
STM32L431xx

Ultra-low-power ARM[®] Cortex[®]-M4 32-bit MCU+FPU, 100DMIPS, up to 256KB Flash, 64KB SRAM, analog, audio

Datasheet - production data

Features

- Ultra-low-power with FlexPowerControl
 - 1.71 V to 3.6 V power supply
 - -40 °C to 85/105/125 °C temperature range
 - 200 nA in V_{BAT} mode: supply for RTC and 32x32-bit backup registers
 - 8 nA Shutdown mode (5 wakeup pins)
 - 28 nA Standby mode (5 wakeup pins)
 - 280 nA Standby mode with RTC
 - 1.0 μA Stop 2 mode, 1.28 μA Stop 2 with RTC
 - 84 µA/MHz run mode
 - Batch acquisition mode (BAM)
 - 4 µs wakeup from Stop mode
 - Brown out reset (BOR) in all modes except shutdown
 - Interconnect matrix
- Core: ARM[®] 32-bit Cortex[®]-M4 CPU with FPU, Adaptive real-time accelerator (ART Accelerator[™]) allowing 0-wait-state execution from Flash memory, frequency up to 80 MHz, MPU, 100DMIPS/1.25DMIPS/MHz (Dhrystone 2.1), and DSP instructions
- Performance Benchmark
 - 1.25 DMIPS/MHz (Drystone 2.1)
 - 273.55 Coremark[®] (3.42 Coremark/MHz @ 80 MHz)
- Energy Benchmark
 - 176.7 ULPBench[®] score
- Clock Sources
 - 4 to 48 MHz crystal oscillator
 - 32 kHz crystal oscillator for RTC (LSE)
 - Internal 16 MHz factory-trimmed RC (±1%)
 - Internal low-power 32 kHz RC (±5%)
 - Internal multispeed 100 kHz to 48 MHz oscillator, auto-trimmed by LSE (better than ±0.25 % accuracy)
 - Internal 48 MHz with clock recovery

- 2 PLLs for system clock, audio, ADC

- RTC with HW calendar, alarms and calibration
- Up to 21 capacitive sensing channels: support touchkey, linear and rotary touch sensors
- 11x timers: 1x 16-bit advanced motor-control, 1x 32-bit and 2x 16-bit general purpose, 2x 16bit basic, 2x low-power 16-bit timers (available in Stop mode), 2x watchdogs, SysTick timer
- Up to 83 fast I/Os, most 5 V-tolerant
- Memories
 - Up to 256 KB single bank Flash, proprietary code readout protection
 - 64 KB of SRAM including 16 KB with hardware parity check
 - Quad SPI memory interface
- Rich analog peripherals (independent supply)
 - 1× 12-bit ADC 5 Msps, up to 16-bit with hardware oversampling, 200 μA/Msps
 - 2x 12-bit DAC, low-power sample and hold
 - 1x operational amplifier with built-in PGA
 - 2x ultra-low-power comparators
- 15x communication interfaces
 - 1x SAI (serial audio interface)
 - 3x I2C FM+(1 Mbit/s), SMBus/PMBus
 - 4x USARTs (ISO 7816, LIN, IrDA, modem)
 - 3x SPIs (4x SPIs with the Quad SPI)
 - CAN (2.0B Active) and SDMMC interface
 - SWPMI single wire protocol master I/F
 - IRTIM (Infrared interface)
- 14-channel DMA controller
- True random number generator
- CRC calculation unit, 96-bit unique ID

May 2016

DocID028800 Rev 1

This is information on a product in full production.

Development support: serial wire debug (SWD), JTAG, Embedded Trace Macrocell™ Table 1. Device summary

Reference	Part numbers			
STM32L431xx	STM32L431CC, STM32L431KC, STM32L431RC, STM32L431VC, STM32L431CB, STM32L431KB, STM32L431RB			

2/200

Contents

1	Intro	duction		12
2	Desc	ription		13
3	Func	tional o	verview	16
	3.1	ARM [®]	Cortex [®] -M4 core with FPU	16
	3.2	Adaptiv	ve real-time memory accelerator (ART Accelerator™)	
	3.3	Memor	y protection unit	
	3.4	Embed	ded Flash memory	17
	3.5	Embed	ded SRAM	
	3.6	Firewal	1	
	3.7	Boot m	odes	
	3.8	Cyclic r	edundancy check calculation unit (CRC)	19
	3.9	Powers	supply management	
		3.9.1	Power supply schemes	
		3.9.2	Power supply supervisor	20
		3.9.3	Voltage regulator	21
		3.9.4	Low-power modes	21
		3.9.5	Reset mode	25
		3.9.6	VBAT operation	25
	3.10	Interco	nnect matrix	26
	3.11	Clocks	and startup	28
	3.12	Genera	Il-purpose inputs/outputs (GPIOs)	31
	3.13	Direct r	nemory access controller (DMA)	31
	3.14	Interrup	ots and events	32
		3.14.1	Nested vectored interrupt controller (NVIC)	
		3.14.2	Extended interrupt/event controller (EXTI)	32
	3.15	Analog	to digital converter (ADC)	33
		3.15.1	Temperature sensor	33
		3.15.2	Internal voltage reference (VREFINT)	34
		3.15.3	VBAT battery voltage monitoring	
	3.16	Digital t	to analog converter (DAC)	34

3.17	Voltage reference buffer (VREFBUF)	35
3.18	Comparators (COMP)	35
3.19	Operational amplifier (OPAMP)	36
3.20	Touch sensing controller (TSC)	36
3.21	Random number generator (RNG)	36
3.22	Timers and watchdogs	37
	3.22.1 Advanced-control timer (TIM1)	. 37
	3.22.2 General-purpose timers (TIM2, TIM15, TIM16)	38
	3.22.3 Basic timers (TIM6 and TIM7)	38
	3.22.4 Low-power timer (LPTIM1 and LPTIM2)	38
	3.22.5 Infrared interface (IRTIM)	. 39
	3.22.6 Independent watchdog (IWDG)	39
	3.22.7 System window watchdog (WWDG)	
	3.22.8 SysTick timer	. 39
3.23	Real-time clock (RTC) and backup registers	
3.24	Inter-integrated circuit interface (I ² C)	41
3.25	Universal synchronous/asynchronous receiver transmitter (USART)	42
3.26	Low-power universal asynchronous receiver transmitter (LPUART)	43
3.27	Serial peripheral interface (SPI)	44
3.28	Serial audio interfaces (SAI)	44
3.29	Single wire protocol master interface (SWPMI)	45
3.30	Controller area network (CAN)	45
3.31	Secure digital input/output and MultiMediaCards Interface (SDMMC)	46
3.32	Clock recovery system (CRS)	46
3.33	Quad SPI memory interface (QUADSPI)	47
3.34	Development support	48
	3.34.1 Serial wire JTAG debug port (SWJ-DP)	. 48
	3.34.2 Embedded Trace Macrocell [™]	48
Pino	uts and pin description	49
Mem	ory mapping	74
	rical characteristics	
6.1	Parameter conditions	78

DocID028800 Rev 1

4

5

6

4/200

	6.1.1	Minimum and maximum values
	6.1.2	Typical values
	6.1.3	Typical curves
	6.1.4	Loading capacitor
	6.1.5	Pin input voltage
	6.1.6	Power supply scheme
	6.1.7	Current consumption measurement
6.2	Absolute	e maximum ratings
6.3	Operatir	ng conditions
	6.3.1	General operating conditions
	6.3.2	Operating conditions at power-up / power-down
	6.3.3	Embedded reset and power control block characteristics
	6.3.4	Embedded voltage reference
	6.3.5	Supply current characteristics
	6.3.6	Wakeup time from low-power modes and voltage scaling transition times
	6.3.7	External clock source characteristics
	6.3.8	Internal clock source characteristics
	6.3.9	PLL characteristics
	6.3.10	Flash memory characteristics
	6.3.11	EMC characteristics
	6.3.12	Electrical sensitivity characteristics
	6.3.13	I/O current injection characteristics
	6.3.14	I/O port characteristics
	6.3.15	NRST pin characteristics
	6.3.16	Analog switches booster
	6.3.17	Analog-to-Digital converter characteristics
	6.3.18	Digital-to-Analog converter characteristics
	6.3.19	Voltage reference buffer characteristics
	6.3.20	Comparator characteristics
	6.3.21	Operational amplifiers characteristics
	6.3.22	Temperature sensor characteristics
	6.3.23	V_{BAT} monitoring characteristics
	6.3.24	Timer characteristics
	6.3.25	Communication interfaces characteristics
Packa	age info	rmation

7

8

9

7.1	LQFP100 package information 169
7.2	UFBGA100 package information 172
7.3	LQFP64 package information 175
7.4	UFBGA64 package information 178
7.5	WLCSP64 package information
7.6	WLCSP49 package information
7.7	LQFP48 package information 187
7.8	UFQFPN48 package information 190
7.9	UFQFPN32 package information 192
7.10	Thermal characteristics
	7.10.1 Reference document
	7.10.2 Selecting the product temperature range
Part ı	numbering
Revis	sion history

6/200

List of tables

Table 1.	Device summary	2
Table 2.	STM32L431xx family device features and peripheral counts	. 13
Table 3.	Access status versus readout protection level and execution modes.	. 17
Table 4.	Functionalities depending on the working mode	. 23
Table 5.	STM32L431xx peripherals interconnect matrix	
Table 6.	DMA implementation	
Table 7.	Temperature sensor calibration values.	
Table 8.	Internal voltage reference calibration values	. 34
Table 9.	Timer feature comparison	
Table 10.	I2C implementation	
Table 11.	STM32L431xx USART/LPUART features	
Table 12.	SAI implementation.	
Table 13.	Legend/abbreviations used in the pinout table	. 53
Table 14.	STM32L431xx pin definitions	
Table 15.	Alternate function AF0 to AF7 (for AF8 to AF15 see Table 16)	
Table 16.	Alternate function AF8 to AF15 (for AF0 to AF7 see Table 15)	
Table 17.	STM32L431xx memory map and peripheral register boundary addresses	
Table 18.	Voltage characteristics	
Table 19.	Current characteristics	
Table 20.	Thermal characteristics.	
Table 21.	General operating conditions	
Table 22.	Operating conditions at power-up / power-down	
Table 23.	Embedded reset and power control block characteristics.	
Table 24.	Embedded internal voltage reference	
Table 25.	Current consumption in Run and Low-power run modes, code with data processing	
	running from Flash, ART enable (Cache ON Prefetch OFF)	. 88
Table 26.	Current consumption in Run and Low-power run modes, code with data processing	
	running from Flash, ART disable	. 89
Table 27.	Current consumption in Run and Low-power run modes, code with data processing	
	running from SRAM1	. 90
Table 28.	Typical current consumption in Run and Low-power run modes, with different codes	
	running from Flash, ART enable (Cache ON Prefetch OFF)	. 91
Table 29.	Typical current consumption in Run and Low-power run modes, with different codes	
	running from Flash, ART disable	. 92
Table 30.	Typical current consumption in Run and Low-power run modes, with different codes	
	running from SRAM1	. 92
Table 31.	Current consumption in Sleep and Low-power sleep modes, Flash ON	
Table 32.	Current consumption in Low-power sleep modes, Flash in power-down	
Table 33.	Current consumption in Stop 2 mode	
Table 34.	Current consumption in Stop 1 mode	
Table 35.	Current consumption in Stop 0	
Table 36.	Current consumption in Standby mode	
Table 37.	Current consumption in Shutdown mode	
Table 38.	Current consumption in VBAT mode	
Table 39.	Peripheral current consumption	
Table 40.	Low-power mode wakeup timings	
Table 41.	Regulator modes transition times	
Table 42.	Wakeup time using USART/LPUART.	

Table 43.	High-speed external user clock characteristics	
Table 44.	Low-speed external user clock characteristics	
Table 45.	HSE oscillator characteristics	
Table 46.	LSE oscillator characteristics (f _{LSE} = 32.768 kHz)	
Table 47.	HSI16 oscillator characteristics	
Table 48.	MSI oscillator characteristics	
Table 49.	HSI48 oscillator characteristics	
Table 50.	LSI oscillator characteristics	
Table 51.	PLL, PLLSAI1 characteristics	
Table 52.	Flash memory characteristics	
Table 53.	Flash memory endurance and data retention	
Table 54.	EMS characteristics	
Table 55.	EMI characteristics	
Table 56.	ESD absolute maximum ratings	
Table 57.	Electrical sensitivities	
Table 58.	I/O current injection susceptibility 1	
Table 59.	I/O static characteristics	
Table 60.	Output voltage characteristics	
Table 61.	I/O AC characteristics	
Table 62.	NRST pin characteristics	
Table 63.	Analog switches booster characteristics	
Table 64.	ADC characteristics	
Table 65.	Maximum ADC RAIN	
Table 66.	ADC accuracy - limited test conditions 1	
Table 67.	ADC accuracy - limited test conditions 2	
Table 68.	ADC accuracy - limited test conditions 3	
Table 69.	ADC accuracy - limited test conditions 4	
Table 70.	DAC characteristics	
Table 71.	DAC accuracy	
Table 72.	VREFBUF characteristics	
Table 73.	COMP characteristics	
Table 74.	OPAMP characteristics	
Table 75.	TS characteristics	
Table 76.	V _{BAT} monitoring characteristics	55
Table 77.	V _{BAT} charging characteristics	
Table 78.	TIMx characteristics 1	
Table 79.	IWDG min/max timeout period at 32 kHz (LSI)	
Table 80.	WWDG min/max timeout value at 80 MHz (PCLK)	
Table 81.	I2C analog filter characteristics1	
Table 82.	SPI characteristics 1	
Table 83.	Quad SPI characteristics in SDR mode 1	
Table 84.	QUADSPI characteristics in DDR mode 1	62
Table 85.	SAI characteristics 1	
Table 86.	SD / MMC dynamic characteristics, VDD=2.7 V to 3.6 V	
Table 87.	eMMC dynamic characteristics, VDD = 1.71 V to 1.9 V	
Table 88.	SWPMI electrical characteristics 1	68
Table 89.	LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package	
	mechanical data	69
Table 90.	UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array	
	package mechanical data	
Table 91.	UFBGA100 recommended PCB design rules (0.5 mm pitch BGA) 1	73
Table 92.	LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat	

	package mechanical data	. 175
Table 93.	UFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch ball grid array	
	package mechanical data	. 178
Table 94.	UFBGA64 recommended PCB design rules (0.5 mm pitch BGA)	. 179
Table 95.	WLCSP64 - 64-ball, 3.141 x 3.127 mm, 0.35 mm pitch wafer level chip scale	
	package mechanical data	. 181
Table 96.	WLCSP64 recommended PCB design rules (0.35 mm pitch)	. 182
Table 97.	WLCSP49 - 49-ball, 3.141 x 3.127 mm, 0.4 mm pitch wafer level chip scale	
	package mechanical data	. 185
Table 98.	WLCSP49 recommended PCB design rules (0.4 mm pitch)	
Table 99.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package	
	mechanical data	. 188
Table 100.	UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat	
	package mechanical data	. 191
Table 101.	UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat	
	package mechanical data	193
Table 102.	Package thermal characteristics	
Table 102.	STM32L431xx ordering information scheme	
Table 103.	Document revision history	
		. 199

List of figures

Figure 1.	STM32L431xx block diagram	15
Figure 2.	Power supply overview	20
Figure 3.	Clock tree	
Figure 4.	Voltage reference buffer	35
Figure 5.	STM32L431Vx LQFP100 pinout ⁽¹⁾	49
Figure 6.	STM32L431Vx UFBGA100 ballout ⁽¹⁾	50
Figure 7.	STM32L431Rx LOEP64 pinout ⁽¹⁾	50
Figure 8.	STM32L431Rx UFBGA64 ballout ⁽¹⁾ STM32L431Rx WLCSP64 pinout ⁽¹⁾ STM32L431Cx WLCSP49 pinout ⁽¹⁾ STM32L431Cx LQFP48 pinout ⁽¹⁾	51
Figure 9.	STM32L431Rx WLCSP64 pinout ⁽¹⁾	51
Figure 10.	STM32L431Cx WLCSP49 pinout ⁽¹⁾	51
Figure 11.	STM32L431Cx LQFP48 pinout ⁽¹⁾	52
Figure 12.	STM32L431Cx UFQFPN48 pinout ⁽¹⁾	52
Figure 13.	STM32L431Cx UFQFPN48 pinout ⁽¹⁾	53
Figure 14.	STM32L431xx memory map	
Figure 15.	Pin loading conditions.	78
Figure 16.	Pin input voltage	78
Figure 17.	Power supply scheme	79
Figure 18.	Current consumption measurement scheme	80
Figure 19.	VREFINT versus temperature	86
Figure 20.	High-speed external clock source AC timing diagram	. 108
Figure 21.	Low-speed external clock source AC timing diagram	
Figure 22.	Typical application with an 8 MHz crystal	
Figure 23.	Typical application with a 32.768 kHz crystal	
Figure 24.	HSI16 frequency versus temperature	
Figure 25.	Typical current consumption versus MSI frequency	
Figure 26.	HSI48 frequency versus temperature	
Figure 27.	I/O input characteristics	
Figure 28.	I/O AC characteristics definition ⁽¹⁾	
Figure 29.	Recommended NRST pin protection	
Figure 30.	ADC accuracy characteristics	
Figure 31.	Typical connection diagram using the ADC	
Figure 32.	12-bit buffered / non-buffered DAC.	
Figure 33.	SPI timing diagram - slave mode and CPHA = 0	
Figure 34.	SPI timing diagram - slave mode and CPHA = 1	
Figure 35.	SPI timing diagram - master mode	
Figure 36.	Quad SPI timing diagram - SDR mode	
Figure 37.	Quad SPI timing diagram - DDR mode	
Figure 38.	SAI master timing waveforms	
Figure 39.	SAI slave timing waveforms	
Figure 40.	SDIO high-speed mode	
Figure 41.	SD default mode	
Figure 42.	LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline	
Figure 43.	LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat	
0	recommended footprint.	. 170
Figure 44.	LQFP100 marking (package top view)	. 171
Figure 45.	UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array	
0	package outline	. 172
Figure 46.	UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array	

	package recommended footprint	173
Figure 47.	UFBGA100 marking (package top view)	
Figure 48.	LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline	175
Figure 49.	LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package	
	recommended footprint	
Figure 50.	LQFP64 marking (package top view)	177
Figure 51.	UFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch ball grid array	
	package outline	178
Figure 52.	UFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch ball grid array	
	package recommended footprint	
Figure 53.	UFBGA64 marking (package top view)	180
Figure 54.	WLCSP64 - 64-ball, 3.141 x 3.127 mm, 0.35 mm pitch wafer level chip scale	
	package outline	181
Figure 55.	WLCSP64 - 64-ball, 3.141 x 3.127 mm, 0.35 mm pitch wafer level chip scale	
	package recommended footprint	
Figure 56.	WLCSP64 marking (package top view)	183
Figure 57.	WLCSP49 - 49-ball, 3.141 x 3.127 mm, 0.4 mm pitch wafer level chip scale	
	package outline	184
Figure 58.	WLCSP49 - 49-ball, 3.141 x 3.127 mm, 0.4 mm pitch wafer level chip scale	
- ; - 0	package recommended footprint	
Figure 59.	WLCSP49 marking (package top view)	
Figure 60.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline	187
Figure 61.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package	
- ; 00	recommended footprint.	
Figure 62.	LQFP48 marking (package top view)	189
Figure 63.	UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat	100
	package outline.	190
Figure 64.	UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat	101
	package recommended footprint	
Figure 65.	UFQFPN48 marking (package top view)	192
Figure 66.	UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat	100
Figure 67	package outline.	192
Figure 67.	UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat	102
Figure 68.	package recommended footprint	
Figure 68.		
Figure 09.	LQFP64 P _D max vs. T _A	191

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32L431xx microcontrollers.

