for	High-	speed mode	-	50	80	ns	
	200 mV step with 100 mV overdrive	Medium mode		-	0.5	1.2		
		Ultra-low-power mode		-	2.5	7	μs	
	Propagation delay for step > 200 mV with 100 mV overdrive only on positive inputs	High-speed mode		-	50	120	ns	
		Medium mode		-	0.5	1.2	μs	
		Ultra-low-power mode		-	2.5	7		
V _{offset}	Comparator offset error	Full comr	non mode range	-	±5	±20	mV	
		No hysteresis		-	0	-	mV	
		Low hysteresis		-	10	-		
V _{hys}	Comparator hysteresis	Medium hysteresis		-	20	-		
		High hysteresis		-	30	-		
			Static	-	400	600		
		Ultra-low- power mode	With 50 kHz ±100 mV overdrive square signal	-	800	-	nA	
			Static	-	5	7		
I _{DDA} (COMP)	Comparator consumption from V _{DDA}	Medium mode	With 50 kHz ±100 mV overdrive square signal	-	6	-		
			Static	-	70	100	μA	
		High-speed mode	• .	With 50 kHz ±100 mV overdrive square signal	-	75	-	-

Table 94.	СОМР	characteristics ⁽¹⁾
-----------	------	--------------------------------

1. Guaranteed by design, unless otherwise specified.

2. Refer to Table 27: Embedded reference voltage.

6.3.27 Operational amplifiers characteristics

Table 95. OPAMP characteristics ⁽¹⁾										
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit				
V _{DDA}	Analog supply voltage Range	-	2	3.3	3.6	v				
CMIR	Common Mode Input Range	-	0	-	V _{DDA}	v				
		25°C, no load on output	-	-	±1.5					
VI _{OFFSET}	Input offset voltage	All voltages and temperature, no load	-	-	±2.5	mV				
ΔVI _{OFFSET}	Input offset voltage drift	-	-	±3.0	-	µV/°C				
TRIMOFFSETP TRIMLPOFFSETP	Offset trim step at low common input voltage (0.1*V _{DDA})	-	-	1.1	1.5	mV				
TRIMOFFSETN TRIMLPOFFSETN	Offset trim step at high common input voltage (0.9*V _{DDA})	-	-	1.1	1.5	- 110				
I _{LOAD}	Drive current	-	-	-	500	μΑ				
I _{LOAD_PGA}	Drive current in PGA mode	-	-	-	270					
C _{LOAD}	Capacitive load	-	-	-	50	pF				
CMRR	Common mode rejection ratio	-	-	80	-	dB				
PSRR	Power supply rejection ratio	$\begin{array}{l} C_{\text{LOAD}} \leq 50 \text{pf } / \\ R_{\text{LOAD}} \geq 4 \ \text{k} \Omega^{(2)} \text{ at } 1 \ \text{kHz}, \\ V_{\text{com}} = V_{\text{DDA}} / 2 \end{array}$	-	66	-	dB				
GBW	Gain bandwidth for high supply range	-	-	7.3	-	MHz				
SR	Slew rate (from 10% and	Normal mode	-	3	-	1//110				
SK	90% of output voltage)	High-speed mode	-	30	-	V/µs				
AO	Open loop gain	-	-	90	-	dB				
φm	Phase margin	-	-	55	-	o				
GM	Gain margin	-	-	12	-	dB				

Table 95. OPAMP characteristics⁽¹⁾

170/226

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
V _{OHSAT}	High saturation voltage		k or R _{LOAD} =min ⁽²⁾ , put at V _{DDA}	V _{DDA} −100 mV	-	-	mV
V _{OLSAT}	Low saturation voltage	I _{load} =max or R _{LOAD} =min ⁽²⁾ , Input at 0 V		-	-	100	
	Wake up time from OFF	Normal mode	$\begin{array}{l} C_{LOAD} \leq 50 \text{pf}, \\ R_{LOAD} \geq 4 \ \text{k} \Omega^{(2)}, \\ \text{follower} \\ \text{configuration} \end{array}$	-	0.8	3.2	
twakeup	state	High speed	$\begin{array}{l} C_{LOAD} \leq 50 \text{pf}, \\ R_{LOAD} \geq 4 \ \text{k} \Omega^{(2)}, \\ \text{follower} \\ \text{configuration} \end{array}$	-	0.9	2.8	- µs
			-	-	2	-	-
	Non inverting gain value		-	-	4	-	-
	Non inventing gain value	-		-	8	-	-
PGA gain		-		-	16	-	-
	Inverting gain value	-		-	-1	-	-
		-		-	-3	-	-
		-		-	-7	-	-
		-		-	-15	-	-
		PGA Gain=2		-	10/10	-	kΩ/ kΩ
	R2/R1 internal resistance	PGA Gain=4		-	30/10	-	
	values in non-inverting PGA mode ⁽³⁾	PGA Gain=8		-	70/10	-	
		PGA Gain=16		-	150/10	-	
R _{network}		PGA Gain=-1		-	10/10	-	
	R2/R1 internal resistance	P	GA Gain=-3	-	30/10	_	
	values in inverting PGA mode ⁽³⁾	P	GA Gain=-7	_	70/10	70/10 -	
			GA Gain=-15	-	150/10	-	-
Delta R	Resistance variation (R1 or R2)			-15	-	15	%
			Gain=2	-	GBW/2	-	
	PGA bandwidth for		Gain=4	-	GBW/4	BW/4 -	
PGA BW	different non inverting gain		Gain=8	-	GBW/8	-	- MHz
		Gain=16		-	GBW/16	-	

Table 95. OPAMP characteristics⁽¹⁾ (continued)

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
en	Voltage noise density	at 1 KHz	Hz output loaded - 14 at with 4 kΩ - 56	140	-	nV/√	
	voltage noise density	at 10 KHz		-	55	-	Hz
I _{DDA(OPAMP)}	OPAMP consumption from	Normal mode	no Load,	-	570	1000	
	V _{DDA}	High- speed mode	quiescent mode, follower	-	610	1200	μA

Table 95. OPAMP characteristics⁽¹⁾ (continued)

1. Guaranteed by design, unless otherwise specified.

2. R_{LOAD} is the resistive load connected to VSSA or to VDDA.

3. R2 is the internal resistance between the OPAMP output and th OPAMP inverting input. R1 is the internal resistance between the OPAMP inverting input and ground. PGA gain = 1 + R2/R1.

6.3.28 Digital filter for Sigma-Delta Modulators (DFSDM) characteristics

Unless otherwise specified, the parameters given in *Table 96* for DFSDM are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage summarized in *Table 23: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 6.3.15: I/O port characteristics for more details on the input/output alternate function characteristics (DFSDMx_CKINx, DFSDMx_DATINx, DFSDMx_CKOUT for DFSDMx).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{DFSDMCLK}	DFSDM clock	1.62 V < V _{DD} < 3.6 V	-	-	f _{SYSCLK}	
		SPI mode (SITP[1:0]=0,1), External clock mode (SPICKSEL[1:0]=0), 1.62 V < V _{DD} < 3.6 V	-	-	20 (f _{DFSDMCLK} /4)	
		SPI mode (SITP[1:0]=0,1), External clock mode (SPICKSEL[1:0]=0), 2.7 < V _{DD} < 3.6 V	-	-	20 (f _{DFSDMCLK} /4)	
f _{CKIN} (1/T _{CKIN})	Input clock frequency	SPI mode (SITP[1:0]=0,1), Internal clock mode (SPICKSEL[1:0]≠0), 1.62 < V _{DD} < 3.6 V	-	-	20 (f _{DFSDMCLK} /4)	MHz
		SPI mode (SITP[1:0]=0,1), Internal clock mode (SPICKSEL[1:0]≠0), 2.7 < V _{DD} < 3.6 V	-	-	20 (f _{DFSDMCLK} /4)	
^f скоит	Output clock frequency	1.62 < V _{DD} < 3.6 V	-	-	20	
DuCy _{CKOUT}	Output clock frequency duty cycle	1.62 < V _{DD} < 3.6 V	45	50	55	%

Table 96. DFSDM measured timing 1.62-3.6 V

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
^t wh(CKIN) t _{wl(CKIN)}	Input clock high and low time	SPI mode (SITP[1:0]=0,1), External clock mode (SPICKSEL[1:0]=0), 1.62 < V _{DD} < 3.6 V	TCKIN/2 - 0.5	T _{CKIN} /2	-	
t _{su}	Data input setup time	SPI mode (SITP[1:0]=0,1), External clock mode (SPICKSEL[1:0]=0), 1.62 < V _{DD} < 3.6 V	4	-	-	
t _h	Data input hold time	SPI mode (SITP[1:0]=0,1), External clock mode (SPICKSEL[1:0]=0), 1.62 < V _{DD} < 3.6 V	0.5	-	-	ns
T _{Manchester}	Manchester data period (recovered clock period)	Manchester mode (SITP[1:0]=2,3), Internal clock mode (SPICKSEL[1:0] \neq 0), 1.62 < V _{DD} < 3.6 V	(CKOUTDIV+1) * T _{DFSDMCLK}	-	(2*CKOUTDIV) * T _{DFSDMCLK}	