This document should be read in conjunction with the STM32L4x1 reference manual (RM0392). The reference manual is available from the STMicroelectronics website *www.st.com*.

For information on the ARM[®] Cortex[®]-M4 core, please refer to the Cortex[®]-M4 Technical Reference Manual, available from the www.arm.com website.

2 Description

The STM32L431xx devices are the ultra-low-power microcontrollers based on the highperformance ARM[®] Cortex[®]-M4 32-bit RISC core operating at a frequency of up to 80 MHz. The Cortex-M4 core features a Floating point unit (FPU) single precision which supports all ARM single-precision data-processing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security.

The STM32L431xx devices embed high-speed memories (Flash memory up to 256 Kbyte, 64 Kbyte of SRAM), a Quad SPI flash memories interface (available on all packages) and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.

The STM32L431xx devices embed several protection mechanisms for embedded Flash memory and SRAM: readout protection, write protection, proprietary code readout protection and Firewall.

The devices offer a fast 12-bit ADC (5 Msps), two comparators, one operational amplifier, two DAC channels, an internal voltage reference buffer, a low-power RTC, one general-purpose 32-bit timer, one 16-bit PWM timer dedicated to motor control, four general-purpose 16-bit timers, and two 16-bit low-power timers.

In addition, up to 21 capacitive sensing channels are available.

They also feature standard and advanced communication interfaces.

- Three I2Cs
- Three SPIs
- Three USARTs and one Low-Power UART.
- One SAI (Serial Audio Interfaces)
- One SDMMC
- One CAN
- One SWPMI (Single Wire Protocol Master Interface)

The STM32L431xx operates in the -40 to +85 °C (+105 °C junction), -40 to +105 °C (+125 °C junction) and -40 to +125 °C (+130 °C junction) temperature ranges from a 1.71 to 3.6 V power supply. A comprehensive set of power-saving modes allows the design of low-power applications.

Some independent power supplies are supported: analog independent supply input for ADC, DAC, OPAMPs and comparators. A VBAT input allows to backup the RTC and backup registers.

The STM32L431xx family offers nine packages from 32 to 100-pin packages.

Table 2. STM32L431xx family device features and peripheral counts

Peripheral	STM32L431Vx	STM32L431Rx		STM32L431Cx		STM32L431Kx	
Flash memory	256KB	128KB	256KB	128KB	256KB	128KB	256KB
SRAM	64KB						
Quad SPI	Yes						

	ipheral	STM32L431Vx	STM32L431Rx	STM32L431Cx	STM32L431Kx					
	Advanced control		1	(16-bit)						
	General purpose			2 (16-bit) (32-bit)						
	Basic		2	? (16-bit)						
Timers	Low -power		2	2 (16-bit)						
	SysTick timer			1						
	Watchdog timers (independent, window)		2							
	SPI		3		2					
	l ² C		3		2					
Comm.	USART LPUART		3 1		2 1					
interfaces	SAI			1						
	CAN			1						
	SDMMC		lo							
	SWPMI	Yes								
RTC		Yes								
Tamper pins		3	2	2	1					
Random gen	erator	Yes								
GPIOs Wakeup pins	3	83 5	52 4	38 or 39 ⁽¹⁾ 3	26 2					
Capacitive se Number of cl	ensing hannels	21	12	6	3					
12-bit ADCs Number of cl	hannels	1 16	1 16	1 10	1 10					
12-bit DAC c	hannels			2						
Internal volta buffer	ge reference	Yes	Yes No							
Analog comp	parator	2								
Operational a	amplifiers	1								
Max. CPU fre	equency	80 MHz								
Operating vo	oltage	1.71 to 3.6 V								
Operating ter	mperature	Ambient operating temperature: -40 to 85 °C / -40 to 105 °C / -40 to 125 °C Junction temperature: -40 to 105 °C / -40 to 125 °C / -40 to 130 °C								
Packages		LQFP100 UFBGA100	WLCSP64 LQFP64 UFBGA64	WLCSP49 LQFP48 UFQFPN48	UFQFPN32					

Table 2. STM32L431xx family device features and peripheral counts (continued)

1. For WLCSP49 package.

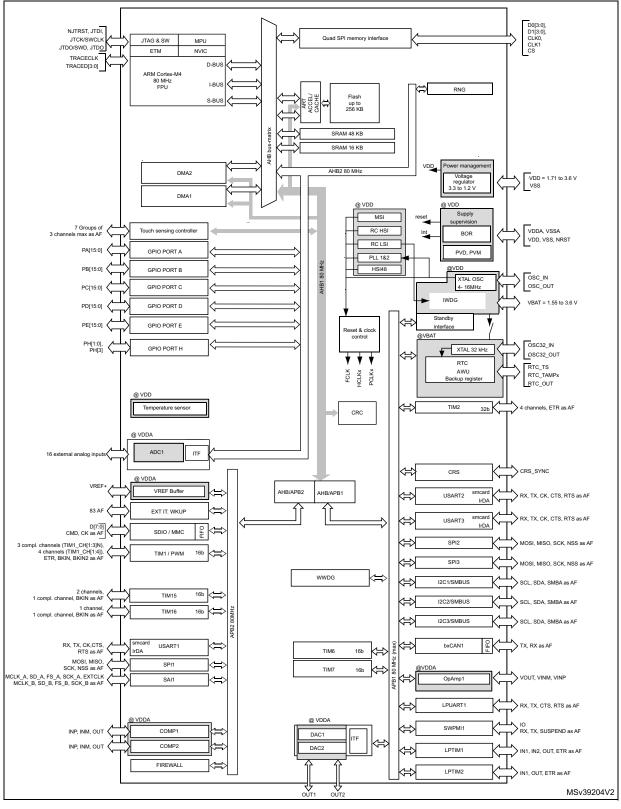


Figure 1. STM32L431xx block diagram

AF: alternate function on I/O pins.

3 Functional overview

3.1 ARM[®] Cortex[®]-M4 core with FPU

The ARM[®] Cortex[®]-M4 with FPU processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.

The ARM[®] Cortex[®]-M4 with FPU 32-bit RISC processor features exceptional codeefficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.

The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution.

Its single precision FPU speeds up software development by using metalanguage development tools, while avoiding saturation.

With its embedded ARM core, the STM32L431xx family is compatible with all ARM tools and software.

Figure 1 shows the general block diagram of the STM32L431xx family devices.

3.2 Adaptive real-time memory accelerator (ART Accelerator[™])

The ART Accelerator[™] is a memory accelerator which is optimized for STM32 industrystandard ARM[®] Cortex[®]-M4 processors. It balances the inherent performance advantage of the ARM[®] Cortex[®]-M4 over Flash memory technologies, which normally requires the processor to wait for the Flash memory at higher frequencies.

To release the processor near 100 DMIPS performance at 80MHz, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 64-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 80 MHz.

3.3 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.

The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

3.4 Embedded Flash memory

STM32L431xx devices feature up to 256 Kbyte of embedded Flash memory available for storing programs and data in single bank architecture. The Flash memory contains 128 pages of 2 Kbyte.

Flexible protections can be configured thanks to option bytes:

- Readout protection (RDP) to protect the whole memory. Three levels are available:
 - Level 0: no readout protection
 - Level 1: memory readout protection: the Flash memory cannot be read from or written to if either debug features are connected, boot in RAM or bootloader is selected
 - Level 2: chip readout protection: debug features (Cortex-M4 JTAG and serial wire), boot in RAM and bootloader selection are disabled (JTAG fuse). This selection is irreversible.

Area	Protection level	U	ser executio	on	Debug, boot from RAM or boot from system memory (loader)				
	ievei	Read	Write	Erase	Read	Write	Erase		
Main	1	Yes	Yes	Yes Yes		No	No		
memory	2	Yes	Yes Yes		N/A	N/A	N/A		
System	1	Yes	No No		Yes	No	No		
memory	2	Yes	No	No	N/A	N/A	N/A		
Option	1	Yes	Yes	Yes	Yes	Yes	Yes		
bytes	2	Yes	No	No	N/A	N/A	N/A		
Backup	1	Yes	Yes	N/A ⁽¹⁾	No	No	N/A ⁽¹⁾		
registers	2	Yes	Yes	N/A	N/A	N/A	N/A		
SRAM2	1	Yes	Yes	Yes ⁽¹⁾	No	No	No ⁽¹⁾		
SNAIVIZ	2	Yes	Yes	Yes	N/A	N/A	N/A		

Table 3. Access status versus readout protection level and execution modes

1. Erased when RDP change from Level 1 to Level 0.

- Write protection (WRP): the protected area is protected against erasing and programming. Two areas can be selected, with 2-Kbyte granularity.
- Proprietary code readout protection (PCROP): a part of the flash memory can be
 protected against read and write from third parties. The protected area is execute-only:
 it can only be reached by the STM32 CPU, as an instruction code, while all other
 accesses (DMA, debug and CPU data read, write and erase) are strictly prohibited.
 The PCROP area granularity is 64-bit wide. An additional option bit (PCROP_RDP)
 allows to select if the PCROP area is erased or not when the RDP protection is
 changed from Level 1 to Level 0.

The whole non-volatile memory embeds the error correction code (ECC) feature supporting:

- single error detection and correction
- double error detection.
- The address of the ECC fail can be read in the ECC register

3.5 Embedded SRAM

STM32L431xx devices feature 64 Kbyte of embedded SRAM. This SRAM is split into two blocks:

- 48 Kbyte mapped at address 0x2000 0000 (SRAM1)
- 16 Kbyte located at address 0x1000 0000 with hardware parity check (SRAM2). This memory is also mapped at address 0x2000 C000, offering a contiguous address space with the SRAM1 (16 Kbyte aliased by bit band)

This block is accessed through the ICode/DCode buses for maximum performance. These 16 Kbyte SRAM can also be retained in Standby mode.

The SRAM2 can be write-protected with 1 Kbyte granularity.

The memory can be accessed in read/write at CPU clock speed with 0 wait states.

3.6 Firewall

The device embeds a Firewall which protects code sensitive and secure data from any access performed by a code executed outside of the protected areas.

Each illegal access generates a reset which kills immediately the detected intrusion.

The Firewall main features are the following:

- Three segments can be protected and defined thanks to the Firewall registers:
 - Code segment (located in Flash or SRAM1 if defined as executable protected area)
 - Non-volatile data segment (located in Flash)
 - Volatile data segment (located in SRAM1)
- The start address and the length of each segments are configurable:
 - code segment: up to 1024 Kbyte with granularity of 256 bytes
 - Non-volatile data segment: up to 1024 Kbyte with granularity of 256 bytes
 - Volatile data segment: up to 48 Kbyte with a granularity of 64 bytes
- Specific mechanism implemented to open the Firewall to get access to the protected areas (call gate entry sequence)
- Volatile data segment can be shared or not with the non-protected code
- Volatile data segment can be executed or not depending on the Firewall configuration

The Flash readout protection must be set to level 2 in order to reach the expected level of protection.

3.7 Boot modes

At startup, BOOT0 pin or nSWBOOT0 option bit, and BOOT1 option bit are used to select one of three boot options:

- Boot from user Flash
- Boot from system memory
- Boot from embedded SRAM

BOOT0 value may come from the PH3-BOOT0 pin or from an option bit depending on the value of a user option bit to free the GPIO pad if needed.

A Flash empty check mechanism is implemented to force the boot from system flash if the first flash memory location is not programmed and if the boot selection is configured to boot from main flash.

The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART, I2C, SPI and CAN in Device mode through DFU (device firmware upgrade).

3.8 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

3.9 Power supply management

3.9.1 Power supply schemes

- V_{DD} = 1.71 to 3.6 V: external power supply for I/Os (V_{DDIO1}), the internal regulator and the system analog such as reset, power management and internal clocks. It is provided externally through V_{DD} pins.
- V_{DDA} = 1.62 V (ADCs/COMPs) / 1.8 (DACs/OPAMP) to 3.6 V: external analog power supply for ADCs, DACs, OPAMP, Comparators and Voltage reference buffer. The V_{DDA} voltage level is independent from the V_{DD} voltage.
- V_{BAT} = 1.55 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.
- Note: When the functions supplied by V_{DDA} are not used, this supply should preferably be shorted to V_{DD} .
- Note: If these supplies are tied to ground, the I/Os supplied by these power supplies are not 5 V tolerant (refer to Table 18: Voltage characteristics).
- Note: V_{DDIOx} is the I/Os general purpose digital functions supply. V_{DDIOx} represents V_{DDIO1} , with $V_{DDIO1} = V_{DD}$.

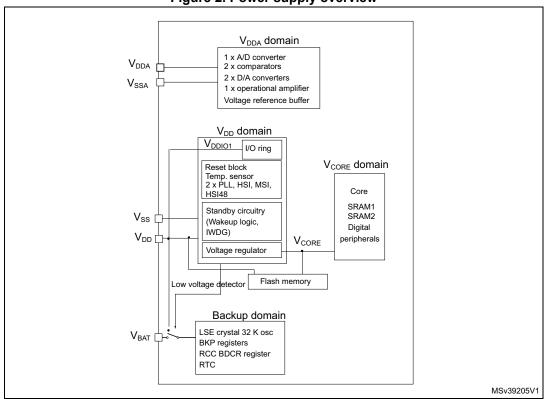


Figure 2. Power supply overview

3.9.2 Power supply supervisor

The device has an integrated ultra-low-power brown-out reset (BOR) active in all modes except Shutdown and ensuring proper operation after power-on and during power down. The device remains in reset mode when the monitored supply voltage V_{DD} is below a specified threshold, without the need for an external reset circuit.

The lowest BOR level is 1.71V at power on, and other higher thresholds can be selected through option bytes. The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD} power supply and compares it to the VPVD threshold. An interrupt can be generated when V_{DD} drops below the VPVD threshold and/or when V_{DD} is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

In addition, the devices embed a Peripheral Voltage Monitor which compares the independent supply voltage V_{DDA} with a fixed threshold in order to ensure that the peripheral is in its functional supply range.

3.9.3 Voltage regulator

Two embedded linear voltage regulators supply most of the digital circuitries: the main regulator (MR) and the low-power regulator (LPR).

- The MR is used in the Run and Sleep modes and in the Stop 0 mode.
- The LPR is used in Low-Power Run, Low-Power Sleep, Stop 1 and Stop 2 modes. It is also used to supply the 16 Kbyte SRAM2 in Standby with RAM2 retention.
- Both regulators are in power-down in Standby and Shutdown modes: the regulator output is in high impedance, and the kernel circuitry is powered down thus inducing zero consumption.

The ultralow-power STM32L431xx supports dynamic voltage scaling to optimize its power consumption in run mode. The voltage from the Main Regulator that supplies the logic (VCORE) can be adjusted according to the system's maximum operating frequency.

There are two power consumption ranges:

- Range 1 with the CPU running at up to 80 MHz.
- Range 2 with a maximum CPU frequency of 26 MHz. All peripheral clocks are also limited to 26 MHz.

The VCORE can be supplied by the low-power regulator, the main regulator being switched off. The system is then in Low-power run mode.

 Low-power run mode with the CPU running at up to 2 MHz. Peripherals with independent clock can be clocked by HSI16.

3.9.4 Low-power modes

The ultra-low-power STM32L431xx supports seven low-power modes to achieve the best compromise between low-power consumption, short startup time, available peripherals and available wakeup sources:

By default, the microcontroller is in Run mode after a system or a power Reset. It is up to the user to select one of the low-power modes described below:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

• Low-power run mode

This mode is achieved with VCORE supplied by the low-power regulator to minimize the regulator's operating current. The code can be executed from SRAM or from Flash, and the CPU frequency is limited to 2 MHz. The peripherals with independent clock can be clocked by HSI16.

• Low-power sleep mode

This mode is entered from the low-power run mode. Only the CPU clock is stopped. When wakeup is triggered by an event or an interrupt, the system reverts to the lowpower run mode.

• Stop 0, Stop 1 and Stop 2 modes

Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the VCORE domain are stopped, the PLL, the MSI

RC, the HSI16 RC and the HSE crystal oscillators are disabled. The LSE or LSI is still running.

The RTC can remain active (Stop mode with RTC, Stop mode without RTC).

Some peripherals with wakeup capability can enable the HSI16 RC during Stop mode to detect their wakeup condition.

Three Stop modes are available: Stop 0, Stop 1 and Stop 2 modes. In Stop 2 mode, most of the VCORE domain is put in a lower leakage mode.

Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller wakeup time but a higher consumption than Stop 2. In Stop 0 mode, the main regulator remains ON, allowing a very fast wakeup time but with much higher consumption.

The system clock when exiting from Stop 0, Stop1 or Stop2 modes can be either MSI up to 48 MHz or HSI16, depending on software configuration.

• Standby mode

The Standby mode is used to achieve the lowest power consumption with BOR. The internal regulator is switched off so that the VCORE domain is powered off. The PLL, the MSI RC, the HSI16 RC and the HSE crystal oscillators are also switched off.

The RTC can remain active (Standby mode with RTC, Standby mode without RTC).

The brown-out reset (BOR) always remains active in Standby mode.

The state of each I/O during standby mode can be selected by software: I/O with internal pull-up, internal pull-down or floating.

After entering Standby mode, SRAM1 and register contents are lost except for registers in the Backup domain and Standby circuitry. Optionally, SRAM2 can be retained in Standby mode, supplied by the low-power Regulator (Standby with RAM2 retention mode).

The device exits Standby mode when an external reset (NRST pin), an IWDG reset, WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wakeup, timestamp, tamper) or a failure is detected on LSE (CSS on LSE).

The system clock after wakeup is MSI up to 8 MHz.

• Shutdown mode

The Shutdown mode allows to achieve the lowest power consumption. The internal regulator is switched off so that the VCORE domain is powered off. The PLL, the HSI16, the MSI, the LSI and the HSE oscillators are also switched off.

The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC).

The BOR is not available in Shutdown mode. No power voltage monitoring is possible in this mode, therefore the switch to Backup domain is not supported.

SRAM1, SRAM2 and register contents are lost except for registers in the Backup domain.

The device exits Shutdown mode when an external reset (NRST pin), a WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wakeup, timestamp, tamper).

The system clock after wakeup is MSI at 4 MHz.

				•	Stop			p 2	Stan		Shut	down	
Peripheral	Run	Sleep	Low- power run	Low- power sleep	-	Wakeup capability	-	Wakeup capability	-	Wakeup capability	-	Wakeup capability	VBAT
CPU	Y	-	Y	-	-	-	-	-	-	-	-	-	-
Flash memory (up to 256 KB)	O ⁽²⁾	O ⁽²⁾	O ⁽²⁾	O ⁽²⁾	-	-	-	-	-	-	-	-	-
SRAM1 (48 KB)	Y	Y ⁽³⁾	Y	Y ⁽³⁾	Y	-	Y	-	-	-	-	-	-
SRAM2 (16 KB)	Y	Y ⁽³⁾	Y	Y ⁽³⁾	Y	-	Y	-	O ⁽⁴⁾	-	-	-	-
Quad SPI	0	0	0	0	-	-	-	-	-	-	-	-	-
Backup Registers	Y	Y	Y	Y	Y	-	Y	-	Y	-	Y	-	Y
Brown-out reset (BOR)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	-	-	-
Programmable Voltage Detector (PVD)	0	0	0	0	0	0	0	0	-	-	-	-	-
Peripheral Voltage Monitor (PVMx; x=1,3,4)	0	0	0	0	0	0	0	0	-	-	-	-	-
DMA	0	0	0	0	-	-	-	-	-	-	-	-	-
High Speed Internal (HSI16)	0	0	0	0	(5)	-	(5)	-	-	-	-	-	-
Oscillator RC48	0	0	-	-	-	-	-	-	-	-	-	-	-
High Speed External (HSE)	0	0	0	0	-	-	-	-	-	-	-	-	-
Low Speed Internal (LSI)	0	0	0	0	0	-	0	-	0	-	-	-	-
Low Speed External (LSE)	0	0	0	0	0	-	0	-	0	-	0	-	0
Multi-Speed Internal (MSI)	0	0	0	0	-	-	-	-	-	-	-	-	-
Clock Security System (CSS)	0	0	0	0	-	-	-	-	-	-	-	-	-
Clock Security System on LSE	0	0	0	0	0	0	0	0	0	0	-	-	-
RTC / Auto wakeup	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of RTC Tamper pins	3	3	3	3	3	0	3	0	3	0	3	0	3
USARTx (x=1,2,3)	0	0	0	0	O ⁽⁶⁾	O ⁽⁶⁾	-	-	-	-	-	-	-

Table 4. Functionalities depending on the working mod	<u>م</u> (1)
Table 4. Functionalities depending on the working mou	8`´

					Stop		_	p 2	-	ndby		down	
Peripheral	Run	Sleep	Low- power run	Low- power sleep	-	Wakeup capability	-	Wakeup capability	-	Wakeup capability	-	Wakeup capability	VBAT
Low-power UART (LPUART)	0	0	0	0	O ⁽⁶⁾	O ⁽⁶⁾	O ⁽⁶⁾	O ⁽⁶⁾	-	-	-	-	-
I2Cx (x=1,2)	0	0	0	0	O ⁽⁷⁾	O ⁽⁷⁾	-	-	-	-	-	-	-
I2C3	0	0	0	0	O ⁽⁷⁾	O ⁽⁷⁾	O ⁽⁷⁾	O ⁽⁷⁾	-	-	-	-	-
SPIx (x=1,2,3)	0	0	0	0	-	-	-	-	-	-	-	-	-
CAN	0	0	0	0	-	-	-	-	-	-	-	-	-
SDMMC1	0	0	0	0	-	-	-	-	-	-	-	-	-
SWPMI1	0	0	0	0	-	0	-	-	-	-	-	-	-
SAIx (x=1)	0	0	0	0	-	-	-	-	-	-	-	-	-
ADCx (x=1)	0	0	0	0	-	-	-	-	-	-	-	-	-
DACx (x=1,2)	0	0	0	0	0	-	-	-	-	-	-	-	-
VREFBUF	0	0	0	0	0	-	-	-	-	-	-	-	-
OPAMPx (x=1)	0	0	0	0	0	-	-	-	-	-	-	-	-
COMPx (x=1,2)	0	0	0	0	0	0	0	0	-	-	-	-	-
Temperature sensor	0	0	0	0	-	-	-	-	-	-	-	-	-
Timers (TIMx)	0	0	0	0	-	-	-	-	-	-	-	-	-
Low-power timer 1 (LPTIM1)	0	0	0	0	0	0	0	0	-	-	-	-	-
Low-power timer 2 (LPTIM2)	0	0	0	0	0	0	-	-	-	-	-	-	-
Independent watchdog (IWDG)	0	0	0	0	0	0	0	0	0	0	-	-	-
Window watchdog (WWDG)	0	0	0	0	-	-	-	-	-	-	-	-	-
SysTick timer	0	0	0	0	-	-	-	-	-	-	-	-	-
Touch sensing controller (TSC)	0	0	0	0	-	-	-	-	-	-	-	-	-
Random number generator (RNG)	O ⁽⁸⁾	O ⁽⁸⁾	-	-	-	-	-	-	-	-	-	-	-

Table 4. Functionalities depending on the working mode⁽¹⁾ (continued)

24/200

					Stop	o 0/1	Sto	p 2	Star	ndby	Shut	down	
Peripheral	Run	Sleep	Low- power run	Low- power sleep	-	Wakeup capability	-	Wakeup capability	-	Wakeup capability	-	Wakeup capability	VBAT
CRC calculation unit	0	0	0	0	-	-	-	-	-	-	-	-	-
GPIOs	0	0	0	0	0	0	0	0	(9)	5 pins (10)	(11)	5 pins (10)	-

Table 4. Functionalities depending on the working mode⁽¹⁾ (continued)

1. Legend: Y = Yes (Enable). O = Optional (Disable by default. Can be enabled by software). - = Not available.

2. The Flash can be configured in power-down mode. By default, it is not in power-down mode.

- 3. The SRAM clock can be gated on or off.
- 4. SRAM2 content is preserved when the bit RRS is set in PWR_CR3 register.
- Some peripherals with wakeup from Stop capability can request HSI16 to be enabled. In this case, HSI16 is woken up by the peripheral, and only feeds the peripheral which requested it. HSI16 is automatically put off when the peripheral does not need it anymore.
- 6. UART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event.
- 7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
- 8. Voltage scaling Range 1 only.
- 9. I/Os can be configured with internal pull-up, pull-down or floating in Standby mode.
- 10. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5.
- 11. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode.

3.9.5 Reset mode

In order to improve the consumption under reset, the I/Os state under and after reset is "analog state" (the I/O schmitt trigger is disable). In addition, the internal reset pull-up is deactivated when the reset source is internal.

3.9.6 VBAT operation

The VBAT pin allows to power the device VBAT domain from an external battery, an external supercapacitor, or from V_{DD} when no external battery and an external supercapacitor are present. The VBAT pin supplies the RTC with LSE and the backup registers. Three anti-tamper detection pins are available in VBAT mode.

VBAT operation is automatically activated when $\mathsf{V}_{\mathsf{D}\mathsf{D}}$ is not present.

An internal VBAT battery charging circuit is embedded and can be activated when V_{DD} is present.

Note: When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events do not exit it from VBAT operation.

3.10 Interconnect matrix

Several peripherals have direct connections between them. This allows autonomous communication between peripherals, saving CPU resources thus power supply consumption. In addition, these hardware connections allow fast and predictable latency.

Depending on peripherals, these interconnections can operate in Run, Sleep, low-power run and sleep, Stop 0, Stop 1 and Stop 2 modes.

Interconnect source	Interconnect destination	Interconnect action	Run	Sleep	Low-power run	Low-power sleep	Stop 0 / Stop 1	Stop 2
	TIMx	Timers synchronization or chaining	Y	Y	Y	Y	-	-
TIMx	ADCx DACx	Conversion triggers	Y	Y	Y	Y	-	-
	DMA	Memory to memory transfer trigger	Y	Υ	Y	Y	-	-
	COMPx	Comparator output blanking	Y	Υ	Y	Y	-	-
TIM15/TIM16	IRTIM	Infrared interface output generation	Y	Υ	Y	Y	-	-
COMPX	TIM1 TIM2	Timer input channel, trigger, break from analog signals comparison	Y	Y	Y	Y	-	-
COMPx	LPTIMERx	Low-power timer triggered by analog signals comparison	Y	Y	Y	Y	Y	Y (1)
ADCx	TIM1	Timer triggered by analog watchdog		Υ	Y	Y	-	-
	TIM16	Timer input channel from RTC events	Y	Υ	Y	Y	-	-
RTC	LPTIMERx	Low-power timer triggered by RTC alarms or tampers	Y	Y	Y	Y	Y	Y (1)
All clocks sources (internal and external)	TIM2 TIM15, 16	Clock source used as input channel for RC measurement and trimming	Y	Y	Y	Y	-	-
CSS CPU (hard fault) RAM (parity error) Flash memory (ECC error) COMPx PVD	TIM1 TIM15,16	Timer break	Y	Y	Y	Y	-	-

Table 5. STM32L431xx peripherals interconnect matrix

26/200

Interconnect source	Interconnect destination	Interconnect action	Run	Sleep	Low-power run	Low-power sleep	Stop 0 / Stop 1	Stop 2
	TIMx	External trigger	Y	Y	Y	Y	-	-
GPIO	LPTIMERx	External trigger	Y	Y	Y	Y	Y	Y (1)
	ADCx DACx	Conversion external trigger	Y	Y	Y	Y	-	-

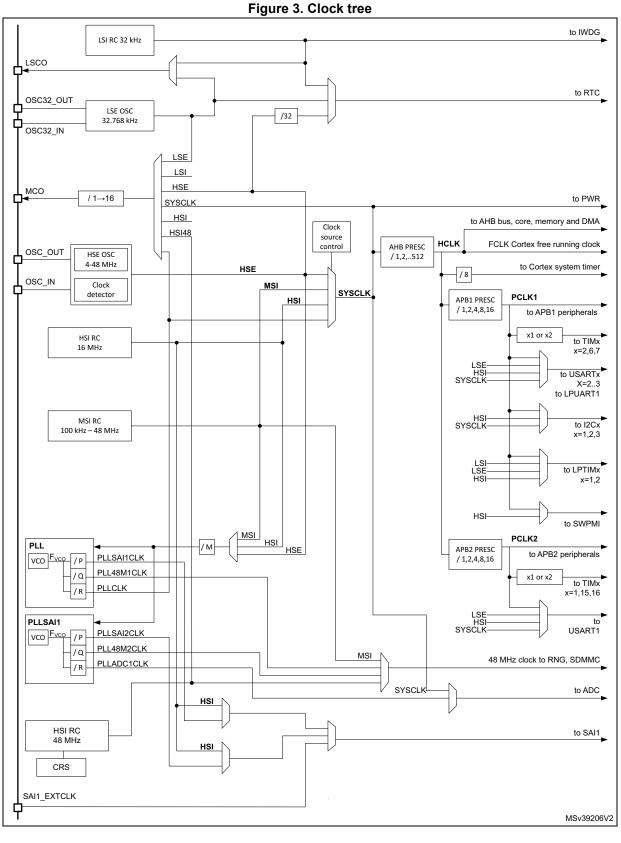
Table 5. STM32L431xx peripherals interconnect matrix (continued)

1. LPTIM1 only.

3.11 Clocks and startup

The clock controller (see *Figure 3*) distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features:

- Clock prescaler: to get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler
- **Safe clock switching:** clock sources can be changed safely on the fly in run mode through a configuration register.
- **Clock management:** to reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
- **System clock source:** four different clock sources can be used to drive the master clock SYSCLK:
 - 4-48 MHz high-speed external crystal or ceramic resonator (HSE), that can supply a PLL. The HSE can also be configured in bypass mode for an external clock.
 - 16 MHz high-speed internal RC oscillator (HSI16), trimmable by software, that can supply a PLL
 - Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 12 frequencies from 100 kHz to 48 MHz. When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be automatically trimmed by hardware to reach better than ±0.25% accuracy. The MSI can supply a PLL.
 - System PLL which can be fed by HSE, HSI16 or MSI, with a maximum frequency at 80 MHz.
- **RC48 with clock recovery system (HSI48)**: internal RC48 MHz clock source can be used to drive the SDMMC or the RNG peripherals. This clock can be output on the MCO.
- **Auxiliary clock source:** two ultralow-power clock sources that can be used to drive the real-time clock:
 - 32.768 kHz low-speed external crystal (LSE), supporting four drive capability modes. The LSE can also be configured in bypass mode for an external clock.
 - 32 kHz low-speed internal RC (LSI), also used to drive the independent watchdog. The LSI clock accuracy is ±5% accuracy.
- **Peripheral clock sources:** Several peripherals (SDMMC, RNG, SAI, USARTs, I2Cs, LPTimers, ADC, SWPMI) have their own independent clock whatever the system clock. Two PLLs, each having three independent outputs allowing the highest flexibility, can generate independent clocks for the ADC, the SDMMC/RNG and the SAI.
- **Startup clock:** after reset, the microcontroller restarts by default with an internal 4 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
- **Clock security system (CSS):** this feature can be enabled by software. If a HSE clock failure occurs, the master clock is automatically switched to HSI16 and a software



interrupt is generated if enabled. LSE failure can also be detected and generated an interrupt.

- Clock-out capability:
 - MCO: microcontroller clock output: it outputs one of the internal clocks for external use by the application
 - LSCO: low speed clock output: it outputs LSI or LSE in all low-power modes (except VBAT).

Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the APB domains is 80 MHz.

3.12 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. Fast I/O toggling can be achieved thanks to their mapping on the AHB2 bus.

The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

3.13 Direct memory access controller (DMA)

The device embeds 2 DMAs. Refer to *Table 6: DMA implementation* for the features implementation.

Direct memory access (DMA) is used in order to provide high-speed data transfer between peripherals and memory as well as memory to memory. Data can be quickly moved by DMA without any CPU actions. This keeps CPU resources free for other operations.

The two DMA controllers have 14 channels in total, each dedicated to managing memory access requests from one or more peripherals. Each has an arbiter for handling the priority between DMA requests.

The DMA supports:

- 14 independently configurable channels (requests)
- Each channel is connected to dedicated hardware DMA requests, software trigger is also supported on each channel. This configuration is done by software.
- Priorities between requests from channels of one DMA are software programmable (4 levels consisting of very high, high, medium, low) or hardware in case of equality (request 1 has priority over request 2, etc.)
- Independent source and destination transfer size (byte, half word, word), emulating packing and unpacking. Source/destination addresses must be aligned on the data size.
- Support for circular buffer management
- 3 event flags (DMA Half Transfer, DMA Transfer complete and DMA Transfer Error) logically ORed together in a single interrupt request for each channel
- Memory-to-memory transfer
- Peripheral-to-memory and memory-to-peripheral, and peripheral-to-peripheral transfers
- Access to Flash, SRAM, APB and AHB peripherals as source and destination
- Programmable number of data to be transferred: up to 65536.

Table 6. DMA implementation

DMA features	DMA1	DMA2
Number of regular channels	7	7

3.14 Interrupts and events

3.14.1 Nested vectored interrupt controller (NVIC)

The devices embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 67 maskable interrupt channels plus the 16 interrupt lines of the Cortex[®]-M4.

The NVIC benefits are the following:

- Closely coupled NVIC gives low latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Allows early processing of interrupts
- Processing of late arriving higher priority interrupts
- Support for tail chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

The NVIC hardware block provides flexible interrupt management features with minimal interrupt latency.

3.14.2 Extended interrupt/event controller (EXTI)

The extended interrupt/event controller consists of 37 edge detector lines used to generate interrupt/event requests and wake-up the system from Stop mode. Each external line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently A pending register maintains the status of the interrupt requests. The internal lines are connected to peripherals with wakeup from Stop mode capability. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 83 GPIOs can be connected to the 16 external interrupt lines.

3.15 Analog to digital converter (ADC)

The device embeds a successive approximation analog-to-digital converter with the following features:

- 12-bit native resolution, with built-in calibration
- 5.33 Msps maximum conversion rate with full resolution
 - Down to 18.75 ns sampling time
 - Increased conversion rate for lower resolution (up to 8.88 Msps for 6-bit resolution)
- Up to 16 external channels.
- 5 internal channels: internal reference voltage, temperature sensor, VBAT/3, DAC1 and DAC2 outputs.
- One external reference pin is available on some package, allowing the input voltage range to be independent from the power supply
- Single-ended and differential mode inputs
- Low-power design
 - Capable of low-current operation at low conversion rate (consumption decreases linearly with speed)
 - Dual clock domain architecture: ADC speed independent from CPU frequency
- Highly versatile digital interface
 - Single-shot or continuous/discontinuous sequencer-based scan mode: 2 groups of analog signals conversions can be programmed to differentiate background and high-priority real-time conversions
 - ADC supports multiple trigger inputs for synchronization with on-chip timers and external signals
 - Results stored into data register or in RAM with DMA controller support
 - Data pre-processing: left/right alignment and per channel offset compensation
 - Built-in oversampling unit for enhanced SNR
 - Channel-wise programmable sampling time
 - Three analog watchdog for automatic voltage monitoring, generating interrupts and trigger for selected timers
 - Hardware assistant to prepare the context of the injected channels to allow fast context switching

3.15.1 Temperature sensor

The temperature sensor (TS) generates a voltage V_{TS} that varies linearly with temperature.