174/226

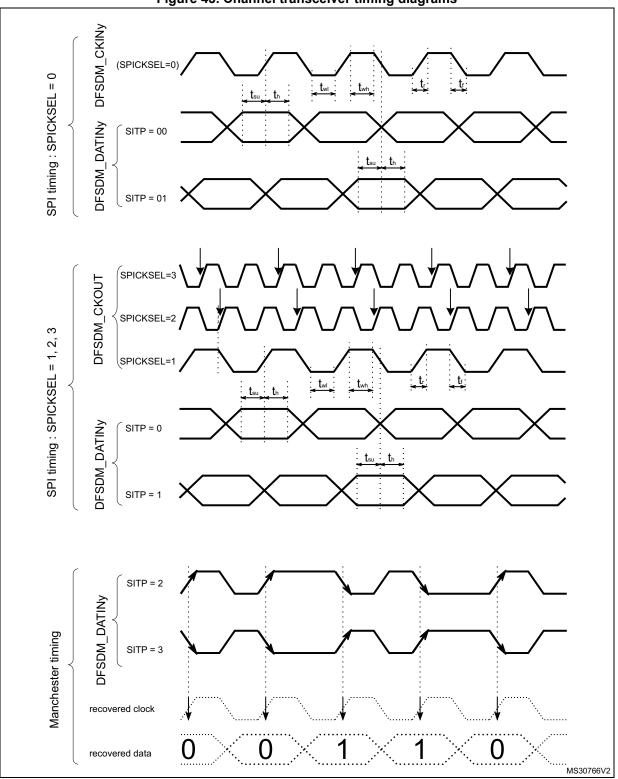
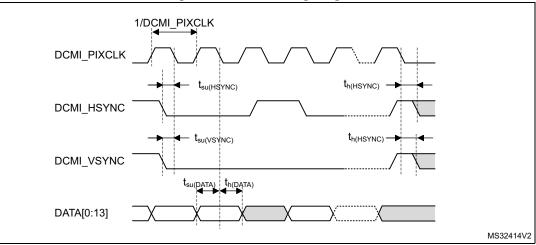


Figure 43. Channel transceiver timing diagrams

6.3.29 Camera interface (DCMI) timing specifications

Unless otherwise specified, the parameters given in *Table 97* for DCMI are derived from tests performed under the ambient temperature, $f_{rcc_c_ck}$ frequency and V_{DD} supply voltage summarized in *Table 23: General operating conditions*, with the following configuration:


- DCMI_PIXCLK polarity: falling
- DCMI_VSYNC and DCMI_HSYNC polarity: high
- Data formats: 14 bits
- Capacitive load C=30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}

Symbol	Parameter		Max	Unit		
-	Frequency ratio DCMI_PIXCLK/f _{rcc_c_ck}	-	0.4	-		
DCMI_PIXCLK	Pixel clock input	-	80	MHz		
D _{Pixel}	Pixel clock input duty cycle	30	70	%		
t _{su(DATA)}	Data input setup time	1	-			
t _{h(DATA)}	Data input hold time	1	-			
t _{su(HSYNC)} t _{su(VSYNC)}	DCMI_HSYNC/DCMI_VSYNC input setup time	1.5	-	ns		
t _{h(HSYNC)} t _{h(VSYNC)}	DCMI_HSYNC/DCMI_VSYNC input hold time	1	-			

Table 97. DCMI characteristics⁽¹⁾

1. Guaranteed by characterization results.

6.3.30 LCD-TFT controller (LTDC) characteristics

Unless otherwise specified, the parameters given in *Table 98* for LCD-TFT are derived from tests performed under the ambient temperature, $f_{rcc_c_ck}$ frequency and V_{DD} supply voltage summarized in *Table 23: General operating conditions*, with the following configuration:

- LCD_CLK polarity: high
- LCD_DE polarity: low
- LCD_VSYNC and LCD_HSYNC polarity: high
- Pixel formats: 24 bits
- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C=30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}
- I/O compensation cell enabled

Symbol	Parameter	Conditions	Min	Мах	Unit
_		2.7 V < V _{DD} < 3.6 V, 20 pF	-	150	
f _{CLK}	LTDC clock output frequency	2.7 V < V _{DD} < 3.6 V	-	133	MHz
		1.62 V < V _{DD} < 3.6 V	-	90	
D _{CLK}	LTDC clock output duty cycle	-	45	55	%
t _{w(CLKH),} t _{w(CLKL)}	Clock High time, low time		t _{w(CLK)} /2-0.5	t _{w(CLK)} /2+0.5	
t _{v(DATA)}	Data output valid time		-	0.5	
t _{h(DATA)}	Data output hold time		0	-	
t _{v(HSYNC),} t _{v(VSYNC),} t _{v(DE)}	HSYNC/VSYNC/DE output valid time		-	0.5	ns
t _{h(HSYNC),} t _{h(VSYNC)} , t _{h(DE)}	HSYNC/VSYNC/DE output hold time		0.5	-	

Table 98. LTDC characteristics ⁽¹⁾

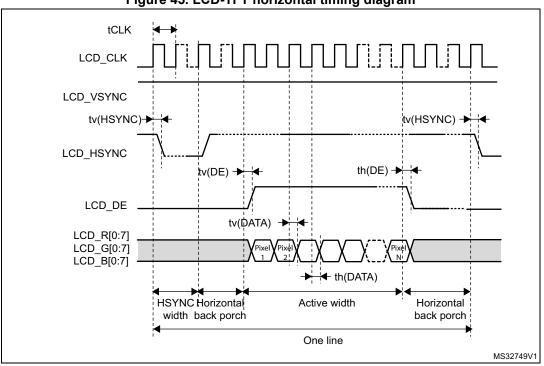
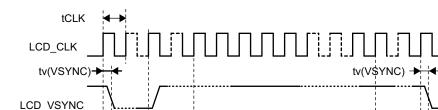
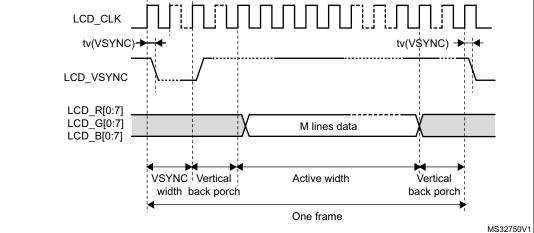




Figure 45. LCD-TFT horizontal timing diagram

6.3.31 Timer characteristics

The parameters given in Table 99 are guaranteed by design.

Refer to Section 6.3.15: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions ⁽³⁾	Min	Max	Unit
t _{res(TIM)}	Timer resolution time	AHB/APBx prescaler=1 or 2 or 4, f _{TIMxCLK} = 200 MHz	1	-	t _{TIMxCLK}
		AHB/APBx prescaler>4, f _{TIMxCLK} = 100 MHz	1	-	t _{TIMxCLK}
f _{EXT}	Timer external clock frequency on CH1 to CH4	f _{TIMxCLK} = 200 MHz	0	f _{TIMxCLK} /2	MHz
Res _{TIM}	Timer resolution		-	16/32	bit
t _{MAX_COUNT}	Maximum possible count with 32-bit counter	-	-	65536 × 65536	t _{TIMxCLK}

Table 99. TIMx characteristics⁽¹⁾⁽²⁾

1. TIMx is used as a general term to refer to the TIM1 to TIM17 timers.

2. Guaranteed by design.

 The maximum timer frequency on APB1 or APB2 is up to 200 MHz, by setting the TIMPRE bit in the RCC_CFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = rcc_hclk1, otherwise TIMxCLK = 4x F_{rcc_pclkx_d2}.

6.3.32 Communications interfaces

I²C interface characteristics

The I^2C interface meets the timings requirements of the I^2C -bus specification and user manual rev. 03 for:

- Standard-mode (Sm): with a bit rate up to 100 kbit/s
- Fast-mode (Fm): with a bit rate up to 400 kbit/s.
- Fast-mode Plus (Fm+): with a bit rate up to 1Mbit/s.

The I²C timings requirements are guaranteed by design when the I2C peripheral is properly configured (refer to RM0433 reference manual) and when the i2c_ker_ck frequency is greater than the minimum shown in the table below:

Symbol	Parameter	Condition		Min	Unit
f(I2CCLK)		Standard-mode		2	
		Fast-mode	Analog filter ON DNF=0 8	8	
	I2CCLK frequency	rast-mode	Analog filter OFF DNF=1	9	MHz
		Fast-mode Plus	Analog filter ON DNF=0	17	
			Analog filter OFF DNF=1	16	

Table 100. Minimum i2c_ker_ck frequency in all I2C modes

The SDA and SCL I/O requirements are met with the following restrictions:

- The SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present.
- The 20 mA output drive requirement in Fast-mode Plus is not supported. This limits the maximum load C_{load} supported in Fm+, which is given by these formulas:

t_{r(SDA/SCL)}=0.8473xR_pxC_{load}

 $R_{p(min)} = (V_{DD} - V_{OL(max)})/I_{OL(max)}$

Where R_p is the I2C lines pull-up. Refer to *Section 6.3.15: I/O port characteristics* for the I2C I/Os characteristics.