The temperature sensor is internally connected to the ADC1_IN17 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.

Calibration value name	Description	Memory address							
TS_CAL1	TS ADC raw data acquired at a temperature of 30 °C (\pm 5 °C), V _{DDA} = V _{REF+} = 3.0 V (\pm 10 mV)	0x1FFF 75A8 - 0x1FFF 75A9							
TS_CAL2	TS ADC raw data acquired at a temperature of 130 °C (± 5 °C), $V_{DDA} = V_{REF+} = 3.0 V (\pm 10 mV)$	0x1FFF 75CA - 0x1FFF 75CB							

 Table 7. Temperature sensor calibration values

3.15.2 Internal voltage reference (V_{REFINT})

The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC and Comparators. VREFINT is internally connected to the ADC1_IN0 input channel. The precise voltage of VREFINT is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode.

Calibration value name	Description	Memory address
VREFINT	Raw data acquired at a temperature of 30 °C (± 5 °C), V _{DDA} = V _{REF+} = 3.0 V (± 10 mV)	0x1FFF 75AA - 0x1FFF 75AB

Table 8. Internal voltage	reference calibration values
---------------------------	------------------------------

3.15.3 V_{BAT} battery voltage monitoring

This embedded hardware feature allows the application to measure the V_{BAT} battery voltage using the internal ADC channel ADC1_IN18. As the V_{BAT} voltage may be higher than VDDA, and thus outside the ADC input range, the VBAT pin is internally connected to a bridge divider by 3. As a consequence, the converted digital value is one third the V_{BAT} voltage.

3.16 Digital to analog converter (DAC)

Two 12-bit buffered DAC channels can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration.

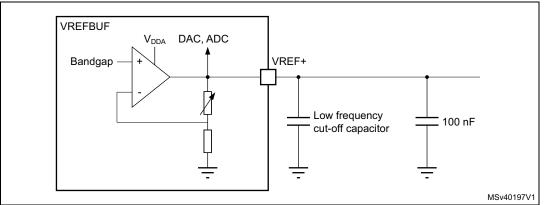
This digital interface supports the following features:

- Up to two DAC output channels
- 8-bit or 12-bit output mode
- Buffer offset calibration (factory and user trimming)
- Left or right data alignment in 12-bit mode
- Synchronized update capability
- Noise-wave generation
- Triangular-wave generation

- Dual DAC channel independent or simultaneous conversions
- DMA capability for each channel
- External triggers for conversion
- Sample and hold low-power mode, with internal or external capacitor

The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels.

3.17 Voltage reference buffer (VREFBUF)


The STM32L431xx devices embed an voltage reference buffer which can be used as voltage reference for ADCs, DACs and also as voltage reference for external components through the VREF+ pin.

The internal voltage reference buffer supports two voltages:

- 2.048 V
- 2.5 V

An external voltage reference can be provided through the VREF+ pin when the internal voltage reference buffer is off.

The VREF+ pin is double-bonded with VDDA on some packages. In these packages the internal voltage reference buffer is not available.

Figure 4. Voltage reference buffer

3.18 Comparators (COMP)

The STM32L431xx devices embed two rail-to-rail comparators with programmable reference voltage (internal or external), hysteresis and speed (low speed for low-power) and with selectable output polarity.

The reference voltage can be one of the following:

- External I/O
- DAC output channels
- Internal reference voltage or submultiple (1/4, 1/2, 3/4).

All comparators can wake up from Stop mode, generate interrupts and breaks for the timers and can be also combined into a window comparator.

3.19 Operational amplifier (OPAMP)

The STM32L431xx embeds one operational amplifier with external or internal follower routing and PGA capability.

The operational amplifier features:

- Low input bias current
- Low offset voltage
- Low-power mode
- Rail-to-rail input

3.20 Touch sensing controller (TSC)

The touch sensing controller provides a simple solution for adding capacitive sensing functionality to any application. Capacitive sensing technology is able to detect finger presence near an electrode which is protected from direct touch by a dielectric (glass, plastic, ...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle.

The touch sensing controller is fully supported by the STMTouch touch sensing firmware library which is free to use and allows touch sensing functionality to be implemented reliably in the end application.

The main features of the touch sensing controller are the following:

- Proven and robust surface charge transfer acquisition principle
- Supports up to 21 capacitive sensing channels
- Up to 3 capacitive sensing channels can be acquired in parallel offering a very good response time
- Spread spectrum feature to improve system robustness in noisy environments
- Full hardware management of the charge transfer acquisition sequence
- Programmable charge transfer frequency
- Programmable sampling capacitor I/O pin
- Programmable channel I/O pin
- Programmable max count value to avoid long acquisition when a channel is faulty
- Dedicated end of acquisition and max count error flags with interrupt capability
- One sampling capacitor for up to 3 capacitive sensing channels to reduce the system components
- Compatible with proximity, touchkey, linear and rotary touch sensor implementation
- Designed to operate with STMTouch touch sensing firmware library

3.21 Random number generator (RNG)

All devices embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit.

36/200

Note: The number of capacitive sensing channels is dependent on the size of the packages and subject to I/O availability.

3.22 Timers and watchdogs

The STM32L431xx includes one advanced control timers, up to five general-purpose timers, two basic timers, two low-power timers, two watchdog timers and a SysTick timer. The table below compares the features of the advanced control, general purpose and basic timers.

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complementary outputs					
Advanced control	TIM1	16-bit	Up, down, Up/down	Any integer between 1 and 65536	Yes	4	3					
General- purpose	TIM2	32-bit	Up, down, Up/down	Any integer between 1 and 65536	Yes	4	No					
General- purpose	TIM15	16-bit	Up	Any integer between 1 and 65536	Yes	2	1					
General- purpose	TIM16	16-bit	Up	Any integer between 1 and 65536	Yes	1	1					
Basic	TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No					

Table 9. Timer feature comparison

3.22.1 Advanced-control timer (TIM1)

The advanced-control timer can each be seen as a three-phase PWM multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead-times. They can also be seen as complete general-purpose timers. The 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge or center-aligned modes) with full modulation capability (0-100%)
- One-pulse mode output

In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switches driven by these outputs.

Many features are shared with those of the general-purpose TIMx timers (described in *Section 3.22.2*) using the same architecture, so the advanced-control timer can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining.

3.22.2 General-purpose timers (TIM2, TIM15, TIM16)

There are up to three synchronizable general-purpose timers embedded in the STM32L431xx (see *Table 9* for differences). Each general-purpose timer can be used to generate PWM outputs, or act as a simple time base.

• TIM2

It is a full-featured general-purpose timer:

TIM2 has a 32-bit auto-reload up/downcounter and 32-bit prescaler.

This timer features 4 independent channels for input capture/output compare, PWM or one-pulse mode output. It can work with the other general-purpose timers via the Timer Link feature for synchronization or event chaining.

The counter can be frozen in debug mode.

It has independent DMA request generation and support quadrature encoder.

• TIM15 and 16

They are general-purpose timers with mid-range features:

They have 16-bit auto-reload upcounters and 16-bit prescalers.

- TIM15 has 2 channels and 1 complementary channel
- TIM16 has 1 channel and 1 complementary channel

All channels can be used for input capture/output compare, PWM or one-pulse mode output.

The timers can work together via the Timer Link feature for synchronization or event chaining. The timers have independent DMA request generation.

The counters can be frozen in debug mode.

3.22.3 Basic timers (TIM6 and TIM7)

The basic timers are mainly used for DAC trigger generation. They can also be used as generic 16-bit timebases.

3.22.4 Low-power timer (LPTIM1 and LPTIM2)

The devices embed two low-power timers. These timers have an independent clock and are running in Stop mode if they are clocked by LSE, LSI or an external clock. They are able to wakeup the system from Stop mode.

LPTIM1 is active in Stop 0, Stop 1 and Stop 2 modes.

LPTIM2 is active in Stop 0 and Stop 1 mode.

This low-power timer supports the following features:

- 16-bit up counter with 16-bit autoreload register
- 16-bit compare register
- Configurable output: pulse, PWM
- Continuous/ one shot mode
- Selectable software/hardware input trigger
- Selectable clock source
 - Internal clock sources: LSE, LSI, HSI16 or APB clock
 - External clock source over LPTIM input (working even with no internal clock source running, used by pulse counter application).
- Programmable digital glitch filter
- Encoder mode (LPTIM1 only)

3.22.5 Infrared interface (IRTIM)

The STM32L431xx includes one infrared interface (IRTIM). It can be used with an infrared LED to perform remote control functions. It uses TIM15 and TIM16 output channels to generate output signal waveforms on IR_OUT pin.

3.22.6 Independent watchdog (IWDG)

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC (LSI) and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

3.22.7 System window watchdog (WWDG)

The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.22.8 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:

- A 24-bit down counter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0.
- Programmable clock source

3.23 Real-time clock (RTC) and backup registers

The RTC is an independent BCD timer/counter. It supports the following features:

- Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format.
- Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
- Two programmable alarms.
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock.
- Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.
- Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal inaccuracy.
- Three anti-tamper detection pins with programmable filter.
- Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to VBAT mode.
- 17-bit auto-reload wakeup timer (WUT) for periodic events with programmable resolution and period.

The RTC and the 32 backup registers are supplied through a switch that takes power either from the V_{DD} supply when present or from the VBAT pin.

The backup registers are 32-bit registers used to store 128 bytes of user application data when VDD power is not present. They are not reset by a system or power reset, or when the device wakes up from Standby or Shutdown mode.

The RTC clock sources can be:

- A 32.768 kHz external crystal (LSE)
- An external resonator or oscillator (LSE)
- The internal low power RC oscillator (LSI, with typical frequency of 32 kHz)
- The high-speed external clock (HSE) divided by 32.

The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the LSE. When clocked by the LSI, the RTC is not functional in VBAT mode, but is functional in all low-power modes except Shutdown mode.

All RTC events (Alarm, WakeUp Timer, Timestamp or Tamper) can generate an interrupt and wakeup the device from the low-power modes.

3.24 Inter-integrated circuit interface (I2C)

The device embeds 3 I2C. Refer to *Table 10: I2C implementation* for the features implementation.

The I²C bus interface handles communications between the microcontroller and the serial I²C bus. It controls all I²C bus-specific sequencing, protocol, arbitration and timing.

The I2C peripheral supports:

- I²C-bus specification and user manual rev. 5 compatibility:
 - Slave and master modes, multimaster capability
 - Standard-mode (Sm), with a bitrate up to 100 kbit/s
 - Fast-mode (Fm), with a bitrate up to 400 kbit/s
 - Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os
 - 7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
 - Programmable setup and hold times
 - Optional clock stretching
- System Management Bus (SMBus) specification rev 2.0 compatibility:
 - Hardware PEC (Packet Error Checking) generation and verification with ACK control
 - Address resolution protocol (ARP) support
 - SMBus alert
- Power System Management Protocol (PMBusTM) specification rev 1.1 compatibility
- Independent clock: a choice of independent clock sources allowing the I2C communication speed to be independent from the PCLK reprogramming. Refer to Figure 3: Clock tree.
- Wakeup from Stop mode on address match
- Programmable analog and digital noise filters
- 1-byte buffer with DMA capability

Table 10. I2C implementation

I2C features ⁽¹⁾	I2C1	I2C2	I2C3
Standard-mode (up to 100 kbit/s)	Х	Х	Х
Fast-mode (up to 400 kbit/s)	Х	Х	Х
Fast-mode Plus with 20mA output drive I/Os (up to 1 Mbit/s)	Х	Х	Х
Programmable analog and digital noise filters	Х	Х	Х
SMBus/PMBus hardware support	Х	Х	Х
Independent clock	Х	Х	Х
Wakeup from Stop 0 / Stop 1 mode on address match	Х	Х	Х
Wakeup from Stop 2 mode on address match	-	-	Х

1. X: supported

3.25 Universal synchronous/asynchronous receiver transmitter (USART)

The STM32L431xx devices have three embedded universal synchronous receiver transmitters (USART1, USART2 and USART3).

These interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. They provide hardware management of the CTS and RTS signals, and RS485 Driver Enable. They are able to communicate at speeds of up to 10Mbit/s.

USART1, USART2 and USART3 also provide Smart Card mode (ISO 7816 compliant) and SPI-like communication capability.

All USART have a clock domain independent from the CPU clock, allowing the USARTx (x=1,2,3) to wake up the MCU from Stop mode using baudrates up to 200 Kbaud. The wake up events from Stop mode are programmable and can be:

- Start bit detection
- Any received data frame
- A specific programmed data frame

All USART interfaces can be served by the DMA controller.

USART modes/features ⁽¹⁾	USART1	USART2	USART3	LPUART1
				_
Hardware flow control for modem	X	Х	Х	Х
Continuous communication using DMA	Х	Х	Х	Х
Multiprocessor communication	x	Х	Х	Х
Synchronous mode	Х	Х	Х	-
Smartcard mode	Х	Х	Х	-
Single-wire half-duplex communication	X	Х	Х	Х
IrDA SIR ENDEC block	Х	Х	Х	-
LIN mode	Х	Х	Х	-
Dual clock domain	Х	Х	Х	Х
Wakeup from Stop 0 / Stop 1 modes	Х	Х	Х	Х
Wakeup from Stop 2 mode	-	-	-	Х
Receiver timeout interrupt	Х	Х	Х	-
Modbus communication	Х	Х	Х	-
Auto baud rate detection		X (4 modes))	-
Driver Enable	Х	Х	Х	Х
LPUART/USART data length		7, 8 a	nd 9 bits	•

Table 11. STM32L431xx USART/LPUART features

1. X = supported.

3.26 Low-power universal asynchronous receiver transmitter (LPUART)

The device embeds one Low-Power UART. The LPUART supports asynchronous serial communication with minimum power consumption. It supports half duplex single wire communication and modem operations (CTS/RTS). It allows multiprocessor communication.

The LPUART has a clock domain independent from the CPU clock, and can wakeup the system from Stop mode using baudrates up to 220 Kbaud. The wake up events from Stop mode are programmable and can be:

- Start bit detection
- Any received data frame
- A specific programmed data frame

Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher speed clock can be used to reach higher baudrates.

LPUART interface can be served by the DMA controller.

3.27 Serial peripheral interface (SPI)

Three SPI interfaces allow communication up to 40 Mbits/s in master and up to 24 Mbits/s slave modes, in half-duplex, full-duplex and simplex modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits. The SPI interfaces support NSS pulse mode, TI mode and Hardware CRC calculation.

All SPI interfaces can be served by the DMA controller.

3.28 Serial audio interfaces (SAI)

The device embeds 1 SAI. Refer to *Table 12: SAI implementation* for the features implementation. The SAI bus interface handles communications between the microcontroller and the serial audio protocol.

The SAI peripheral supports:

- Two independent audio sub-blocks which can be transmitters or receivers with their respective FIFO.
- 8-word integrated FIFOs for each audio sub-block.
- Synchronous or asynchronous mode between the audio sub-blocks.
- Master or slave configuration independent for both audio sub-blocks.
- Clock generator for each audio block to target independent audio frequency sampling when both audio sub-blocks are configured in master mode.
- Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit.
- Peripheral with large configurability and flexibility allowing to target as example the following audio protocol: I2S, LSB or MSB-justified, PCM/DSP, TDM, AC'97 and SPDIF out.
- Up to 16 slots available with configurable size and with the possibility to select which ones are active in the audio frame.
- Number of bits by frame may be configurable.
- Frame synchronization active level configurable (offset, bit length, level).
- First active bit position in the slot is configurable.
- LSB first or MSB first for data transfer.
- Mute mode.
- Stereo/Mono audio frame capability.
- Communication clock strobing edge configurable (SCK).
- Error flags with associated interrupts if enabled respectively.
 - Overrun and underrun detection.
 - Anticipated frame synchronization signal detection in slave mode.
 - Late frame synchronization signal detection in slave mode.
 - Codec not ready for the AC'97 mode in reception.
- Interruption sources when enabled:
 - Errors.
 - FIFO requests.
- DMA interface with 2 dedicated channels to handle access to the dedicated integrated FIFO of each SAI audio sub-block.

SAI features	Support ⁽¹⁾
I2S, LSB or MSB-justified, PCM/DSP, TDM, AC'97	Х
Mute mode	Х
Stereo/Mono audio frame capability.	Х
16 slots	Х
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit	Х
FIFO Size	X (8 Word)
SPDIF	X

Table 12. SAI implementation

1. X: supported

3.29 Single wire protocol master interface (SWPMI)

The Single wire protocol master interface (SWPMI) is the master interface corresponding to the Contactless Frontend (CLF) defined in the ETSI TS 102 613 technical specification. The main features are:

- full-duplex communication mode
- automatic SWP bus state management (active, suspend, resume)
- configurable bitrate up to 2 Mbit/s
- automatic SOF, EOF and CRC handling

SWPMI can be served by the DMA controller.

3.30 Controller area network (CAN)

The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks.

The CAN peripheral supports:

- Supports CAN protocol version 2.0 A, B Active
- Bit rates up to 1 Mbit/s

- Transmission
 - Three transmit mailboxes
 - Configurable transmit priority
- Reception
 - Two receive FIFOs with three stages
 - 14 Scalable filter banks
 - Identifier list feature
 - Configurable FIFO overrun
- Time-triggered communication option
 - Disable automatic retransmission mode
 - 16-bit free running timer
 - Time Stamp sent in last two data bytes
- Management
 - Maskable interrupts
 - Software-efficient mailbox mapping at a unique address space

3.31 Secure digital input/output and MultiMediaCards Interface (SDMMC)

The card host interface (SDMMC) provides an interface between the APB peripheral bus and MultiMediaCards (MMCs), SD memory cards and SDIO cards.

The SDMMC features include the following:

- Full compliance with MultiMediaCard System Specification Version 4.2. Card support for three different databus modes: 1-bit (default), 4-bit and 8-bit
- Full compatibility with previous versions of MultiMediaCards (forward compatibility)
- Full compliance with SD Memory Card Specifications Version 2.0
- Full compliance with SD I/O Card Specification Version 2.0: card support for two different databus modes: 1-bit (default) and 4-bit
- Data transfer up to 48 MHz for the 8 bit mode
- Data write and read with DMA capability

3.32 Clock recovery system (CRS)

The STM32L431xx devices embed a special block which allows automatic trimming of the internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device operational range. This automatic trimming is based on the external synchronization signal, which could be either derived from LSE oscillator, from an external signal on CRS_SYNC pin or generated by user software. For faster lock-in during startup it is also possible to combine automatic trimming with manual trimming action.

3.33 Quad SPI memory interface (QUADSPI)

The Quad SPI is a specialized communication interface targeting single, dual or quad SPI flash memories. It can operate in any of the three following modes:

- Indirect mode: all the operations are performed using the QUADSPI registers
- Status polling mode: the external flash status register is periodically read and an interrupt can be generated in case of flag setting
- Memory-mapped mode: the external Flash is memory mapped and is seen by the system as if it were an internal memory

Both throughput and capacity can be increased two-fold using dual-flash mode, where two quad SPI flash memories are accessed simultaneously.

The Quad SPI interface supports:

- Three functional modes: indirect, status-polling, and memory-mapped
- Dual-flash mode, where 8 bits can be sent/received simultaneously by accessing two flash memories in parallel.
- SDR and DDR support
- Fully programmable opcode for both indirect and memory mapped mode
- Fully programmable frame format for both indirect and memory mapped mode
- Each of the 5 following phases can be configured independently (enable, length, single/dual/quad communication)
 - Instruction phase
 - Address phase
 - Alternate bytes phase
 - Dummy cycles phase
 - Data phase
- Integrated FIFO for reception and transmission
- 8, 16, and 32-bit data accesses are allowed
- DMA channel for indirect mode operations
- Programmable masking for external flash flag management
- Timeout management
- Interrupt generation on FIFO threshold, timeout, status match, operation complete, and access error

3.34 Development support

3.34.1 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

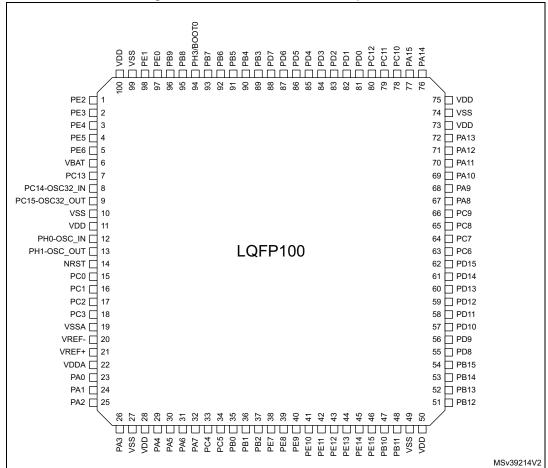
3.34.2 Embedded Trace Macrocell™

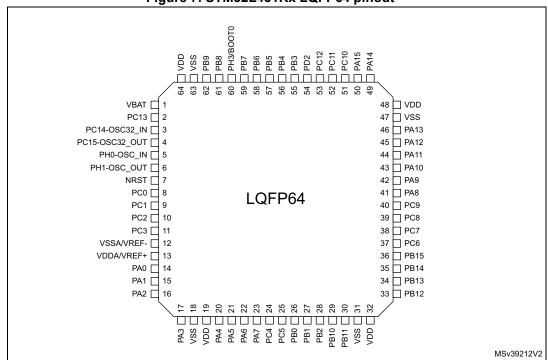
The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32L431xx through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. Real-time instruction and data flow activity be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors.

The Embedded Trace Macrocell operates with third party debugger software tools.

48/200

4 Pinouts and pin description




Figure 5. STM32L431Vx LQFP100 pinout⁽¹⁾

	1	2	3	4	5	6	7	8	9	10	11	12	
A	PE3	PE1	PB8	PH3/BOOT0 PD7 PD5 PB4 PB3 PA15 PA14								PA12	
в	PE4	PE2	PB9	PB7	PB6	PC10	PA11						
с	PC13	PE5	PE0	VDD	PB5	PC11	VDD	PA10					
D	PC14- OSC32_IN	PE6	VSS			PA9	PA8	PC9					
E	PC15- OSC32_OUT	VBAT	vss			PC8	PC7	PC6					
F	PH0-OSC_IN	VSS		VSS	VSS								
G	PH1- OSC_OUT	VDD		_			VDD	VDD					
н	PC0	NRST	VDD							PD15	PD14	PD13	
J	VSSA	PC1	PC2							PD12	PD11	PD10	
к	VREF-	PC3	PA2	PA5	PC4		_	PD9	PD8	PB15	PB14	PB13	
L	VREF+	PA0	PA3	PA6	PC5	PB11	PB12						
м	VDDA	PA1	PA4	PA7	PB0	PE13	PE14	PE15					
												MSv3	3921

Figure 6. STM32L431Vx UFBGA100 ballout⁽¹⁾

1. The above figure shows the package top view.

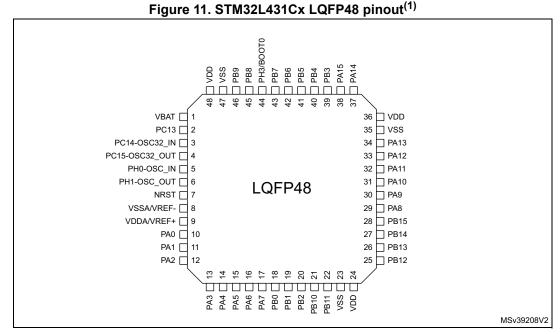
Figure 7. STM32L431Rx LQFP64 pinout⁽¹⁾

		i igui	0.0.		101100	01 00		Juniout	
		1	2	3	4	5	6	7	8
,	A	PC14- OSC32_IN	PC13	PB9	PB4	PB3	PA15	PA14	PA13
	в	PC15- OSC32_OUT	VBAT	PB8	PH3/BOOT0	PD2	PC11	PC10	PA12
(с	PH0-OSC_IN	vss	PB7	PB5	PC12	PA10	PA9	PA11
ſ	D	PH1- OSC_OUT	VDD	PB6	VSS	vss	VSS	PA8	PC9
	E	NRST	PC1	PC0	VDD	VDD	VDD	PC7	PC8
	F	VSSA/VREF-	PC2	PA2	PA5	PB0	PC6	PB15	PB14
c	G	PC3	PA0	PA3	PA6	PB1	PB2	PB10	PB13
,	н	VDDA/VREF+	PA1	PA4	PA7	PC4	PC5	PB11	PB12

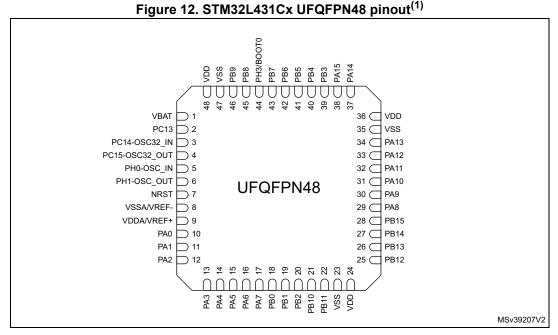
Figure 8. STM32L431Rx UFBGA64 ballout⁽¹⁾

1. The above figure shows the package top view.

								piniout	
		1	2	3	4	5	6	7	8
A		VDD	PA15	PC12	PD2	PB3	PB7	vss	VDD
В		VSS	PA14	PC11	PB4	PB6	PB9	VBAT	PC13
c		PA12	PA13	PC10	PB5	PH3/BOOT0	PB8	PC15- OSC32_OUT	PC14- OSC32_IN
D		PA9	PA10	PA11	PC4	PC0	NRST	PH1- OSC_OUT	PH0-OSC_IN
E		PC7	PC9	PA8	PC5	PA4	PC3	PC2	PC1
F		PC6	PB15	PC8	PB0	PA5	PA2	PA0	VSSA/VREF-
G		PB14	PB13	PB12	PB2	PA6	PA3	PA1	VDDA/VREF+
н		VDD	VSS	PB11	PB10	PB1	PA7	VDD	VSS
	-								


Figure 9. STM32L431Rx WLCSP	64 pinout ⁽¹⁾
-----------------------------	--------------------------

1. The above figure shows the package top view.


Figure 10. STM32L431Cx WLCSP49 pinout⁽¹⁾

	1	2	3	4	5	6	7
A	VDD	PA14	PB3	PB4	PH3/BOOT0	VSS	VDD
В	vss	PA13	PA15	PB5	PB8	VBAT	PC13
c	PA11	PA10	PA12	PB6	PB9	PC15- OSC32_OUT	PC14- OSC32_IN
D	PA8	PA9	PB15	PB7	NRST	PH1- OSC_OUT	PH0-OSC_IN
E	PB14	PB13	PB10	PA3	PA2	PC3	VSSA/VREF-
F	PB12	PB11	PA7	PA6	PA5	PA0	VDDA/VREF+
G	VDD	vss	PB2	PB1	PB0	PA4	PA1

1. The above figure shows the package top view.

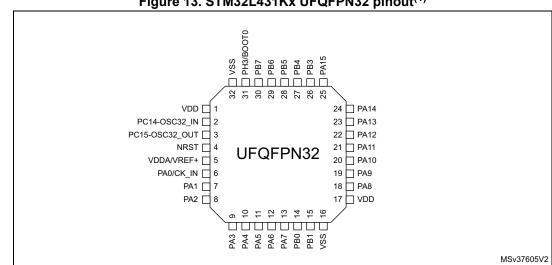


Figure 13. STM32L431Kx UFQFPN32 pinout⁽¹⁾

1. The above figure shows the package top view.

Na	me	Abbreviation	Definition					
Pin r	name	Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name						
		S Supply pin						
Pin	type	I	Input only pin					
		I/O	Input / output pin					
		FT	5 V tolerant I/O					
		TT	3.6 V tolerant I/O					
		RST Bidirectional reset pin with embedded weak pull-up resis						
I/O str	ructure	Option for TT or FT I/Os						
		_f ⁽¹⁾	I/O, Fm+ capable					
		_a ⁽²⁾	I/O, with Analog switch function supplied by V _{DDA}					
No	otes	Unless otherwise specified by a note, all I/Os are set as analog inputs during and after rese						
Pin	Alternate functions	Functions selected through G	GPIOx_AFR registers					
functions	Additional functions	Functions directly selected/enabled through peripheral registers						

Table 13. Legend/abbreviations used in the pinout table

1. The related I/O structures in *Table 14* are: FT_f, FT_fa.

2. The related I/O structures in *Table 14* are: FT_a, FT_fa, TT_a.

			Pi	n Nu	mbe	ər					-		Pin function	IS
UFQFPN32	LQFP48	UFQFPN48	WLCSP49	WLCSP64	LQFP64	UFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	-	-	-	-	1	B2	PE2	I/O	FT	-	TRACECK, TSC_G7_IO1, SAI1_MCLK_A, EVENTOUT	-
-	-	-	-	-	-	-	2	A1	PE3	I/O	FT	-	TRACED0, TSC_G7_IO2, SAI1_SD_B, EVENTOUT	-
-	-	1	-	-	-	-	3	B1	PE4	I/O	FT	-	TRACED1, TSC_G7_IO3, SAI1_FS_A, EVENTOUT	-
-	-	-	-	-	-	-	4	C2	PE5	I/O	FT	-	TRACED2, TSC_G7_IO4, SAI1_SCK_A, EVENTOUT	-
-	-	-	-	-	-	-	5	D2	PE6	I/O	FT	-	TRACED3, SAI1_SD_A, EVENTOUT	RTC_TAMP3, WKUP3
-	1	1	B6	B7	1	B2	6	E2	VBAT	S	-	-	-	-
-	2	2	B7	B8	2	A2	7	C1	PC13	I/O	FT	(1) (2)	EVENTOUT	RTC_TAMP1, RTC_TS, RTC_OUT, WKUP2
2	3	3	C7	C8	3	A1	8	D1	PC14- OSC32_I N (PC14)	I/O	FT	(1) (2)	EVENTOUT	OSC32_IN
3	4	4	C6	C7	4	B1	9	E1	PC15- OSC32_ OUT (PC15)	I/O	FT	(1) (2)	EVENTOUT	OSC32_OUT
-	-	-	-	-	-	-	10	F2	VSS	S	-	-	-	-
-	-	-	-	1	-	-	11	G2	VDD	S	-	-	-	-
-	5	5	D7	D8	5	C1	12	F1	PH0- OSC_ IN (PH0)	I/O	FT	-	EVENTOUT	OSC_IN
-	6	6	D6	D7	6	D1	13	G1	PH1- OSC_ OUT (PH1)	I/O	FT	-	EVENTOUT	OSC_OUT
4	7	7	D5	D6	7	E1	14	H2	NRST	I/O	RST	-	-	-

Table 14. STM32L431xx pin definitions

			Pi	n Nu	mbe	ər							Pin function	IS
UFQFPN32	LQFP48	UFQFPN48	WLCSP49	WLCSP64	LQFP64	UFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	I	-	D5	8	E3	15	H1	PC0	I/O	FT_fa	-	LPTIM1_IN1, I2C3_SCL, LPUART1_RX, LPTIM2_IN1, EVENTOUT	ADC1_IN1
-	-	-	-	E8	9	E2	16	j2	PC1	I/O	FT_fa	-	LPTIM1_OUT, I2C3_SDA, LPUART1_TX, EVENTOUT	ADC1_IN2
-	-	-	-	E7	10	F2	17	J3	PC2	I/O	FT_a	-	LPTIM1_IN2, SPI2_MISO, EVENTOUT	ADC1_IN3
-	I	-	E6	E6	11	G1	18	K2	PC3	I/O	FT_a	-	LPTIM1_ETR, SPI2_MOSI, SAI1_SD_A, LPTIM2_ETR, EVENTOUT	ADC1_IN4
-	-	-	-	1	-	1	19	J1	VSSA	S	-	-	-	-
-	-	-	-	-	-	-	20	K1	VREF-	S	-	-	-	-
-	8	8	E7	F8	12	F1	-	-	VSSA/ VREF-	S	-	-	-	-
-	-	-	-	-	-	-	21	L1	VREF+	S	-	-	-	VREFBUF_ OUT
-	-	-	-	-	-	-	22	M1	VDDA	S	-	-	-	-
5	9	9	F7	G8	13	H1	-	-	VDDA/ VREF+	S	-	-	-	-
-	10	10	F6	F7	14	G2	23	L2	PA0	I/O	FT_a	-	TIM2_CH1, USART2_CTS, COMP1_OUT, SAI1_EXTCLK, TIM2_ETR, EVENTOUT	OPAMP1_ VINP, COMP1_INM, ADC1_IN5, RTC_TAMP2, WKUP1
6	-	-	-	-	-	-	-	-	PA0/ CK_IN	I/O	FT_a	-	TIM2_CH1, USART2_CTS, COMP1_OUT, SAI1_EXTCLK, TIM2_ETR, EVENTOUT	OPAMP1_ VINP, COMP1_INM, ADC1_IN5, RTC_TAMP2, WKUP1, CK_IN
7	11	11	G7	G7	15	H2	24	M2	PA1	I/O	FT_a	-	TIM2_CH2, I2C1_SMBA, SPI1_SCK, USART2_RTS_DE, TIM15_CH1N, EVENTOUT	OPAMP1_ VINM, COMP1_INP, ADC1_IN6

Table 14. STM32L431xx pin definitions (continued)

			Pi	n Nu	mbe	ər				-	Ô		Pin function	IS
UFQFPN32	LQFP48	UFQFPN48	WLCSP49	WLCSP64	LQFP64	UFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
8	12	12	E5	F6	16	F3	25	K3	PA2	I/O	FT_a	-	TIM2_CH3, USART2_TX, LPUART1_TX, QUADSPI_BK1_NCS, COMP2_OUT, TIM15_CH1, EVENTOUT	COMP2_INM, ADC1_IN7, WKUP4, LSCO
9	13	13	E4	G6	17	G3	26	L3	PA3	I/O	TT_a	-	TIM2_CH4, USART2_RX, LPUART1_RX, QUADSPI_CLK, SAI1_MCLK_A, TIM15_CH2, EVENTOUT	OPAMP1_ VOUT, COMP2_INP, ADC1_IN8
-	I	-	I	H8	18	C2	27	E3	VSS	S	-	-	-	-
-	-	-	I	H7	19	D2	28	H3	VDD	S	-	-	-	-
10	14	14	G6	E5	20	H3	29	М3	PA4	I/O	TT_a	-	SPI1_NSS, SPI3_NSS, USART2_CK, SAI1_FS_B, LPTIM2_OUT, EVENTOUT	COMP1_INM, COMP2_INM, ADC1_IN9, DAC1_OUT1
11	15	15	F5	F5	21	F4	30	K4	PA5	I/O	TT_a	-	TIM2_CH1, TIM2_ETR, SPI1_SCK, LPTIM2_ETR, EVENTOUT	COMP1_INM, COMP2_INM, ADC1_IN10, DAC1_OUT2
12	16	16	F4	G5	22	G4	31	L4	PA6	I/O	FT_a	-	TIM1_BKIN, SPI1_MISO, COMP1_OUT, USART3_CTS, LPUART1_CTS, QUADSPI_BK1_IO3, TIM1_BKIN_COMP2, TIM16_CH1, EVENTOUT	ADC1_IN11
13	17	17	F3	H6	23	H4	32	M4	PA7	I/O	FT_fa	TIM1_CH1N, I2C3_SCI SPI1_MOSI,		ADC1_IN12
-	-	-	-	D4	24	H5	33	K5	PC4	I/O	FT_a	-	USART3_TX, EVENTOUT	COMP1_INM, ADC1_IN13
-	-	-	-	E4	25	H6	34	L5	PC5	I/O	FT_a	-	USART3_RX, EVENTOUT	COMP1_INP, ADC1_IN14, WKUP5

Table 14. STM32L431xx pin definitions (continued)