All I²C SDA and SCL I/Os embed an analog filter. Refer to *Table 101* for the analog filter characteristics:

Table 101	. I2C analo	g filter	[•] characteristics ^{(*}	1)
-----------	-------------	----------	--	----

Symbol	I Parameter Min Max		Unit	
t _{AF}	Maximum pulse width of spikes that are suppressed by the analog filter	50 ⁽²⁾	260 ⁽³⁾	ns

1. Guaranteed by design.

2. Spikes with widths below t_{AF(min)} are filtered.

3. Spikes with widths above $t_{AF(max)}$ are not filtered.

180/226

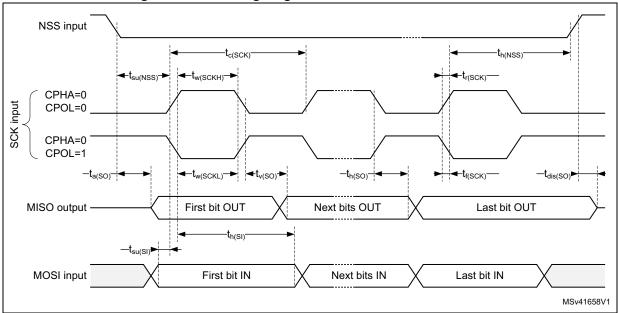
SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 102* for the SPI interface are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 23: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}
- I/O compensation cell enabled
- HSLV activated when VDD \leq 2.7 V

Refer to Section 6.3.15: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		Master mode 1.62 V≤V _{DD} ≤3.6 V			90	
$ \begin{array}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $	133					
		2.7 V≤V _{DD} ≤3.6 V			100	
	SPI clock frequency	1.62 V≤V _{DD} ≤3.6 V	-	-	150	MHz
		1.62 V≤V _{DD} ≤3.6 V			100	
		duplex			31	
		duplex			25	
t _{su(NSS)}	NSS setup time	Slave mode	2	-	-	
t _{h(NSS)}	NSS hold time		1	-	-	ns
t _{w(SCKH)} , t _{w(SCKL)}	SCK high and low time	Master mode	T _{PLCK} - 2	T _{PLCK}	T _{PLCK} + 2	


Table 102. SPI dynamic characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{su(MI)}	Data input setup time	Master mode	1	-	-	
t _{su(SI)}	Data input setup time	Slave mode	2	-	-	
t _{h(MI)}	Data input hald time	Master mode	2	-	-	
t _{h(SI)}	Data input hold time	Slave mode	1	-	-	
t _{a(SO)}	Data output access time	Slave mode	9	13	27	
t _{dis(SO)}	Data output disable time	Slave mode	0	1	5	ns
+		Slave mode, 2.7 V≤V _{DD} ≤3.6 V	-	11.5	16	
t _{v(SO)}	Data output valid time	Slave mode 1.62 V≤V _{DD} ≤3.6 V	-	13	20	
t _{v(MO)}		Master mode	-	1	3	
t _{h(SO)}	Data output hold time	Slave mode, 1.62 V≤V _{DD} ≤3.6 V	9	-	-	
t _{h(MO)}	Data output hold time	Master mode	0	-	-	

Table 102. SPI dynamic characteristics ⁽¹⁾ (continued)

1. Guaranteed by characterization results.

Figure 47. SPI timing diagram - slave mode and CPHA = 0

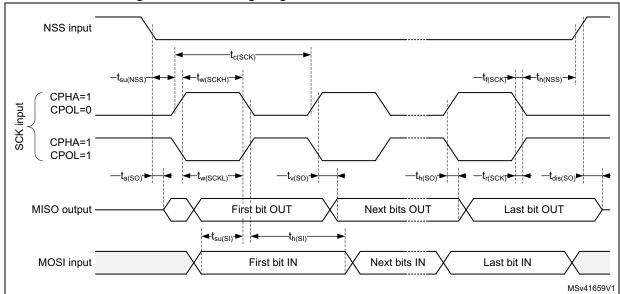
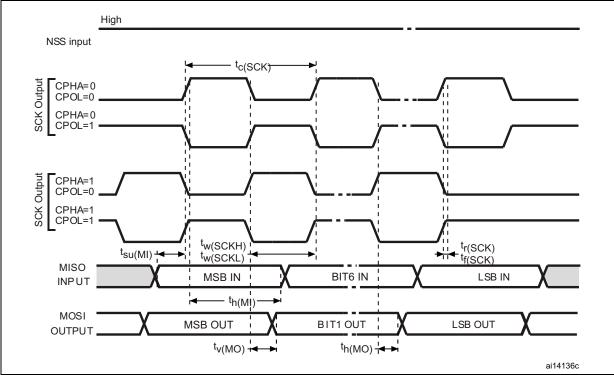



Figure 48. SPI timing diagram - slave mode and CPHA = 1⁽¹⁾

1. Measurement points are done at $0.5V_{DD}$ and with external C_L = 30 pF.

Figure 49. SPI timing diagram - master mode⁽¹⁾

1. Measurement points are done at $0.5V_{DD}$ and with external C_L = 30 pF.

I²S interface characteristics

Unless otherwise specified, the parameters given in *Table 103* for the I²S interface are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 23: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}
- I/O compensation cell enabled

Refer to Section 6.3.15: I/O port characteristics for more details on the input/output alternate function characteristics (CK, SD, WS).

Symbol	Parameter	Conditions	Min	Мах	Unit
f _{MCK}	I2S Main clock output	-	256x8K	256xFs	MHz
f	I2S clock frequency	Master data	-	64xFs	- MHz
f _{CK}	123 Clock frequency	Slave data	-	64xFs	
t _{v(WS)}	WS valid time	Master mode	-	3.5	
t _{h(WS)}	WS hold time	Master mode	0	-	
t _{su(WS)}	WS setup time	Slave mode	1	-	
t _{h(WS)}	WS hold time	Slave mode	1	-	
t _{su(SD_MR)}	Data input setup time	Master receiver	1	-	
t _{su(SD_SR)}	Data input setup time	Slave receiver	1	-	ns
t _{h(SD_MR)}	Data input hold time	Master receiver	4	-	115
t _{h(SD_SR)}	Data input hold time	Slave receiver	2	-	
t _{v(SD_ST)}	Data autaut valid tima	Slave transmitter (after enable edge)	-	20	
t _{v(SD_MT)}	Data output valid time	Master transmitter (after enable edge)	-	3	
t _{h(SD_ST)}	Data output hold time	Slave transmitter (after enable edge)	9	-	
t _{h(SD_MT)}	Data output hold time	Master transmitter (after enable edge)	0	-	

	2		(4)
Table 102	140	dynamia	characteristics ⁽¹⁾
Table 103.	13	uynannc	Character Slics '

1. Guaranteed by characterization results.

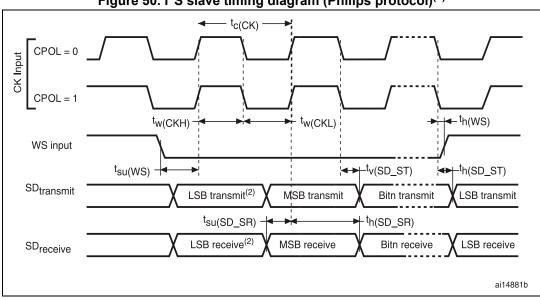
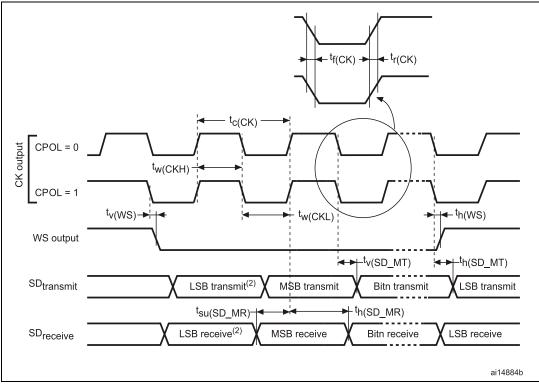



Figure 50. I²S slave timing diagram (Philips protocol)⁽¹⁾

1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 51. I²S master timing diagram (Philips protocol)⁽¹⁾

1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

SAI characteristics

Unless otherwise specified, the parameters given in *Table 104* for SAI are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and VDD supply voltage conditions summarized in *Table 23: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C=30 pF
- Measurement points are performed at CMOS levels: 0.5V_{DD}

Refer to Section 6.3.15: I/O port characteristics for more details on the input/output alternate function characteristics (SCK,SD,WS).

Symbol	Parameter	Conditions	Min	Max	Unit
f _{MCK}	SAI Main clock output	-	256 x 8K	256xFs	MHz
г	SAI clock frequency ⁽²⁾	Master data: 32 bits	-	128xFs ⁽³⁾	MHz
F _{CK}	SAI CLOCK ITEQUENCY	Slave data: 32 bits	-	x 8K 256xFs 128xFs ⁽³⁾ 128xFs 128xFs 15 20 20 7 - 1 - 5 - 2 - - 17 - 20 7 - 1 - 5 - 2 - - 17 - 17 - 20 7 - 20 - 2 - - 17 20 - 7 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -	
+	FS valid time	Master mode 2.7≤VDD≤3.6V	-	15	
t _{v(FS)}		Master mode 1.71≤VDD≤3.6V	-	20	
t _{su(FS)}	FS setup time	Slave mode	7	-	
+	FS hold time	Master mode	1	-	ns
t _{h(FS)}	rs noid time	Slave mode	1	-	
t _{su(SD_A_MR)}	Data input actus time	Master receiver	0.5	-	
t _{su(SD_B_SR)}	Data input setup time	Slave receiver	1	-	
t _{h(SD_A_MR)}	Data input hold time	Master receiver	3.5	-	
t _{h(SD_B_SR)}		Slave receiver	2	-	
+	Data output valid timo	Slave transmitter (after enable edge) 2.7≤V _{DD} ≤3.6V	-	17	
t _{v(SD_B_ST)}	Data output valid time	Slave transmitter (after enable edge) 1.62≤V _{DD} ≤3.6V	-	20	
t _{h(SD_B_ST)}	Data output hold time	Slave transmitter (after enable edge)	7	-	
	Data output valid time	Master transmitter (after enable edge) 2.7≤V _{DD} ≤3.6V	-	17	ns
t _{v(SD_A_MT)}	Data output valid time	Master transmitter (after enable edge) 1.62≤V _{DD} ≤3.6V	-	20	
t _{h(SD_A_MT)}	Data output hold time	Master transmitter (after enable edge)	7.55	-	

Table 104. SAI characteristics⁽¹⁾

1. Guaranteed by characterization results.

2. APB clock frequency must be at least twice SAI clock frequency.

3. With F_S=192 kHz.

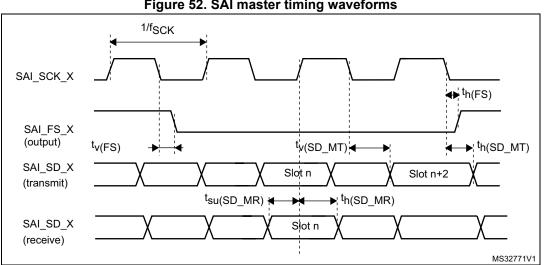
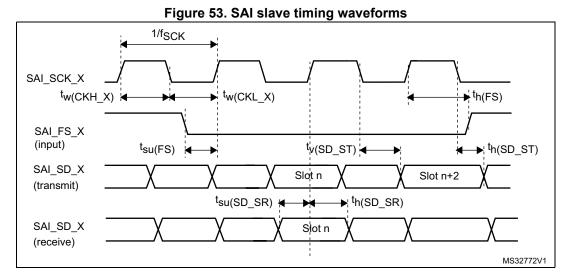



Figure 52. SAI master timing waveforms

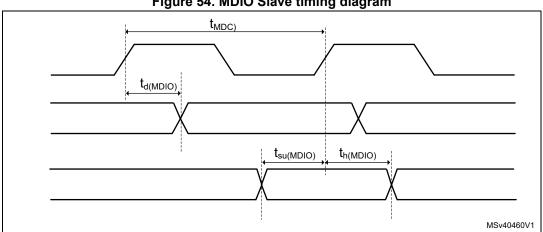

MDIO characteristics

Table 105. MDIO Slave timing parameters

Symbol	Parameter	Min	Тур	Max	Unit
F _{sDC}	Management data clock	-	-	40	MHz
t _{d(MDIO)}	Management data input/output output valid time	7	8	20	
t _{su(MDIO)}	Management data input/output setup time	4	-	-	ns
t _{h(MDIO)}	Management data input/output hold time	1	-	-	

The MDIO controller is mapped on APB2 domain. The frequency of the APB bus should at least 1.5 times the MDC frequency: $F_{PCLK2} \ge 1.5 * F_{MDC}$.

Figure 54. MDIO Slave timing diagram

SD/SDIO MMC card host interface (SDMMC) characteristics

Unless otherwise specified, the parameters given in Table 106 for the SDIO/MMC interface are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DD} supply voltage conditions summarized in Table 23: General operating conditions, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11 •
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}
- I/O compensation cell enabled
- HSLV activated when VDD ≤ 2.7 V

Refer to Section 6.3.15: I/O port characteristics for more details on the input/output characteristics.

Table 106. Dynamic characteristics: SD / MMC characteristics	$V_{DD}=2.7V$ to $3.6V^{(1)(2)}$
	, • 00 • • •

				שם (יייי		
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{PP}	Clock frequency in data transfer mode	-	0	-	125	MHz
t _{W(CKL)}	Clock low time	f _{PP} =50 MHz	9.5	10.5	-	20
t _{W(CKH)}	Clock high time		8.5	9.5	-	ns
CMD, D inp	uts (referenced to CK) in MMC and SI	D HS/SDR/DDR n	node			
t _{ISU}	Input setup time HS		2	-	-	
t _{IH}	Input hold time HS	f _{PP} ≥ 50 MHz	1.5	-	-	ns
t _{IDW} ⁽³⁾	Input valid window (variable window)		3	-	-	
CMD, D out	puts (referenced to CK) in MMC and S	SD HS/SDR/DDR	mode			•
t _{OV}	Output valid time HS		-	3.5	5	
t _{OH}	Output hold time HS	f _{PP} ≥ 50 MHz	2	-	-	- ns

				JU - , - , - , - , - , - , - , - , - , -		-
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
CMD, D inp	outs (referenced to CK) in SD default r	node				
t _{ISUD}	Input setup time SD	f -25 MU-	2	-	-	
t _{IHD}	Input hold time SD	f _{PP} =25 MHz	1.5	-	-	ns
CMD, D out	tputs (referenced to CK) in SD default	mode				
t _{OVD}	Output valid default time SD	f _{PP} =25 MHz	-	1	2	
t _{ohd}	Output hold default time SD		0	-	-	ns

Table 106. Dynamic characteristics: SD / MMC characteristics, V_{DD} =2.7V to 3.6V⁽¹⁾⁽²⁾

1. Guaranteed by characterization results.

2. Above 100 MHz, C_L = 20 pF.

3. The minimum window of time where the data needs to be stable for proper sampling in tuning mode.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{PP}	Clock frequency in data transfer mode	-	0	-	120	MHz
t _{W(CKL)}	Clock low time	f _{PP} =50 MHz	9.5	10.5	-	ns
t _{W(CKH)}	Clock high time		8.5	9.5	-	115
CMD, D inp	outs (referenced to CK) in eMMC mode)				
t _{ISU}	Input setup time HS		1.5	-	-	
t _{IH}	Input hold time HS	f _{PP} ≥ 50 MHz	2	-	-	ns
t _{IDW} ⁽³⁾	Input valid window (variable window)		3.5	-	-	
CMD, D ou	tputs (referenced to CK) in eMMC mod	de				•
t _{OV}	Output valid time HS	f > 50 MHz	-	5	7	
t _{OH}	Output hold time HS	f _{PP} ≥ 50 MHz	3	-	-	ns

1. Guaranteed by characterization results.

2. C_L = 20 pF.

3. The minimum window of time where the data needs to be stable for proper sampling in tuning mode.

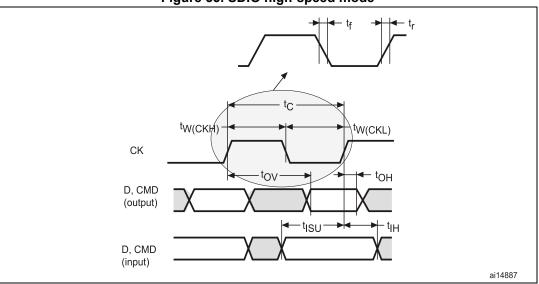
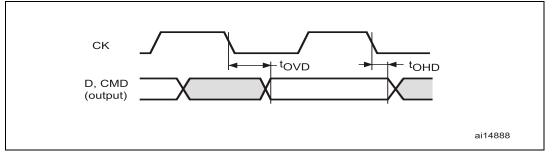
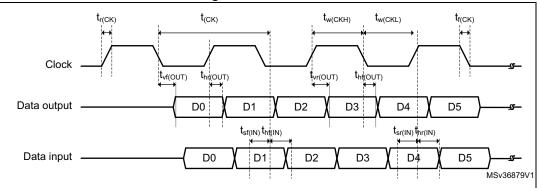




Figure 55. SDIO high-speed mode

Figure 56. SD default mode

Figure 57. DDR mode

CAN (controller area network) interface

Refer to Section 6.3.15: I/O port characteristics for more details on the input/output alternate function characteristics (FDCANx_TX and FDCANx_RX).

USB OTG_FS characteristics

The USB interface is fully compliant with the USB specification version 2.0 and is USB-IF certified (for Full-speed device operation).

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
V _{DD33USB}	USB transceiver operating voltage	-	3.0 ⁽¹⁾	-	3.6	V
R _{PUI}	Embedded USB_DP pull-up value during idle	-	900	1250	1600	
R _{PUR}	R _{PUR} Embedded USB_DP pull-up value during reception		1400	2300	3200	Ω
Z _{DRV}	Output driver impedance ⁽²⁾	Driver high and low	28	36	44	

Table 108.	USB OTG	FS electrical	characteristics

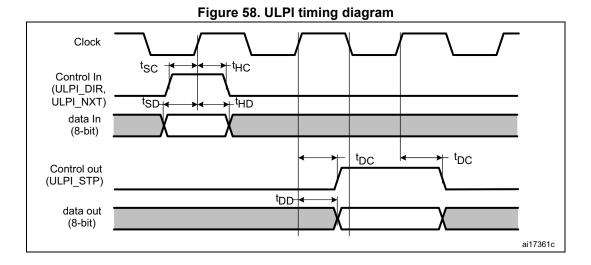
1. The USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics which are degraded in the 2.7 to 3.0 V voltage range.

2. No external termination series resistors are required on USB_DP (D+) and USB_DM (D-); the matching impedance is already included in the embedded driver.

USB OTG_HS characteristics

Unless otherwise specified, the parameters given in *Table 109* for ULPI are derived from tests performed under the ambient temperature, $f_{rcc_c_ck}$ frequency and V_{DD} supply voltage conditions summarized in *Table 23: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 20 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}.


Refer to Section 6.3.15: I/O port characteristics for more details on the input/output characteristics.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{SC}	Control in (ULPI_DIR, ULPI_NXT) setup time	-	0.5	-	-	
t _{HC}	Control in (ULPI_DIR, ULPI_NXT) hold time	-	6.5	-	-	
t _{SD}	Data in setup time	-	2.5	-	-	
t _{HD}	Data in hold time	-	0	-	-	
		2.7 V < V _{DD} < 3.6 V, C _L = 20 pF	-	6.5	8.5	ns
t _{DC} /t _{DD}	Data/control output delay	-	-			
		1.7 V < V _{DD} < 3.6 V, C _L = 15 pF	-	6.5	13	

Table 109. Dynamic characteristics: USB ULPI⁽¹⁾

1. Guaranteed by characterization results.

Unless otherwise specified, the parameters given in *Table 110*, *Table 111* and *Table 112* for SMI, RMII and MII are derived from tests performed under the ambient temperature, $f_{rcc_c_ck}$ frequency summarized in *Table 23: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 20 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}.