			Pi	n Nu	mbe					•			Pin function	IS
UFQFPN32	LQFP48	UFQFPN48	WLCSP49	WLCSP64	LQFP64	UFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
14	18	18	G5	F4	26	F5	35	M5	PB0	I/O	FT_a	-	TIM1_CH2N, SPI1_NSS, USART3_CK, QUADSPI_BK1_IO1, COMP1_OUT, SAI1_EXTCLK, EVENTOUT	ADC1_IN15
15	19	19	G4	H5	27	G5	36	M6	PB1	I/O	FT_a	-	TIM1_CH3N, USART3_RTS_DE, LPUART1_RTS_DE, QUADSPI_BK1_IO0, LPTIM2_IN1, EVENTOUT	COMP1_INM, ADC1_IN16
-	20	20	G3	G4	28	G6	37	L6	PB2	I/O	FT_a	-	RTC_OUT, LPTIM1_OUT, I2C3_SMBA, EVENTOUT	COMP1_INP
-	-	-	-	-	-	-	38	M7	PE7	I/O	FT	-	TIM1_ETR, SAI1_SD_B, EVENTOUT	-
-	-	-	-	-	-	-	39	L7	PE8	I/O	FT	-	TIM1_CH1N, SAI1_SCK_B, EVENTOUT	-
-	-	-	-	-	-	-	40	M8	PE9	I/O	FT	-	TIM1_CH1, SAI1_FS_B, EVENTOUT	-
-	-	-	-	-	-	-	41	L8	PE10	I/O	FT	-	TIM1_CH2N, TSC_G5_IO1, QUADSPI_CLK, SAI1_MCLK_B, EVENTOUT	-
-	-	-	-	-	-	-	42	M9	PE11	I/O	FT	-	TIM1_CH2, TSC_G5_IO2, QUADSPI_BK1_NCS, EVENTOUT	-
-	I	-	I	-	-	I	43	L9	PE12	I/O	FT	-	TIM1_CH3N, SPI1_NSS, TSC_G5_IO3, QUADSPI_BK1_IO0, EVENTOUT	-
-	-	-	-	-	-	-	44	M10	PE13	I/O	FT	-	TIM1_CH3, SPI1_SCK, TSC_G5_IO4, QUADSPI_BK1_IO1, EVENTOUT	-
-	-	_	-	-	-	-	45	M11	PE14	I/O	FT	-	TIM1_CH4, TIM1_BKIN2, TIM1_BKIN2_COMP2, SPI1_MISO, QUADSPI_BK1_IO2, EVENTOUT	-

Table 14. STM32L431xx pin definitions (continued)

			Pi	n Nu	mbe	ər			-	-	Ċ,		Pin function	s
UFQFPN32	LQFP48	UFQFPN48	WLCSP49	WLCSP64	LQFP64	UFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	I	-	-	-	46	M12	PE15	I/O	FT	-	TIM1_BKIN, TIM1_BKIN_COMP1, SPI1_MOSI, QUADSPI_BK1_IO3, EVENTOUT	-
-	21	21	E3	H4	29	G7	47	L10	PB10	I/O	FT_f	-	TIM2_CH3, I2C2_SCL, SPI2_SCK, USART3_TX, LPUART1_RX, TSC_SYNC, QUADSPI_CLK, COMP1_OUT, SAI1_SCK_A, EVENTOUT	-
-	22	22	F2	H3	30	H7	48	L11	PB11	I/O	FT_f	-	TIM2_CH4, I2C2_SDA, USART3_RX, LPUART1_TX, QUADSPI_BK1_NCS, COMP2_OUT, EVENTOUT	-
16	23	23	G2	H2	31	D6	49	F12	VSS	S	-	-	-	-
17	24	24	G1	H1	32	E6	50	G12	VDD	S	-	-	-	-
-	25	25	F1	G3	33	H8	51	L12	PB12	I/O	FT	-	TIM1_BKIN, TIM1_BKIN_COMP2, I2C2_SMBA, SPI2_NSS, USART3_CK, LPUART1_RTS_DE, TSC_G1_IO1, SWPMI1_IO, SAI1_FS_A, TIM15_BKIN, EVENTOUT	-
-	26	26	E2	G2	34	G8	52	K12	PB13	I/O	FT_f	-	TIM1_CH1N, I2C2_SCL, SPI2_SCK, USART3_CTS, LPUART1_CTS, TSC_G1_IO2, SWPMI1_TX, SAI1_SCK_A, TIM15_CH1N, EVENTOUT	-

Table 14. STM32L431xx pin definitions (continued)

			Pi	n Nu	mbe	ər				-	0		Pin function	S
UFQFPN32	LQFP48	UFQFPN48	WLCSP49	WLCSP64	LQFP64	UFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	27	27	E1	G1	35	F8	53	K11	PB14	I/O	FT_f	-	TIM1_CH2N, I2C2_SDA, SPI2_MISO, USART3_RTS_DE, TSC_G1_IO3, SWPMI1_RX, SAI1_MCLK_A, TIM15_CH1, EVENTOUT	-
-	28	28	D3	F2	36	F7	54	K10	PB15	I/O	FT	-	RTC_REFIN, TIM1_CH3N, SPI2_MOSI, TSC_G1_IO4, SWPMI1_SUSPEND, SAI1_SD_A, TIM15_CH2, EVENTOUT	-
-	-	-	-	-	-	-	55	K9	PD8	I/O	FT	-	USART3_TX, EVENTOUT	-
-	-	-	-	-	-	-	56	K8	PD9	I/O	FT	-	USART3_RX, EVENTOUT	-
-	-	-	-	-	-	-	57	J12	PD10	I/O	FT	-	USART3_CK, TSC_G6_IO1, EVENTOUT	-
-	-	-	-	-	-	-	58	J11	PD11	I/O	FT	-	USART3_CTS, TSC_G6_IO2, LPTIM2_ETR, EVENTOUT	-
-	-	-	-	-	-	-	59	J10	PD12	I/O	FT	-	USART3_RTS_DE, TSC_G6_IO3, LPTIM2_IN1, EVENTOUT	-
-	-	-	-	-	-	-	60	H12	PD13	I/O	FT	-	TSC_G6_IO4, LPTIM2_OUT, EVENTOUT	-
-	-	-	-	-	-	-	61	H11	PD14	I/O	FT	-	EVENTOUT	-
-	-	-	-	-	-	-	62	H10	PD15	I/O	FT	-	EVENTOUT	-
-	-	-	-	F1	37	F6	63	E12	PC6	I/O	FT	-	TSC_G4_IO1, SDMMC1_D6, EVENTOUT	-
-	-	-	-	E1	38	E7	64	E11	PC7	I/O	FT	-	TSC_G4_IO2, SDMMC1_D7, EVENTOUT	-

Table 14. STM32L431xx pin definitions (continued)

			Pi	n Nu	mbe	ər				•			Pin function	s
UFQFPN32	LQFP48	UFQFPN48	WLCSP49	WLCSP64	LQFP64	UFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	-	F3	39	E8	65	E10	PC8	I/O	FT	-	TSC_G4_IO3, SDMMC1_D0, EVENTOUT	-
-	-	-	-	E2	40	D8	66	D12	PC9	I/O	FT	-	TSC_G4_IO4, SDMMC1_D1, EVENTOUT	-
18	29	29	D1	E3	41	D7	67	D11	PA8	I/O	FT	-	MCO, TIM1_CH1, USART1_CK, SWPMI1_IO, SAI1_SCK_A, LPTIM2_OUT, EVENTOUT	-
19	30	30	D2	D1	42	C7	68	D10	PA9	I/O	FT_f	-	TIM1_CH2, I2C1_SCL, USART1_TX, SAI1_FS_A, TIM15_BKIN, EVENTOUT	-
20	31	31	C2	D2	43	C6	69	C12	PA10	I/O	FT_f	-	TIM1_CH3, I2C1_SDA, USART1_RX, SAI1_SD_A, EVENTOUT	-
21	32	32	C1	D3	44	C8	70	B12	PA11	I/O	FT_u	-	TIM1_CH4, TIM1_BKIN2, SPI1_MISO, COMP1_OUT, USART1_CTS, CAN1_RX, TIM1_BKIN2_COMP1, EVENTOUT	-
22	33	33	C3	C1	45	B8	71	A12	PA12	I/O	FT_u	-	TIM1_ETR, SPI1_MOSI, USART1_RTS_DE, CAN1_TX, EVENTOUT	-
23	34	34	B2	C2	46	A8	72	A11	PA13 (JTMS- SWDIO)	I/O	FT	(3)	JTMS-SWDIO, IR_OUT, SWPMI1_TX, SAI1_SD_B, EVENTOUT	-
-	35	35	B1	B1	47	D5	-	-	VSS	S	-	-	-	-
-	36	36	A1	A1	48	E5	73	C11	VDD	S	-	-	-	-
_	-	-	-	-	-	-	74	F11	VSS	S	-	-	-	-
-	-	-	-	-	-	-	75	G11	VDD	S	-	-	-	-
24	37	37	A2	B2	49	A7	76	A10	PA14 (JTCK- SWCLK)	I/O	FT	(3)	JTCK-SWCLK, LPTIM1_OUT, I2C1_SMBA, SWPMI1_RX, SAI1_FS_B, EVENTOUT	-

Table 14. STM32L431xx pin definitions (continued)

60/200

			Pi	n Nu	mbe					•			Pin function	IS
UFQFPN32	LQFP48	UFQFPN48	WLCSP49	WLCSP64	LQFP64	UFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
25	38	38	В3	A2	50	A6	77	A9	PA15 (JTDI)	I/O	FT	(3)	JTDI, TIM2_CH1, TIM2_ETR, USART2_RX, SPI1_NSS, SPI3_NSS, USART3_RTS_DE, TSC_G3_IO1, SWPMI1_SUSPEND, EVENTOUT	-
-	-	-	-	C3	51	B7	78	B11	PC10	I/O	FT	-	SPI3_SCK, USART3_TX, TSC_G3_IO2, SDMMC1_D2, EVENTOUT	-
-	-	-	-	В3	52	B6	79	C10	PC11	I/O	FT	-	SPI3_MISO, USART3_RX, TSC_G3_IO3, SDMMC1_D3, EVENTOUT	-
-	-	-	-	A3	53	C5	80	B10	PC12	I/O	FT	-	SPI3_MOSI, USART3_CK, TSC_G3_IO4, SDMMC1_CK, EVENTOUT	-
-	-	-	-	-	-	-	81	C9	PD0	I/O	FT	-	SPI2_NSS, CAN1_RX, EVENTOUT	-
-	-	-	-	-	-	-	82	В9	PD1	I/O	FT	-	SPI2_SCK, CAN1_TX, EVENTOUT	-
-	-	-	-	A4	54	B5	83	C8	PD2	I/O	FT	-	USART3_RTS_DE, TSC_SYNC, SDMMC1_CMD, EVENTOUT	-
-	-	-	-	-	-	-	84	B8	PD3	I/O	FT	-	SPI2_MISO, USART2_CTS, QUADSPI_BK2_NCS, EVENTOUT	-
-	-	-	-	-	-	-	85	В7	PD4	I/O	FT	SPI2_MOSI, USART2_RTS_DE, QUADSPI_BK2_IO0, EVENTOUT		-
-	-	-	-	-	-	-	86	A6	PD5	I/O	FT	-	USART2_TX, QUADSPI_BK2_IO1, EVENTOUT	-
-	-	-	-	-	-	-	87	В6	PD6	I/O	FT	-	USART2_RX, QUADSPI_BK2_IO2, SAI1_SD_A, EVENTOUT	-

Table 14. STM32L431xx pin definitions (continued)

			Pi	n Nu	mbe					•			Pin function	IS
UFQFPN32	LQFP48	UFQFPN48	WLCSP49	WLCSP64	LQFP64	UFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	-	-	-	-	88	A5	PD7	I/O	FT	-	USART2_CK, QUADSPI_BK2_IO3, EVENTOUT	-
26	39	39	A3	A5	55	A5	89	A8	PB3 (JTDO- TRACE SWO)	I/O	FT_a	(3)	JTDO-TRACESWO, TIM2_CH2, SPI1_SCK, SPI3_SCK, USART1_RTS_DE, SAI1_SCK_B, EVENTOUT	COMP2_INM
27	40	40	A4	B4	56	A4	90	A7	PB4 (NJTRST)	I/O	FT_fa	(3)	NJTRST, I2C3_SDA, SPI1_MISO, SPI3_MISO, USART1_CTS, TSC_G2_IO1, SAI1_MCLK_B, EVENTOUT	COMP2_INP
28	41	41	B4	C4	57	C4	91	C5	PB5	I/O	FT	-	LPTIM1_IN1, I2C1_SMBA, SPI1_MOSI, SPI3_MOSI, USART1_CK, TSC_G2_IO2, COMP2_OUT, SAI1_SD_B, TIM16_BKIN, EVENTOUT	-
29	42	42	C4	B5	58	D3	92	B5	PB6	I/O	FT_fa	-	LPTIM1_ETR, I2C1_SCL, USART1_TX, TSC_G2_IO3, SAI1_FS_B, TIM16_CH1N, EVENTOUT	COMP2_INP
30	43	43	D4	A6	59	C3	93	B4	PB7	I/O	FT_fa	-	LPTIM1_IN2, I2C1_SDA, USART1_RX, TSC_G2_IO4, EVENTOUT	Comp2_INM, PVD_IN
31	44	44	A5	C5	60	B4	94	A4	PH3/ BOOT0	I/O	FT	-	EVENTOUT	BOOT0
-	45	45	B5	C6	61	В3	95	A3	PB8	I/O	FT_f	-	I2C1_SCL, CAN1_RX, SDMMC1_D4, SAI1_MCLK_A, TIM16_CH1, EVENTOUT	-
-	46	46	C5	B6	62	A3	96	В3	PB9	I/O	FT_f	-	IR_OUT, I2C1_SDA, SPI2_NSS, CAN1_TX, SDMMC1_D5, SAI1_FS_A, EVENTOUT	-

Table 14. STM32L431xx pin definitions (continued)

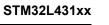
			Pi	n Nu	mbe	ər					0		Pin function	S
UFQFPN32	LQFP48	UFQFPN48	WLCSP49	WLCSP64	LQFP64	UFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	-	-	-	-	97	C3	PE0	I/O	FT	-	TIM16_CH1, EVENTOUT	-
-	-	-	-	-	-	-	98	A2	PE1	I/O	FT	-	EVENTOUT	-
32	47	47	A6	A7	63	D4	99	D3	VSS	S	-	-	-	-
1	48	48	A7	A8	64	E4	100	C4	VDD	S	-	-	-	-

Table 14. STM32L431xx pin definitions (continued)

PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:
 The speed should not exceed 2 MHz with a maximum load of 30 pF
 These GPIOs must not be used as current sources (e.g. to drive an LED).

After a Backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the Backup domain and RTC register descriptions in the RM0392 reference manual.

3. After reset, these pins are configured as JTAG/SW debug alternate functions, and the internal pull-up on PA15, PA13, PB4 pins and the internal pull-down on PA14 pin are activated.


Table	
5 see	
o AF1	
(for AF8 to AF15 see	
:7 (for	
AF0 to AF7	
e function	
ternate	
Ā	

Pinouts and pin description

	AF7	USART1/ USART2/ USART3	USART2_CTS	USART2_RTS_ DE	USART2_TX	USART2_RX	USART2_CK	I	USART3_CTS	1	USART1_CK	USART1_TX	USART1_RX	USART1_CTS	USART1_RTS_ DE	ı	ı	USART3_RTS_ DE
	AF6	SP13	I	I	ı	ı	SPI3_NSS	I	COMP1_OUT	I	I	,	I	COMP1_OUT	ı	ı	I	SPI3_NSS
see Table 16)	AF5	SPI1/SPI2		SPI1_SCK		ı	SPI1_NSS	SPI1_SCK	SPI1_MISO	SPI1_MOSI	ı		ı	SPI1_MISO	SPI1_MOSI		ı	SPI1_NSS
r AF8 to AF15 s	AF4	12C1/12C2/12C3	I	I2C1_SMBA	I	I	I	I	I	I2C3_SCL	I	I2C1_SCL	I2C1_SDA	ı	I	I	I2C1_SMBA	I
Table 15. Alternate function AF0 to AF7 (for AF8 to AF15 see <i>Table 1</i> 6)	AF3	USART2	I	I	I	I	I	I	I	I	I	I	I	ı	I	I	I	USART2_RX
rnate function	AF2	TIM1/TIM2	I	I	I	I	I	TIM2_ETR	I	I	I	I	I	TIM1_BKIN2	I	I	I	TIM2_ETR
Table 15. Alte	AF1	TIM1/TIM2/ LPTIM1	TIM2_CH1	TIM2_CH2	TIM2_CH3	TIM2_CH4	I	TIM2_CH1	TIM1_BKIN	TIM1_CH1N	TIM1_CH1	TIM1_CH2	TIM1_CH3	TIM1_CH4	TIM1_ETR	IR_OUT	LPTIM1_OUT	TIM2_CH1
	AF0	SYS_AF	I	I	I	I	I	I	I	I	MCO	I	I	ı	I	JTMS-SWDIO	JTCK-SWCLK	JTDI
		Port	PA0	PA1	PA2	PA3	PA4	PA5	PA6	PA7	PA8	PA9	PA10	PA11	PA12	PA13	PA14	PA15
		L.									Port A							

64/200

DocID028800 Rev 1

57

(pənu	
(contir	
16)	
Table	
AF0 to AF7 (for AF8 to AF15 see 74	
to AF	
AF8 1	
(for	
AF7	
0 to	_
AFC	
function	
Alternate	
15. /	
ole 1	L

	AF7	USART1/ USART2/ USART3	USART3_CK	USART3_RTS_ DE	ı	USART1_RTS_ DE	USART1_CTS	USART1_CK	USART1_TX	USART1_RX	ı	
ued)	AF6	SP13	I	-	I	SPI3_SCK	SPI3_MISO	SPI3_MOSI	I	I	I	
Table 15. Alternate function AF0 to AF7 (for AF8 to AF15 see Table 16) (continued)	AF5	SPI1/SPI2	SPI1_NSS	I	I	SPI1_SCK	SPI1_MISO	SPI1_MOSI	I	I	I	SPI2_NSS
to AF15 see 7a	AF4	I2C1/I2C2/I2C3	ı	I	I2C3_SMBA	I	I2C3_SDA	I2C1_SMBA	I2C1_SCL	I2C1_SDA	I2C1_SCL	I2C1_SDA
AF7 (for AF8	AF3	USART2		I	I	I	I	I	I	I	I	ı
function AF0 to	AF2	TIM1/TIM2	ı	ı	ı	ı	I	ı	T	ı	ı	
e 15. Alternate	AF1	TIM1/TIM2/ LPTIM1	TIM1_CH2N	TIM1_CH3N	LPTIM1_OUT	TIM2_CH2	ı	LPTIM1_IN1	LPTIM1_ETR	LPTIM1_IN2	ı	IR_OUT
Table	AF0	SYS_AF	ı	I	RTC_OUT	JTDO- TRACESWO	NJTRST	I	I	I	I	·
		Port	PB0	PB1	PB2	PB3	PB4	PB5	PB6	PB7	PB8	PB9
		ď			Port B							

57

DocID028800 Rev 1

Pinouts and pin description

ī

ı

SPI2_MOSI

ı

ı

ı

TIM1_CH3N

RTC_REFIN

PB15

PB14

USART3_RTS_ DE

ı

SPI2_MISO

I2C2_SDA

.

ı

TIM1_CH2N

USART3_CTS

ı

SPI2_SCK

I2C2_SCL

ı

ı

TIM1_CH1N

ı

PB13

USART3_CK

ī

SPI2_NSS

I2C2_SMBA

TIM1_BKIN_ COMP2

ı

TIM1_BKIN

ī

PB12

I2C2_SDA

USART3_TX USART3_RX

ı

SPI2_SCK

I2C2_SCL

ı

ı ı

TIM2_CH3 TIM2_CH4

PB10

PB11

Port B

ı

16) (continued)	AF5 AF6 AF7	SPI1/SPI2 SPI3 USART2/ USART2/ USART3		- 1	SPI2_MISO	SPI2_MOSI	USART3_TX	USART3_RX	1	- 1		1	- SPI3_SCK USART3_TX	- SPI3_MISO USART3_RX	- SPI3_MOSI USART3_CK	- 1	- 1	
Table 15. Alternate function AF0 to AF7 (for AF8 to AF15 see Table 16) (continued)	AF4	12C1/12C2/12C3 S	I2C3_SCL	I2C3_SDA	- SF	- SF	1	1	1	1	,	1	1	1	1	1	1	
AF7 (for AF8 t	AF3	USART2	ı	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
function AF0 to	AF2	TIM1/TIM2	1	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	1	ı	ı	
e 15. Alternate i	AF1	TIM1/TIM2/ LPTIM1	LPTIM1_IN1	LPTIM1_OUT	LPTIM1_IN2	LPTIM1_ETR	ı	ı	ı	ı	ı	ı	ı	ı	1	ı	ı	,
Table	AFO	SYS_AF	ı	ı	ı	ı	ı		ı	ı		ı	ı	ı	ı	ı	ı	ı
		Port	PC0	PC1	PC2	PC3	PC4	Port C PC5	PC6	PC7	PC8	PC9	PC10	PC11	PC12	Port C PC13	PC14	PC15

Pinouts and pin description

(pənu	
(contir	
le 16)	
Tab	
see	
0 to AF7 (for AF8 to AF15 see 7	
8 to	
ΓAF	
7 (fo	
AF	
F0 to	
n Al	
functio	
nate	
Alteri	
le 15.	
Table	

		AFO	AF1 AF2 AF3 AF4 AF5	AF2	ÀF3	AF4	AF5	AF6	AF7
Ă	Port	SYS_AF	TIM1/TIM2/ LPTIM1	TIM1/TIM2	USART2	I2C1/I2C2/I2C3	SPI1/SPI2	SPI3	USART1/ USART2/ USART2/
	PDO		1	-		-	SPI2_NSS		
	PD1		1	I		1	SPI2_SCK		1
	PD2	1	1	ı	ı	1	I	ı	USART3_RTS_ DE
	PD3		1	1		,	SPI2_MISO		USART2_CTS
	PD4	ı	ı	ı	ı	1	SPI2_MOSI	ı	USART2_RTS_ DE
	PD5		ı	ı	ı	1	I		USART2_TX
	PD6		ı	ı		ı	I		USART2_RX
Port D	PD7	ı	I	ı	1	ı	I		USART2_CK
	PD8		1	ı	ı	1	I		USART3_TX
	60d	ı	I	ı	1	ı	I		USART3_RX
	PD10	ı	ı	ı	I	1	I		USART3_CK
	PD11		I	ı	·	ı	I		USART3_CTS
	PD12	ı	ı	1	ı	1	I	I	USART3_RTS_ DE
	PD13	ı	I		-	I	I	ı	ı
	PD14	ı	I	I	-	I	I	ı	ı
	PD15	ı	I	1	-	I	-	-	ı
Port E	PE0	ı	ı	-	ı	ı	I	T	1

67/200

57

		3 27																		
	AF7	USART1/ USART2/ USART3		,	ı	ı	ı	1	,	ı	'	,	ı	'	ı	1	'	ı	ı	ı
ued)	AF6	SPI3				ı	ı			ı			ı		ı	ı	ı			ı
ble 16) (contin	AF5	SPI1/SPI2		·	ı	I	I	ı	·	I		·	I	SPI1_NSS	SPI1_SCK	SPI1_MISO	SPI1_MOSI	ı	I	I
to AF15 see <i>Ta</i>	AF4	I2C1/I2C2/I2C3	I	I	I	I	I	ı	I	I	I	I	I	I	I	I	I	I	I	I
Table 15. Alternate function AF0 to AF7 (for AF8 to AF15 see Table 16) (continued)	AF3	USART2	I	I	I	I	I	ı	I	I	I	I	I	I	I	TIM1_BKIN2_ COMP2	TIM1_BKIN_ COMP1	I	I	I
function AF0 to	AF2	TIM1/TIM2	I	I	I	I	I	ı	I	I	I	I	I	I	I	TIM1_BKIN2	I	I	I	I
e 15. Alternate	AF1	TIM1/TIM2/ LPTIM1	I	I	I	I	I	ı	TIM1_ETR	TIM1_CH1N	TIM1_CH1	TIM1_CH2N	TIM1_CH2	TIM1_CH3N	TIM1_CH3	TIM1_CH4	TIM1_BKIN	I	I	I
Tabl	AF0	SYS_AF	I	TRACECK	TRACED0	TRACED1	TRACED2	TRACED3	I	I	I	I	I	I	I	I	I	I	I	I
		t	PE1	PE2	PE3	PE4	PE5	PE6	PE7	PE8	PE9	PE10	PE11	PE12	PE13	PE14	PE15	PHO	PH1	PH3
		Port			I	I	I			 	Port E		I	I	I	1	1		Port H	I

Pinouts and pin description

			Table 16. Alte	ernate tunction	AF8 to AF15 (1	Alternate function AF8 to AF15 (for AF0 to AF7 see Table 15)	see Table 15)		
		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
<u>μ</u>	Port	LPUART1	CAN1/TSC	QUADSPI		SDMMC1/ COMP1/ COMP2/ SWPMI1	SAI1	TIM2/TIM15/ TIM16/LPTIM2	EVENTOUT
	PA0	1	I	I		COMP1_OUT	SAI1_EXTCLK	TIM2_ETR	EVENTOUT
	PA1	1	I	I		I	I	TIM15_CH1N	EVENTOUT
	PA2	LPUART1_TX	I	QUADSPIBK1NCS		COMP2_OUT	I	TIM15_CH1	EVENTOUT
	PA3	LPUART1_RX	I	QUADSPI_CLK		I	SAI1_MCLK_A	TIM15_CH2	EVENTOUT
	PA4	ı	I	I	I	I	SAI1_FS_B	LPTIM2_OUT	EVENTOUT
	PA5	ı	I	I	I	I	I	LPTIM2_ETR	EVENTOUT
	PA6	LPUART1_CTS	I	QUADSPI_ BK1_IO3		TIM1_BKIN_ COMP2	I	TIM16_CH1	EVENTOUT
Port A	PA7	1	I	QUADSPI_ BK1_IO2		COMP2_OUT	I	ı	EVENTOUT
	PA8	1	I	I		SWPMI1_IO	SAI1_SCK_A	LPTIM2_OUT	EVENTOUT
	PA9	ı	I	I		I	SAI1_FS_A	TIM15_BKIN	EVENTOUT
	PA10	ı	I			I	SAI1_SD_A	I	EVENTOUT
	PA11	ı	CAN1_RX		I	TIM1_BKIN2_ COMP1	I	I	EVENTOUT
	PA12	ı	CAN1_TX		I	I	I	I	EVENTOUT
	PA13	ı	I		I	SWPMI1_TX	SAI1_SD_B	I	EVENTOUT
	PA14	ı	I	I	I	SWPMI1_RX	SAI1_FS_B	I	EVENTOUT
	PA15	ı	TSC_G3_101	ı		SWPMI1_ SUSPEND	I	I	EVENTOUT

Table 16 Alternate function AF8 to AF15 (for AF0 to AF7 see Table 15)

DocID028800 Rev 1

69/200

STM32L431xx

Pinouts and pin description

7	0	2	0	0
_				

ſ																		
	AF15	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT
lued)	AF14	TIM2/TIM15/ TIM16/LPTIM2	ı	LPTIM2_IN1	I	I	I	TIM16_BKIN	TIM16_CH1N	I	TIM16_CH1	I	I	·	TIM15_BKIN	TIM15_CH1N	TIM15_CH1	TIM15_CH2
Table 16. Alternate function AF8 to AF15 (for AF0 to AF7 see Table 15) (continued)	AF13	SAI1	SAI1_EXTCLK	ı	I	SAI1_SCK_B	SAI1_MCLK_B	SAI1_SD_B	SAI1_FS_B	I	SAI1_MCLK_A	SAI1_FS_A	SAI1_SCK_A		SAI1_FS_A	SAI1_SCK_A	SAI1_MCLK_A	SAI1_SD_A
⁻ 0 to AF7 see 7	AF12	SDMMC1/ COMP1/ COMP2/ SWPMI1	COMP1_OUT	ı	I	I	I	COMP2_OUT	I	I	SDMMC1_D4	SDMMC1_D5	COMP1_OUT	COMP2_OUT	SWPMI1_IO	SWPMI1_TX	SWPMI1_RX	SWPMI1_ SUSPEND
o AF15 (for AF	AF11								-									
function AF8 t	AF10	QUADSPI	QUADSPI_ BK1_IO1	QUADSPI_ BK1_IO0	I	I	I	T	I	ı	T	I	QUADSPI_CLK	QUADSPI_ BK1_NCS	T	I	I	
le 16. Alternate	AF9	CAN1/TSC	ı	T	I	I	TSC_G2_101	TSC_G2_IO2	TSC_G2_103	TSC_G2_104	CAN1_RX	CAN1_TX	TSC_SYNC	-	TSC_61_101	TSC_G1_102	TSC_G1_103	TSC_G1_104
Tab	AF8	LPUART1	I	LPUART1_RTS _DE	I	I	I	I	I	I	I	I	LPUART1_RX	LPUART1_TX	LPUART1_RTS _DE	LPUART1_CTS	I	I
		Port	PB0	PB1	PB2	PB3	PB4	PB5	PB6	PB7	PB8	PB9	PB10	PB11	PB12	PB13	PB14	PB15
		۵.									Port B							

Pinouts and pin description

STM32L431xx

57

		Ļ	ÚT	ÚT	ÚΤ	ÚT	ÚT	ÚT	UT	ŪΤ	ÛΤ	ŪΤ	ÚΤ	ÚT	ÚT	ÚT	ÚT	ÚT	ÚΤ	ÚT	ÚT
	AF15	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT
nued)	AF14	TIM2/TIM15/ TIM16/LPTIM2	LPTIM2_IN1	ı	ı	LPTIM2_ETR	ı	ı	-	ı	ı	-	-	ı	-	ı	ı	ı	ı	-	ı
able 15) (conti	AF13	SAI1	·		ı	SAI1_SD_A	ı	ı	I	ı	ı	I	ı	ı	ı	ı	ı	ı	ı	ı	ı
Table 16. Alternate function AF8 to AF15 (for AF0 to AF7 see Table 15) (continued)	AF12	SDMMC1/ COMP1/ COMP2/ SWPMI1	ı		I	ı	I	ı	SDMMC1_D6	SDMMC1_D7	SDMMC1_D0	SDMMC1_D1	SDMMC1_D2	SDMMC1_D3	SDMMC1_CK	ı	ı	I	I	I	SDMMC1_ CMD
o AF15 (for AF	AF11															I	I	I	I	I	
function AF8 t	AF10	QUADSPI	I	ı	I	I	I	I	I	I	I		I	I	I	I	I	I	I	I	I
le 16. Alternate	AF9	CAN1/TSC	ı		I	I	I	I	TSC_64_101	TSC_G4_102	TSC_G4_103	TSC_64_104	TSC_G3_102	TSC_G3_103	TSC_G3_104	I	I	I	CAN1_RX	CAN1_TX	TSC_SYNC
Tab	AF8	LPUART1	LPUART1_RX	LPUART1_TX	I	I	I	I	I	I	I	-	I	I	I	I	I	I	I	-	I
		Port	PC0	PC1	PC2	PC3	PC4	PC5	90d	PC7	PC8	60d	PC10	PC11	PC12	PC13	PC14	PC15	PD0	۲D٩	PD2
		Pc		Port C	•		•	•	•	•	•	Port C	•	•		•	•	•		Port D	
		,	1	-		Į						-							ļ		

DocID028800 Rev 1

STM32L431xx

Pinouts and pin description

		Tab	ile 16. Alternate	Table 16. Alternate function AF8 to AF15 (for AF0 to AF7 see Table 15) (continued)	o AF15 (for AF	0 to AF7 see 7	able 15) (contir	(panu	
		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
<u>د</u>	Port	LPUART1	CAN1/TSC	QUADSPI		SDMMC1/ COMP1/ COMP2/ SWPMI1	SAI1	TIM2/TIM15/ TIM16/LPTIM2	EVENTOUT
	PD3	ı	1	QUADSPI_BK2 _NCS	I	ı	1	1	EVENTOUT
	PD4	ı	,	QUADSPI_BK2 _100	I	ı		ı	EVENTOUT
	PD5	ı	1	QUADSPI_BK2 _IO1	I	ı	1	ı	EVENTOUT
	PD6	ı	ı	QUADSPI_BK2 _IO2	I	ı	SAI1_SD_A	ı	EVENTOUT
Dort D	PD7	ı	ı	QUADSPI_BK2 _IO3	I	ı	1	ı	EVENTOUT
-	PD8	ı	ı	I		I	1	ı	EVENTOUT
	PD9	ı	ı	I		1	1	ı	EVENTOUT
	PD10	ı	TSC_G6_I01	ı		ı	1	1	EVENTOUT
	PD11	ı	TSC_G6_102	ı		1	1	LPTIM2_ETR	EVENTOUT
	PD12	ı	TSC_G6_103	I		I	1	LPTIM2_IN1	EVENTOUT
	PD13	ı	TSC_G6_I04	I		I	ı	LPTIM2_OUT	EVENTOUT
	PD14	ı	ı	I		1	1	ı	EVENTOUT
	PD15	ı	ı	I		I	1	I	EVENTOUT
	PE0	ı	I	I		I	ı	TIM16_CH1	EVENTOUT
	PE1	ı	I	I		I	1	ı	EVENTOUT
Port E	PE2	-	TSC_G7_101	I		I	SAI1_MCLK_A	I	EVENTOUT
	PE3	I	TSC_G7_IO2	I		I	SAI1_SD_B	I	EVENTOUT
	PE4	ı	TSC_G7_103	I	I	I	SAI1_FS_A	ı	EVENTOUT

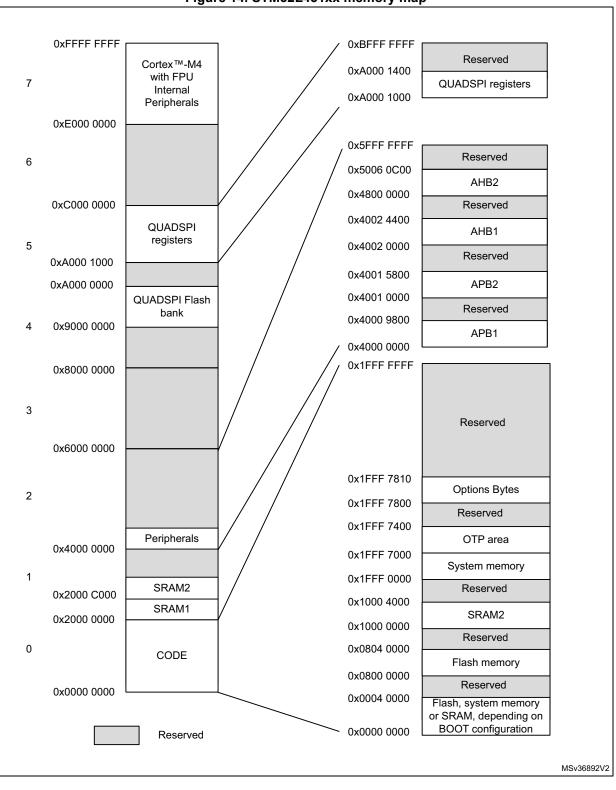
72/200

DocID028800 Rev 1

Pinouts and pin description

STM32L431xx

	ſĊ	DUT	DUT	DUT	DUT	DUT	DUT	DUT	DUT	DUT	DUT	DUT	DUT	DUT	DUT	DUT
	AF15	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT
nued)	AF14	TIM2/TIM15/ TIM16/LPTIM2		-	ı	-	-	ı	,	-	-	,		I	I	I
Table 16. Alternate function AF8 to AF15 (for AF0 to AF7 see Table 15) (continued)	AF13	SAI1	SAI1_SCK_A	SAI1_SD_A	SAI1_SD_B	SAI1_SCK_B	SAI1_FS_B	SAI1_MCLK_B	ı	ı	ı	ı	1	I	I	I
0 to AF7 see 7	AF12	SDMMC1/ COMP1/ COMP2/ SWPMI1	I	ı	I	I	I	I	I	I	I	I	I	I	I	•
o AF15 (for AF	AF11			-		-	-		ı.	-	-	ı.	ı	-		-
function AF8 t	AF10	QUADSPI		-	ı	-	-	QUADSPI_CLK	QUADSPI_BK1 _NCS	OUADSPI_BK1 _IO0	101_ 101_	QUADSPI_BK1 _IO2	QUADSPI_BK1 _IO3	-	I	-
le 16. Alternate	AF9	CAN1/TSC	TSC_G7_I04	-	ı	-	-	TSC_G5_101	TSC_G5_102	TSC_G5_103	TSC_G5_104	ı	ı	-	I	-
Tab	AF8	LPUART1	-	I	I	I	-	I	ı	T	I	ı	ı	I	I	I
		Port	PE5	PE6	PE7	PE8	PE9	PE10	PE11	PE12	PE13	PE14	PE15	DНО	PH1	PH3
		Ă			-			-	Port E						Port H	
I																