Refer to Section 6.3.15: I/O port characteristics for more details on the input/output characteristics.

Table 110 gives the list of Ethernet MAC signals for the SMI and *Figure 59* shows the corresponding timing diagram.

Symbol	Parameter	Min	Тур	Max	Unit
t _{MDC}	MDC cycle time(2.5 MHz)	400	400	403	
T _{d(MDIO)}	Write data valid time	1	1.5	3	200
t _{su(MDIO)}	Read data setup time	8	-	-	ns
t _{h(MDIO)}	Read data hold time	0	-	-	

Table 110.	Dynamics charact	eristics: Ethernet	MAC signals for SMI ⁽¹⁾
------------	-------------------------	--------------------	------------------------------------

1. Guaranteed by characterization results.

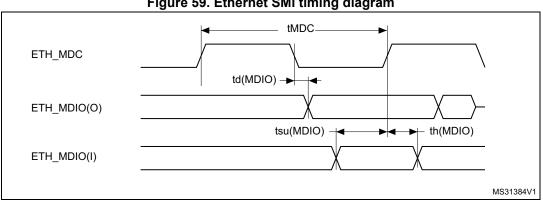


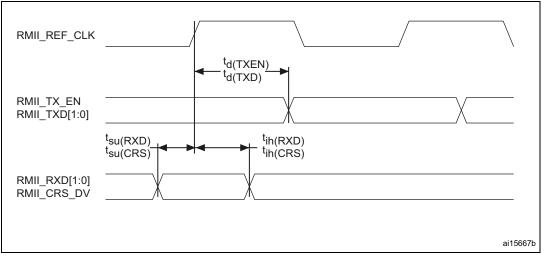
Figure 59. Ethernet SMI timing diagram

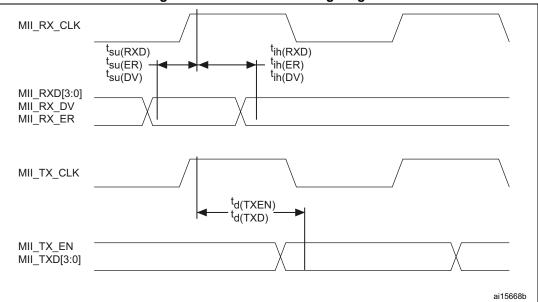
Table 111 gives the list of Ethernet MAC signals for the RMII and Figure 60 shows the corresponding timing diagram.

Symbol	Parameter	Min	Тур	Мах	Unit
t _{su(RXD)}	Receive data setup time	2	-	-	
t _{ih(RXD)}	Receive data hold time	3	-	-	
t _{su(CRS)}	Carrier sense setup time	2.5	-	-	ns
t _{ih(CRS)}	Carrier sense hold time	2	-	-	115
t _{d(TXEN)}	Transmit enable valid delay time	4	4.5	7	
t _{d(TXD)}	Transmit data valid delay time	7	7.5	11.5	

Table 111. Dynamics characteristics: Ethernet MAC signals for RMII⁽¹⁾

1. Guaranteed by characterization results.




Table 112 gives the list of Ethernet MAC signals for MII and Figure 61 shows the corresponding timing diagram.

Symbol	Parameter	Min	Тур	Мах	Unit
t _{su(RXD)}	Receive data setup time	2	-	-	
t _{ih(RXD)}	Receive data hold time	3	-	-	
t _{su(DV)}	Data valid setup time	1.5	-	-	
t _{ih(DV)}	Data valid hold time	1	-	-	ns
t _{su(ER)}	Error setup time	1.5	-	-	115
t _{ih(ER)}	Error hold time	0.5	-	-	
t _{d(TXEN)}	Transmit enable valid delay time	4.5	6.5	11	
t _{d(TXD)}	Transmit data valid delay time	7	7.5	15	

Table 112. Dynamics characteristics: Ethernet MAC signals for MII⁽¹⁾

1. Guaranteed by characterization results.

6.3.33 JTAG/SWD interface characteristics

Unless otherwise specified, the parameters given in *Table 113* and *Table 114* for JTAG/SWD are derived from tests performed under the ambient temperature, $f_{rcc_c_ck}$ frequency and V_{DD} supply voltage summarized in *Table 23: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 0x10
- Capacitive load C=30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 6.3.15: I/O port characteristics for more details on the input/output characteristics.

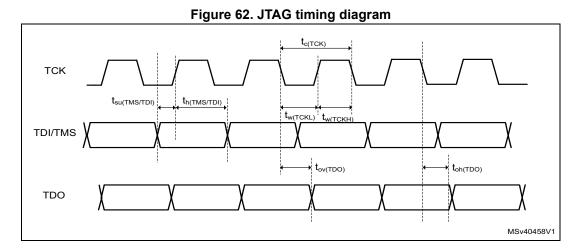
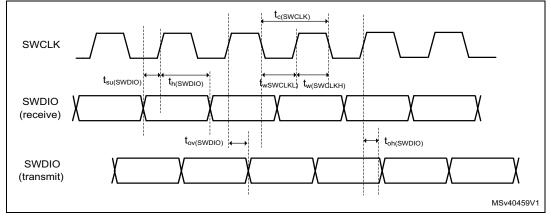
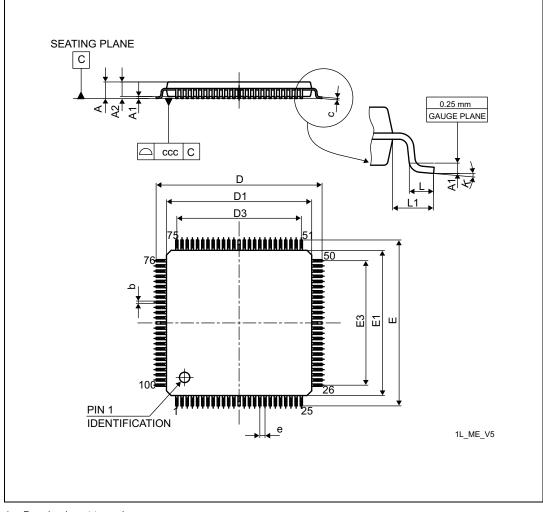

Symbol	Parameter	Conditions	Min			Unit
F _{pp}		2.7 V <v<sub>DD< 3.6 V</v<sub>	-	-	37	
1/t _{c(TCK)}	T _{CK} clock frequency	1.62 V <v<sub>DD< 3.6 V</v<sub>	-	-	27.5	
ti _{su(TMS)}	TMS input setup time	-	2	-	-	
ti _{h(TMS)}	TMS input hold time	-	1	-	-	MLI-
ti _{su(TDI)}	TDI input setup time	-	1.5	-	-	MHz
ti _{h(TDI)}	TDI input hold time	-	1	-	-	
+	TDO output	2.7 V <v<sub>DD< 3.6 V</v<sub>	-	8	13.5	
۰ov (TDO)	t _{ov (TDO)} valid time 1.62 V <v<sub>DD< 3.6 V</v<sub>	-	8	18		
t _{oh(TDO)}	TDO output hold time	-	7	-	-	

Table 113. Dynamics characteristics: JTAG characteristics


Table 114. Dynamics characteristics: SWD characteristics

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
F _{pp}		2.7 V <v<sub>DD< 3.6 V</v<sub>	-	-	71	
1/t _{c(SWCLK)}	SWCLK clock frequency	clock		-	55.5	
ti _{su(SWDIO)}	SWDIO input setup time	-	2.5	-	-	
ti _{h(SWDIO)}	SWDIO input hold time	-	1	-	-	MHz
+	SWDIO	2.7 V <v<sub>DD< 3.6 V</v<sub>	-	8.5	14	
۰ov (SWDIO)	t _{ov (SWDIO)} output valid time 1.62 V <v<sub>DD< 3</v<sub>		-	8.5	18	
t _{oh(SWDIO)}	SWDIO output hold time	-	8	-	-	


196/226

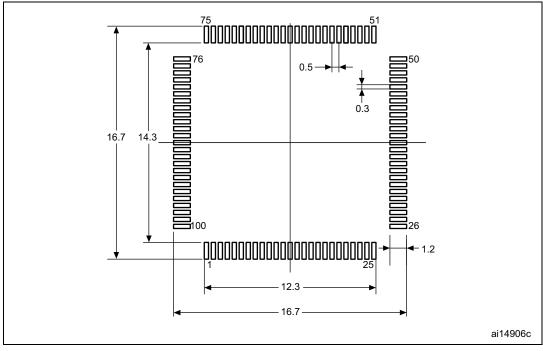
7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status *are available at www.st.com*. ECOPACK[®] is an ST trademark.

7.1 LQFP100 package information

Figure 64. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline

1. Drawing is not to scale.

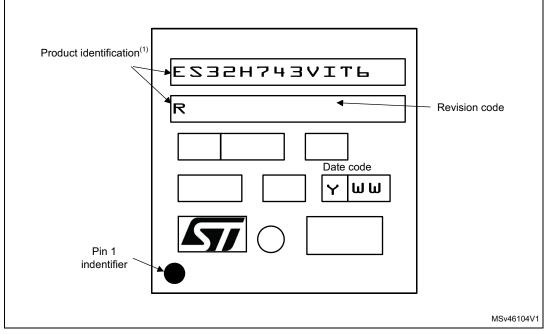


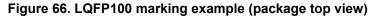
Cumhal		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Мах	Min	Min Typ	
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	15.800	16.000	16.200	0.6220	0.6299	0.6378
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591
D3	-	12.000	-	-	0.4724	-
E	15.800	16.000	16.200	0.6220	0.6299	0.6378
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591
E3	-	12.000	-	-	0.4724	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°
ССС	-	-	0.080	-	-	0.0031

Table 115. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 65. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat recommended footprint


1. Dimensions are expressed in millimeters.*



Device marking for LQFP100

The following figure gives an example of topside marking versus pin 1 position identifier location.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

7.2 TFBGA100, 8 x 8 x 0.8 mm thin fine-pitch ball grid array package information

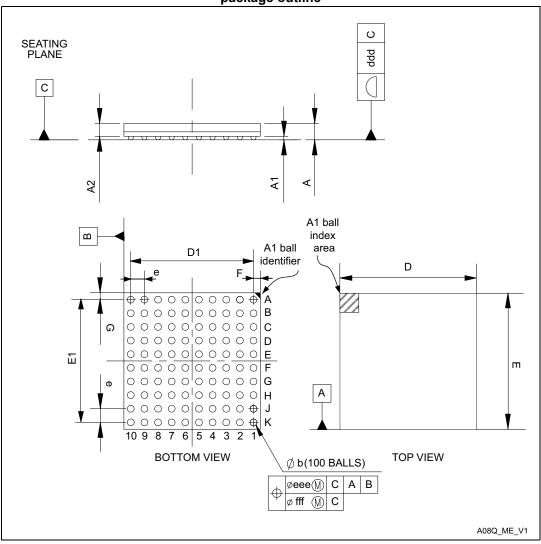
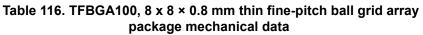
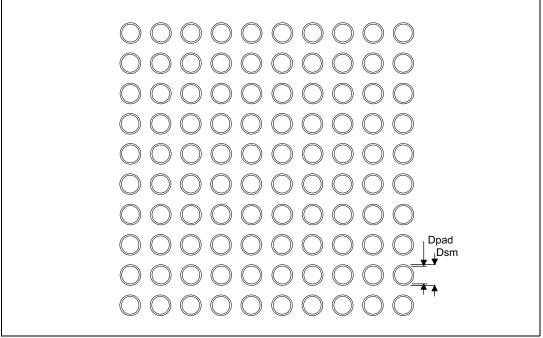



Figure 67. TFBGA100, 8 × 8 × 0.8 mm thin fine-pitch ball grid array package outline

1. Drawing is not to scale.

Symbol	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Мах	
А	-	-	1.100	-	-	0.0433	
A1	0.150	-	-	0.0059	-	-	
A2	-	0.760	-	-	0.0299	-	
b	0.350	0.400	0.450	0.0138	0.0157	0.0177	



Cumhal		millimeters		inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Max
D	7.850	8.000	8.150	0.3091	0.3150	0.3209
D1	-	7.200		-	0.2835	-
E	7.850	8.000	8.150	0.3091	0.3150	0.3209
E1	-	7.200	-	-	0.2835	-
е	-	0.800	-	-	0.0315	-
F	-	0.400	-	-	0.0157	-
G	-	0.400	-	-	0.0157	-
ddd	-	-	0.100	-	-	0.0039
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.080	-	-	0.0031

Table 116. TFBGA100, 8 x 8 × 0.8 mm thin fine-pitch ball grid arraypackage mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

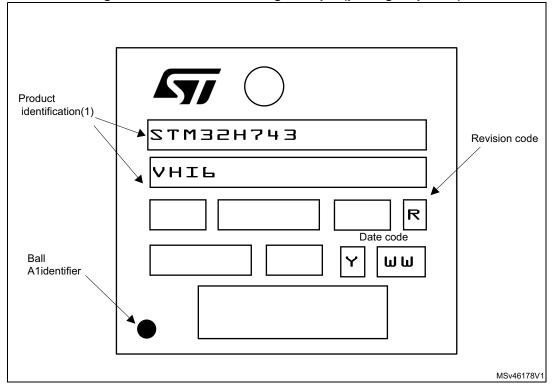
Dimension	Recommended values			
Pitch	0.8			
Dpad	0.400 mm			
Dsm	0.470 mm typ (depends on the soldermask registration tolerance)			
Stencil opening	0.400 mm			
Stencil thickness	Between 0.100 mm and 0.125 mm			
Pad trace width	0.120 mm			

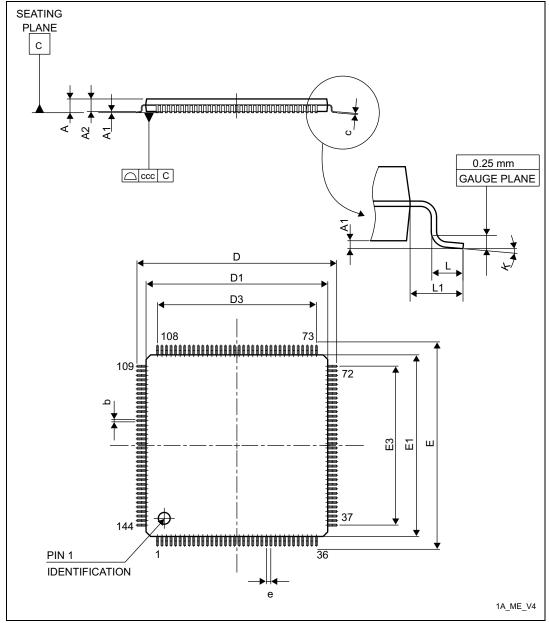
 Table 117. TFBGA100 recommended PCB design rules (0.8 mm pitch BGA)

Device marking for TFBGA100

The following figure gives an example of topside marking versus pin 1 position identifier location.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.



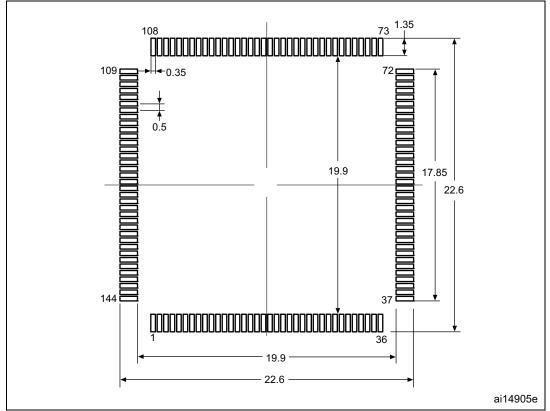

Figure 69. TFBGA100 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

7.3 LQFP144 package information

Figure 70. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline

1. Drawing is not to scale.



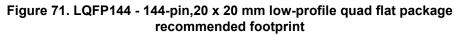

Symbol		millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	
D	21.800	22.000	22.200	0.8583	0.8661	0.8740	
D1	19.800	20.000	20.200	0.7795	0.7874	0.7953	
D3	-	17.500	-	-	0.6890	-	
E	21.800	22.000	22.200	0.8583	0.8661	0.8740	
E1	19.800	20.000	20.200	0.7795	0.7874	0.7953	
E3	-	17.500	-	-	0.6890	-	
е	-	0.500	-	-	0.0197	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0°	3.5°	7°	0°	3.5°	7°	
ссс	-	-	0.080	-	-	0.0031	

Table 118. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat packagemechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

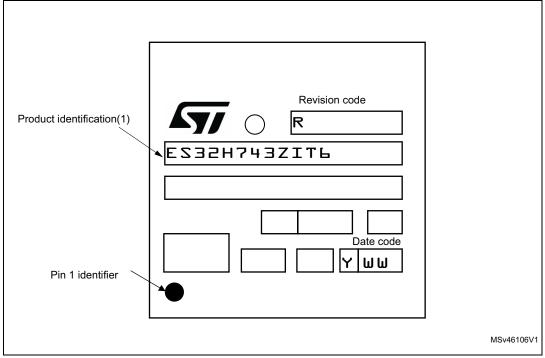
1. Dimensions are expressed in millimeters.

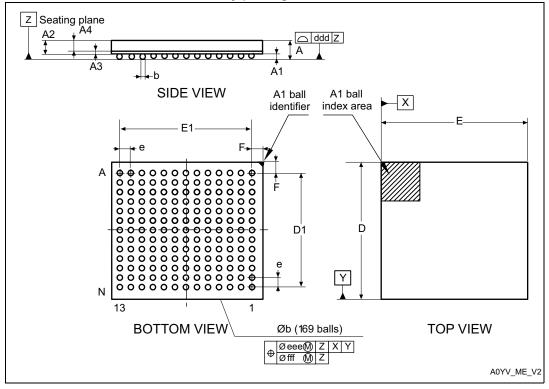
206/226

Device marking for LQFP144

The following figure gives an example of topside marking versus pin 1 position identifier location.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.




Figure 72. LQFP144 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

7.4 UFBGA169 package information

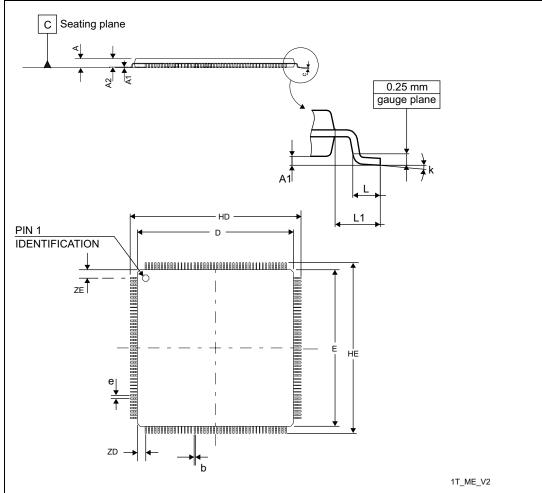
Figure 73. UFBGA169 - 169-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package outline

1. Drawing is not in scale.

Table 119. UFBGA169 - 169-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
grid array package mechanical data

Symbol		millimeters			inches ⁽¹⁾	
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
А	0.460	0.530	0.600	0.0181	0.0209	0.0236
A1	0.050	0.080	0.110	0.0020	0.0031	0.0043
A2	0.400	0.450	0.500	0.0157	0.0177	0.0197
A3	-	0.130	-	-	0.0051	-
A4	0.270	0.320	0.370	0.0106	0.0126	0.0146
b	0.230	0.280	0.330	0.0091	0.0110	0.0130
D	6.950	7.000	7.050	0.2736	0.2756	0.2776
D1	5.950	6.000	6.050	0.2343	0.2362	0.2382
E	6.950	7.000	7.050	0.2736	0.2756	0.2776
E1	5.950	6.000	6.050	0.2343	0.2362	0.2382
е	-	0.500	-	-	0.0197	-

208/226



Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
F	0.450	0.500	0.550	0.0177	0.0197	0.0217
ddd	-	-	0.100	-	-	0.0039
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

Table 119. UFBGA169 - 169-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ballgrid array package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

7.5 LQFP176 package information

Figure 74. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package outline

1. Drawing is not to scale.

		Dimensions						
Ref.		Millimeters			Inches ⁽¹⁾			
	Min.	Тур.	Max.	Min.	Тур.	Max.		
A	-	-	1.600	-	-	0.0630		
A1	0.050	-	0.150	0.0020	-	0.0059		
A2	1.350	-	1.450	0.0531	-	0.0571		
b	0.170	-	0.270	0.0067	-	0.0106		
с	0.090	-	0.200	0.0035	-	0.0079		
D	23.900	-	24.100	0.9409	-	0.9488		
HD	25.900	-	26.100	1.0197	-	1.0276		
ZD	-	1.250	-	-	0.0492	-		
E	23.900	-	24.100	0.9409	-	0.9488		
HE	25.900	-	26.100	1.0197	-	1.0276		
ZE	-	1.250	-	-	0.0492	-		
е	-	0.500	-	-	0.0197	-		
L ⁽²⁾	0.450	-	0.750	0.0177	-	0.0295		
L1	-	1.000	-	-	0.0394	-		
k	0°	-	7°	0°	-	7°		
ccc	-	-	0.080	-	-	0.0031		

Table 120. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. L dimension is measured at gauge plane at 0.25 mm above the seating plane.

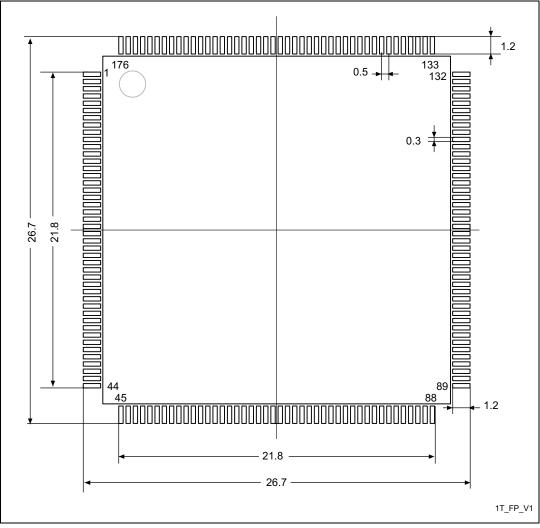
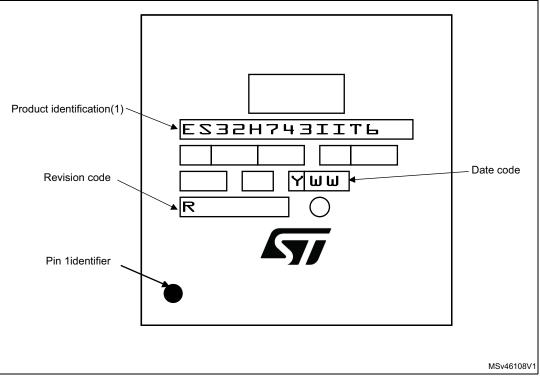


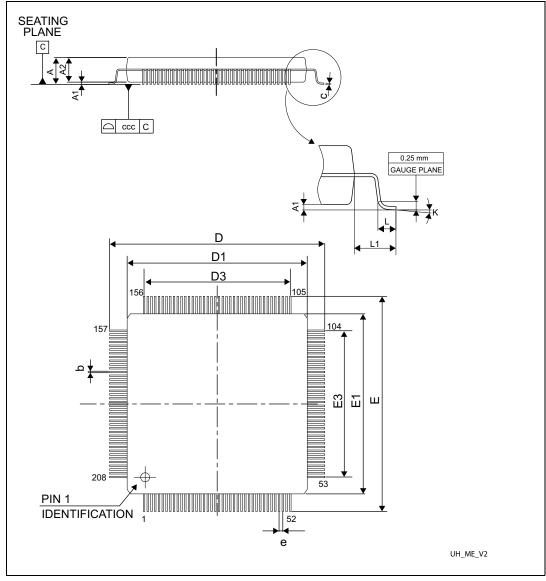
Figure 75. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package recommended footprint


1. Dimensions are expressed in millimeters.

Device marking for LQFP176

The following figure gives an example of topside marking versus pin 1 position identifier location.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

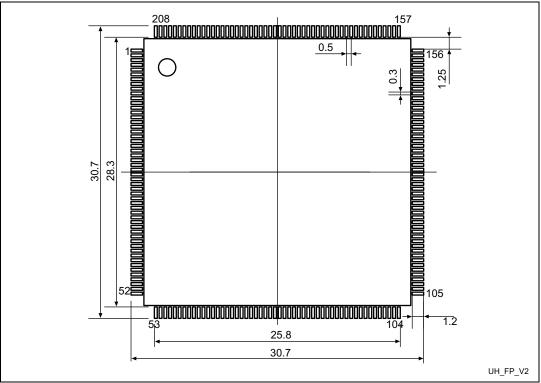


 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

7.6 LQFP208 package information

Figure 77. LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package outline

1. Drawing is not to scale.



Symbol		millimeters		inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
с	0.090	-	0.200	0.0035	-	0.0079
D	29.800	30.000	30.200	1.1811	1.1732	1.1890
D1	27.800	28.000	28.200	1.1024	1.0945	1.1102
D3	-	25.500	-	-	1.0039	-
E	29.800	30.000	30.200	1.1811	1.1732	1.1890
E1	27.800	28.000	28.200	1.1024	1.0945	1.1102
E3	-	25.500	-	-	1.0039	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
ССС	-	-	0.080	-	-	0.0031

Table 121. LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package
mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 78. LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

Device marking for LQFP208

The following figure gives an example of topside marking versus pin 1 position identifier location.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

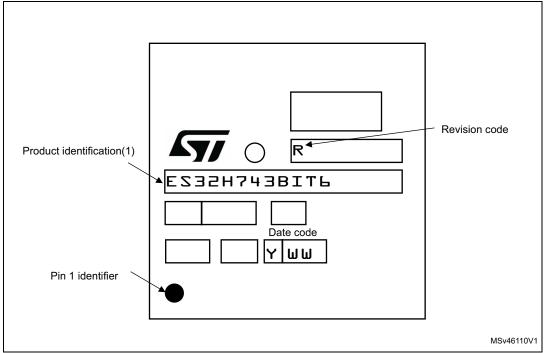


Figure 79. LQFP208 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

7.7 UFBGA176+25 package information

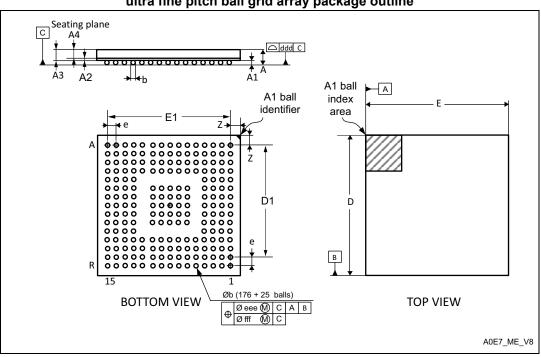


Figure 80. UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball grid array package outline

1. Drawing is not to scale.

Table 122. UFBGA176+25 - ball, 10 x 10 mm, 0.65 mm pitch,
ultra fine pitch ball grid array package mechanical data

Symbol		millimeters				
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	-	-	0.600	-	-	0.0236
A1	-	-	0.110	-	-	0.0043
A2	-	0.130	-	-	0.0051	-
A3	-	0.450	-	-	0.0177	-
A4	-	0.320	-	-	0.0126	-
b	0.240	0.290	0.340	0.0094	0.0114	0.0134
D	9.850	10.000	10.150	0.3878	0.3937	0.3996
D1	-	9.100	-	-	0.3583	-
E	9.850	10.000	10.150	0.3878	0.3937	0.3996
E1	-	9.100	-	-	0.3583	-
е	-	0.650	-	-	0.0256	-
Z	-	0.450	-	-	0.0177	-
ddd	-	-	0.080	-	-	0.0031

Table 122. UFBGA176+25 - ball, 10 x 10 mm, 0.65 mm pitch,	
ultra fine pitch ball grid array package mechanical data (continued)	

Symbol	millimeters			inches ⁽¹⁾			
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	
eee	-	-	0.150	-	-	0.0059	
fff	-	-	0.050	-	-	0.0020	

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 81. UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball grid array package recommended footprint

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

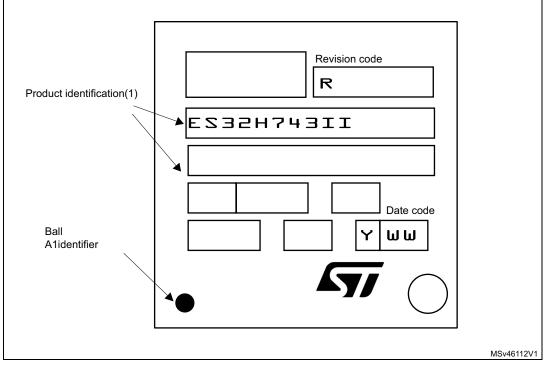
Table 123. UFBGA 176+25 recommended PCB design rules (0.65 mm pitch BGA)

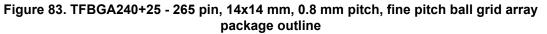
Dimension	Recommended values		
Pitch	0.65 mm		
Dpad	0.300 mm		
Dsm	0.400 mm typ. (depends on the soldermask registration tolerance)		
Stencil opening	0.300 mm		
Stencil thickness	Between 0.100 mm and 0.125 mm		
Pad trace width	0.100 mm		

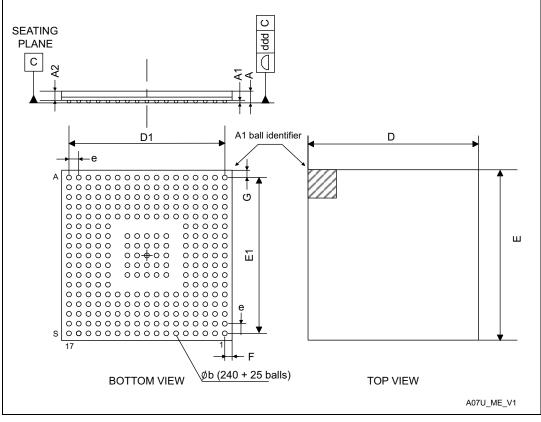
Device marking for UFBGA176+25

The following figure gives an example of topside marking versus pin 1 position identifier location.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.



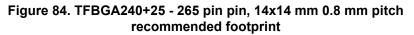

Figure 82. UFBGA176+25 marking example (package top view)

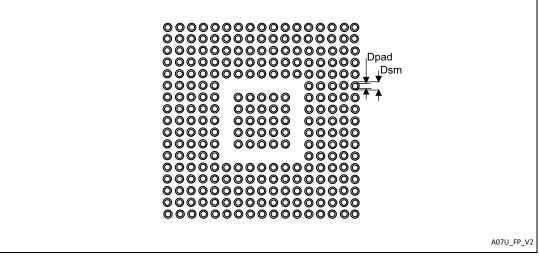

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

7.8 **TFBGA240+25** package information

TFBGA265 package information is preliminary information which are subject to change.

1. Dimensions are expressed in millimeters.


220/226



inechanical data									
Cumula al		millimeters		inches ⁽¹⁾					
Symbol	Min	Тур	Max	Min	Тур	Мах			
А	-	-	1.100	-	-	0.0433			
A1	0.150	-	-	0.0059	-	-			
A2	-	0.760	-	-	0.0299	-			
b	0.350	0.400	0.450	0.0138	0.0157	0.0177			
D	13.850	14.000	14.150	0.5453	0.5512	0.5571			
D1	-	12.800	-	-	0.5039	-			
Е	13.850	14.000	14.150	0.5453	0.5512	0.5571			
E1	-	12.800	-	-	0.5039	-			
е	-	0.800	-	-	0.0315	-			
F	-	0.600	-	-	0.0236	-			
G	-	0.600	-	-	0.0236	-			
ddd	-	-	0.100	-	-	0.0039			
eee	-	-	0.150	-	-	0.0059			
fff	-	-	0.080	-	-	0.0031			

Table 124. TFBGA240+25 - 265 pin, 14x14 mm, 0.8 mm pitch, fine pitch ball grid array mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

Dimension	Recommended values
Pitch	0.8 mm
Dpad	0.325 mm
Dsm	0.425 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.250 mm
Stencil thickness	0.100 mm

 Table 125. TFBGA240+25, 265 pin recommended PCB design rules (0.8 mm pitch)

Device marking for TFBGA240+25

The following figure gives an example of topside marking versus pin 1 position identifier location.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

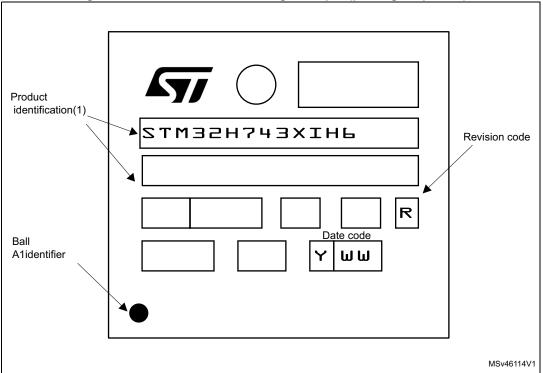


Figure 85. TFBGA240+25 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

7.9 Thermal characteristics

The maximum chip-junction temperature, T_J max, in degrees Celsius, may be calculated using the following equation:

 $T_J \max = T_A \max + (P_D \max \times \Theta_{JA})$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in ° C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

P_{I/O} max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
	Thermal resistance junction-ambient LQFP100 - 14 x 14 mm /0.5 mm pitch	45.0	
	Thermal resistance junction-ambient TFBGA100 - 8 x 8 mm /0.8 mm pitch	39.3	
	Thermal resistance junction-ambient LQFP144 - 20 x 20 mm /0.5 mm pitch	43.7	
Θ _{JA}	Thermal resistance junction-ambient UFBGA169 - 7 x 7 mm /0.5 mm pitch	37.7	°C/W
	Thermal resistance junction-ambient LQFP176 - 24 x 24 mm /0.5 mm pitch	43.0	C/vv
	Thermal resistance junction-ambient LQFP208 - 28 x 28 mm /0.5 mm pitch	42.4	
	Thermal resistance junction-ambient UFBGA176+25 - 10 x 10 mm /0.65 mm pitch	37.4	
	Thermal resistance junction-ambient TFBGA240+25 - 14 x 14 mm / 0.8 mm pitch	36.6	

Table 126. Thermal characteristics

7.9.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.

8 Ordering information

Table 127. STM32H743xl ord	lering inf	orm	ation	sche	me			
Example:	STM32	Н	743	V	I	Т	6	TR
Device family								
STM32 = Arm-based 32-bit microcontroller								
Product type								
H = High performance								
Device subfamily								
743 = STM32H7x3 line								
Pin count								
V = 100 pins								
Z = 144 pins								
A = 169 pins								
I = 176 pins/balls								
B = 208 pins								
X = 240 balls								
Flash memory size								
I = 2 Mbytes								
Package								
T = LQFP								
K = UFBGA pitch 0.65 mm								
I = UFBGA pitch 0.5 mm								
H = TFBGA								
Temperature range								
6 = Industrial temperature range, -40 to 85 °C							_	
Packing								

TR = tape and reel

No character = tray or tube

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

9 Revision history

Date	Revision	Changes
22-Jun-2017	1	Initial release.
27-Sep-2017	2	 Updated list of features. Changed datasheet status to "production data". Added UFBGA169 and TFBGA100 packages and well as notes related their status on cover page and in <i>Table 2: STM32H743xl features and peripheral counts</i>. Differentiated number of GPIOs for each package in <i>Table 2: STM32H743xl features and peripheral counts</i>. Updated <i>Error code correction (ECC)</i> in <i>Section 3.3.2:</i> <i>Embedded SRAM</i>. Change PWR_CR3 into PWR_D3CR in Section 3.5.1: Power supply scheme. Updated Section 3.12: Nested vectored interrupt controller (NVIC). Added Table 4: <i>DFSDM implementation</i> in <i>Section 3.23: Digital filter for sigma-delta modulators (DFSDM)</i> Changed PC2/3 to PC2/3_C and VDD33USB to VDD in <i>Figure 3: LQFP100 pinout</i>. Changed PC2/3 to PC2/3_C in <i>Figure 5: LQFP176 pinout</i>. Changed PC2/3 to PC2/3_C in <i>Figure 5: LQFP176 pinout</i>. Changed PC2/3 to PC2/3_C in <i>Figure 9: LQFP108 pinout</i>. Table 8: STM32H743xl pin/ball definition: Modified PA7, PC4, PC5, PB1, PG1, PE7, PE8 and PE9 I/O structure TFBGA240 +25: removed duplicate occurrence of F1, F2 and P17 pin; added notes related to F1, F2, G2 pin connection; added note on E1, L16, L17, M16, M17, K16, K17, N17. UFBGA176+25: changed G10 pin name to VSS. Added current consumption corresponding to 125 °C ambient temperature in <i>Section 6.3.6: Supply current characteristics</i>. Removed CRYP peripheral from <i>Table 38: Peripheral current consumption in Run mode</i>. Replaced FMC_CLK by FMC_SDCLK in <i>Section : SDRAM waveforms and timings</i>. Updated t_{LATRINJ} in <i>Table 84: ADC characteristics</i>. For TFBGA100, TFBGA240+25 and UFBGA169, updated thermal resistance power-junction in <i>Table 23: General operating conditions</i>.
23-Oct-2017	3	 <i>Features</i>: Removed secure firmware upgrade support. Total current consumption changed to 4 μA minimum. Updated <i>Figure 6: UFBGA169 ballout</i>. Updated dpad and dsm in <i>Table 125: TFBGA240+25, 265 pin recommended PCB design rules (0.8 mm pitch)</i>.

Table 128. Document revision history

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