STM32L431xx

Pinouts and pin description

57

5

Memory mapping

Figure 14. STM32L431xx memory map

74/200

Bus	Boundary address	Size(bytes)	Peripheral
	0x5006 0800 - 0x5006 0BFF	1 KB	RNG
	0x5004 0400 - 0x5006 07FF	158 KB	Reserved
	0x5004 0000 - 0x5004 03FF	1 KB	ADC
	0x5000 0000 - 0x5003 FFFF	16 KB	Reserved
	0x4800 2000 - 0x4FFF FFFF	~127 MB	Reserved
AHB2	0x4800 1C00 - 0x4800 1FFF	1 KB	GPIOH
ANDZ	0x4800 1400 - 0x4800 1BFF	2 KB	Reserved
	0x4800 1000 - 0x4800 13FF	1 KB	GPIOE
	0x4800 0C00 - 0x4800 0FFF	1 KB	GPIOD
	0x4800 0800 - 0x4800 0BFF	1 KB	GPIOC
	0x4800 0400 - 0x4800 07FF	1 KB	GPIOB
	0x4800 0000 - 0x4800 03FF	1 KB	GPIOA
-	0x4002 4400 - 0x47FF FFFF	~127 MB	Reserved
	0x4002 4000 - 0x4002 43FF	1 KB	TSC
	0x4002 3400 - 0x4002 3FFF	1 KB	Reserved
	0x4002 3000 - 0x4002 33FF	1 KB	CRC
	0x4002 2400 - 0x4002 2FFF	3 KB	Reserved
AHB1	0x4002 2000 - 0x4002 23FF	1 KB	FLASH registers
ANDT	0x4002 1400 - 0x4002 1FFF	3 KB	Reserved
	0x4002 1000 - 0x4002 13FF	1 KB	RCC
	0x4002 0800 - 0x4002 0FFF	2 KB	Reserved
	0x4002 0400 - 0x4002 07FF	1 KB	DMA2
	0x4002 0000 - 0x4002 03FF	1 KB	DMA1
	0x4001 5800 - 0x4001 FFFF	42 KB	Reserved
	0x4001 5400 - 0x4000 57FF	1 KB	SAI1
	0x4001 4800 - 0x4000 53FF	3 KB	Reserved
APB2	0x4001 4400 - 0x4001 47FF	1 KB	TIM16
APDZ	0x4001 4000 - 0x4001 43FF	1 KB	TIM15
	0x4001 3C00 - 0x4001 3FFF	1 KB	Reserved
	0x4001 3800 - 0x4001 3BFF	1 KB	USART1
	0x4001 3400 - 0x4001 37FF	1 KB	Reserved

Table 17. STM32L431xx memory map and peripheral register boundary addresses ⁽¹⁾

Bus	Boundary address	Size(bytes)	Peripheral
	0x4001 3000 - 0x4001 33FF	1 KB	SPI1
	0x4001 2C00 - 0x4001 2FFF	1 KB	TIM1
	0x4001 2800 - 0x4001 2BFF	1 KB	SDMMC1
	0x4001 2000 - 0x4001 27FF	2 KB	Reserved
APB2	0x4001 1C00 - 0x4001 1FFF	1 KB	FIREWALL
APDZ	0x4001 0800- 0x4001 1BFF	5 KB	Reserved
	0x4001 0400 - 0x4001 07FF	1 KB	EXTI
	0x4001 0200 - 0x4001 03FF		COMP
	0x4001 0030 - 0x4001 01FF	1 KB	VREFBUF
	0x4001 0000 - 0x4001 002F		SYSCFG
	0x4000 9800 - 0x4000 FFFF	26 KB	Reserved
	0x4000 9400 - 0x4000 97FF	1 KB	LPTIM2
	0x4000 8C00 - 0x4000 93FF	2 KB	Reserved
	0x4000 8800 - 0x4000 8BFF	1 KB	SWPMI1
	0x4000 8400 - 0x4000 87FF	1 KB	Reserved
	0x4000 8000 - 0x4000 83FF	1 KB	LPUART1
	0x4000 7C00 - 0x4000 7FFF	1 KB	LPTIM1
	0x4000 7800 - 0x4000 7BFF	1 KB	OPAMP
	0x4000 7400 - 0x4000 77FF	1 KB	DAC
	0x4000 7000 - 0x4000 73FF	1 KB	PWR
	0x4000 6800 - 0x4000 6FFF	2 KB	Reserved
APB1	0x4000 6400 - 0x4000 67FF	1 KB	CAN1
APDI	0x4000 6000 - 0x4000 63FF	1 KB	CRS
	0x4000 5C00- 0x4000 5FFF	1 KB	I2C3
	0x4000 5800 - 0x4000 5BFF	1 KB	12C2
	0x4000 5400 - 0x4000 57FF	1 KB	I2C1
	0x4000 4C00 - 0x4000 53FF	2 KB	Reserved
	0x4000 4800 - 0x4000 4BFF	1 KB	USART3
	0x4000 4400 - 0x4000 47FF	1 KB	USART2
	0x4000 4000 - 0x4000 43FF	1 KB	Reserved
	0x4000 3C00 - 0x4000 3FFF	1 KB	SPI3
	0x4000 3800 - 0x4000 3BFF	1 KB	SPI2
	0x4000 3400 - 0x4000 37FF	1 KB	Reserved
	0x4000 3000 - 0x4000 33FF	1 KB	IWDG

Table 17. STM32L431xx memory map and peripheral register boundary addresses

76/200

Bus	Boundary address	Size(bytes)	Peripheral
	0x4000 2C00 - 0x4000 2FFF	1 KB	WWDG
	0x4000 2800 - 0x4000 2BFF	1 KB	RTC
	0x4000 1800 - 0x4000 27FF	4 KB	Reserved
APB1	0x4000 1400 - 0x4000 17FF	1 KB	TIM7
	0x4000 1000 - 0x4000 13FF	1 KB	TIM6
	0x4000 0400- 0x4000 0FFF	3 KB	Reserved
	0x4000 0000 - 0x4000 03FF	1 KB	TIM2

Table 17. STM32L431xx memory map and peripheral register boundary addresses

1. The gray color is used for reserved boundary addresses.

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A$ max (given by the selected temperature range).

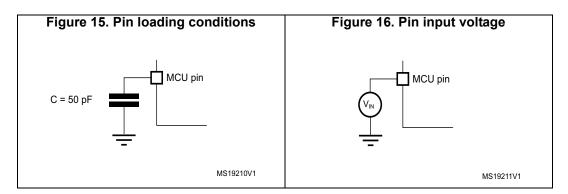
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = V_{DDA} = 3$ V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

6.1.3 Typical curves


Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 15*.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 16.

6.1.6 Power supply scheme

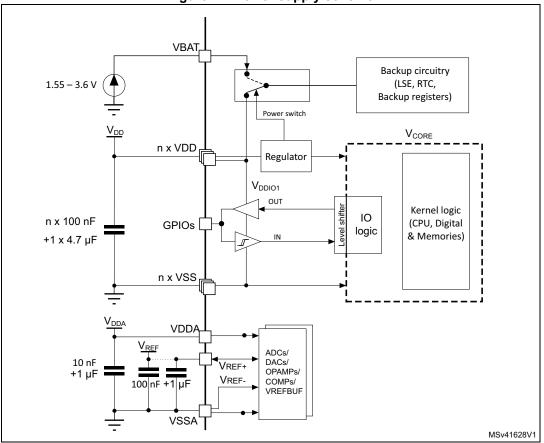
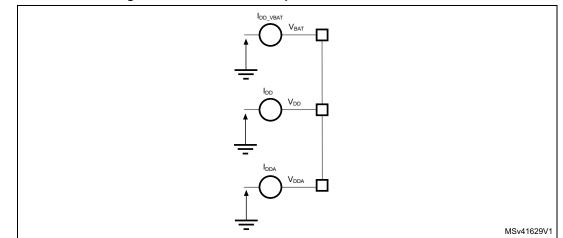



Figure 17. Power supply scheme

Caution: Each power supply pair (V_{DD}/V_{SS}, V_{DDA}/V_{SSA} etc.) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device.

6.1.7 Current consumption measurement

Figure 18. Current consumption measurement scheme

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 18: Voltage characteristics*, *Table 19: Current characteristics* and *Table 20: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings		Мах	Unit
V _{DDX} - V _{SS}	V _{DDX} - V _{SS} External main supply voltage (including V _{DD} , V _{DDA} , V _{BAT})		4.0	V
	Input voltage on FT_xxx pins	V _{SS} -0.3	min (V _{DD} , V _{DDA}) + 4.0 ⁽³⁾⁽⁴⁾	
$V_{IN}^{(2)}$	Input voltage on TT_xx pins	V _{SS} -0.3	4.0	V
	Input voltage on any other pins	V _{SS} -0.3	4.0	
ΔV _{DDx}	Variations between different V_{DDX} power pins of the same domain	-	50	mV
Variations between all the different ground pins ⁽⁵⁾		-	50	mV

1. All main power (V_{DD} , V_{DDA} , V_{BAT}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. V_{IN} maximum must always be respected. Refer to *Table 19: Current characteristics* for the maximum allowed injected current values.

3. This formula has to be applied only on the power supplies related to the IO structure described in the pin definition table.

4. To sustain a voltage higher than 4 V the internal pull-up/pull-down resistors must be disabled.

5. Include VREF- pin.

Symbol	Ratings	Max	Unit
ΣIV_{DD}	Total current into sum of all V _{DD} power lines (source) ⁽¹⁾	140	
ΣIV_{SS}	Total current out of sum of all V_{SS} ground lines (sink) ⁽¹⁾	140	
IV _{DD(PIN)}	Maximum current into each V _{DD} power pin (source) ⁽¹⁾	100	
IV _{SS(PIN)}	Maximum current out of each V _{SS} ground pin (sink) ⁽¹⁾	100	
	Output current sunk by any I/O and control pin except FT_f	20	
I _{IO(PIN)}	Output current sunk by any FT_f pin	20	
	Output current sourced by any I/O and control pin	20	mA
ΣI	Total output current sunk by sum of all I/Os and control pins ⁽²⁾	100	
$\Sigma I_{IO(PIN)}$	Total output current sourced by sum of all I/Os and control $pins^{(2)}$	100	
I _{INJ(PIN)} ⁽³⁾	Injected current on FT_xxx, TT_xx, RST and B pins, except PA4, PA5	-5/+0 ⁽⁴⁾	
- ()	Injected current on PA4, PA5	-5/0	
Σ I _{INJ(PIN)}	Total injected current (sum of all I/Os and control pins) ⁽⁵⁾	25	1

Table 19. Current characteristics

1. All main power (V_{DD} , V_{DDA} , V_{BAT}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supplies, in the permitted range.

2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.

3. Positive injection (when $V_{IN} > V_{DDIOx}$) is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.

A negative injection is induced by V_{IN} < V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer also to *Table 18: Voltage characteristics* for the maximum allowed input voltage values.

When several inputs are submitted to a current injection, the maximum ∑|I_{INJ(PIN)}| is the absolute sum of the negative injected currents (instantaneous values).

Table 20. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	–65 to +150	°C
TJ	Maximum junction temperature	150	°C

6.3 **Operating conditions**

6.3.1 General operating conditions

Table	21. General	operating	conditio	ns

Symbol	Parameter	Conditions	Min	Мах	Unit	
f _{HCLK}	Internal AHB clock frequency	-	0	80		
f _{PCLK1}	Internal APB1 clock frequency	-	0	80	MHz	
f _{PCLK2}	Internal APB2 clock frequency	-	0	80		
V _{DD}	Standard operating voltage	-	1.71 (1)	3.6	V	
		ADC or COMP used	1.62			
		DAC or OPAMP used	1.8			
V_{DDA}	Analog supply voltage	VREFBUF used	2.4	3.6	V	
		ADC, DAC, OPAMP, COMP, VREFBUF not used	0			
V _{BAT}	Backup operating voltage	-	1.55	3.6	V	
		TT_xx I/O	-0.3	V _{DDIOx} +0.3		
V _{IN}	I/O input voltage	All I/O except TT_xx	-0.3	MIN(MIN(V _{DD} , V _{DDA})+3.6 V, 5.5 V) ⁽²⁾⁽³⁾	V	
		LQFP100	-	476	_	
	Power dissipation at T _A = 85 °C for suffix 6 or T _A = 105 °C for suffix 7 ⁽⁴⁾	LQFP64	-	444		
		LQFP48	-	350		
		UFBGA100	-	350		
P _D		UFBGA64	-	307	mW	
		UFQFPN48	-	606		
		UFQFPN32	-	523		
		WLCSP64	-	434		
		WLCSP49	-	416		
	Ambient temperature for the	Maximum power dissipation	-40	85		
	suffix 6 version	Low-power dissipation ⁽⁵⁾	-40	105		
ТА	Ambient temperature for the	Maximum power dissipation	-40	105	°C	
IA	suffix 7 version	Low-power dissipation ⁽⁵⁾	-40	125	C	
	Ambient temperature for the	Maximum power dissipation	-40	125		
	suffix 3 version	Low-power dissipation ⁽⁵⁾	-40	130		
		Suffix 6 version	-40	105		
Τ _J	Junction temperature range	Suffix 7 version	-40	125	°C	
		Suffix 3 version	-40	130		

- 1. When RESET is released functionality is guaranteed down to V_{BOR0} Min.
- 2. This formula has to be applied only on the power supplies related to the IO structure described by the pin definition table. Maximum I/O input voltage is the smallest value between MIN(V_{DD} , V_{DDA})+3.6 V and 5.5V.
- 3. For operation with voltage higher than Min (V_{DD}, V_{DDA}) +0.3 V, the internal Pull-up and Pull-Down resistors must be disabled.
- 4. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} (see Section 7.10: Thermal characteristics).
- In low-power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} (see Section 7.10: Thermal characteristics).

6.3.2 Operating conditions at power-up / power-down

The parameters given in *Table 22* are derived from tests performed under the ambient temperature condition summarized in *Table 21*.

Symbol	Parameter	Conditions	Min	Max	Unit
+	V _{DD} rise time rate		0	8	
t _{VDD}	V _{DD} fall time rate	-	10	8	
+	V _{DDA} rise time rate		0	8	us/V
t _{VDDA}	V _{DDA} fall time rate	-	10	8	μ5/ ν

 Table 22. Operating conditions at power-up / power-down

6.3.3 Embedded reset and power control block characteristics

The parameters given in *Table 23* are derived from tests performed under the ambient temperature conditions summarized in *Table 21: General operating conditions*.

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Max	Unit
t _{RSTTEMPO} ⁽²⁾	Reset temporization after BOR0 is detected	V _{DD} rising	-	250	400	μs
V _{BOR0} ⁽²⁾	Brown-out reset threshold 0	Rising edge	1.62	1.66	1.7	V
VBOR0	Brown-out reset threshold o	Falling edge	1.6	1.64	1.69	v
V	Brown-out reset threshold 1	Rising edge	2.06	2.1	2.14	V
V _{BOR1}	Brown-out reset threshold 1	Falling edge	1.96	2	2.04	v
N .	Brown-out reset threshold 2	Rising edge	2.26	2.31	2.35	V
V _{BOR2}		Falling edge	2.16	2.20	2.24	v
V	Brown-out reset threshold 3	Rising edge	2.56	2.61	2.66	V
V _{BOR3}		Falling edge	2.47	2.52	2.57	v
N	Brown out report throughold 4	Rising edge	2.85	2.90	2.95	V
V _{BOR4}	Brown-out reset threshold 4	Falling edge	2.76	2.81	2.86	v
V	Programmable voltage	Rising edge	2.1	2.15	2.19	V
V _{PVD0}	detector threshold 0	Falling edge	2	2.05	2.1	v

	mbedded reset and power					,
Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Мах	Unit
V _{PVD1}	PVD threshold 1	Rising edge	2.26	2.31	2.36	V
♥PVD1		Falling edge	2.15	2.20	2.25	v
	PVD threshold 2	Rising edge	2.41	2.46	2.51	V
V _{PVD2}		Falling edge	2.31	2.36	2.41	v
V	PVD threshold 3	Rising edge	2.56	2.61	2.66	V
V _{PVD3}		Falling edge	2.47	2.52	2.57	v
N/	DVD threshold 4	Rising edge	2.69	2.74	2.79	V
V _{PVD4}	PVD threshold 4	Falling edge	2.59	2.64	2.69	v
	DV/D threads ald E	Rising edge	2.85	2.91	2.96	N
V _{PVD5}	PVD threshold 5	Falling edge	2.75	2.81	2.86	V
		Rising edge	2.92	2.98	3.04	
V _{PVD6}	PVD threshold 6	Falling edge	2.84	2.90	2.96	V
V _{hyst_BORH0}	Hysteresis voltage of BORH0	Hysteresis in continuous mode	-	20	-	mV
hyst_borkho		Hysteresis in other mode	-	30	-	
V _{hyst_BOR_PVD}	Hysteresis voltage of BORH (except BORH0) and PVD	-	-	100	-	mV
I _{DD} (BOR_PVD) ⁽²⁾	$BOR^{(3)}$ (except BOR0) and PVD consumption from V_{DD}	-	-	1.1	1.6	μA
M	V _{DDA} peripheral voltage	Rising edge	1.61	1.65	1.69	V
V _{PVM3}	monitoring	Falling edge	1.6	1.64	1.68	v
N	V _{DDA} peripheral voltage	Rising edge	1.78	1.82	1.86	V
V _{PVM4}	monitoring	Falling edge	1.77	1.81	1.85	V
V _{hyst_PVM3}	PVM3 hysteresis	-	-	10	-	mV
V _{hyst_PVM4}	PVM4 hysteresis	-	-	10	-	mV
I _{DD} (PVM1) (2)	PVM1 consumption from V_{DD}	-	-	0.2	-	μA
I _{DD} (PVM3/PVM4) (2)	PVM3 and PVM4 consumption from V _{DD}	-	-	2	-	μA

Table 23. Embedded reset and power control block characteristics (continued)

1. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes.

2. Guaranteed by design.

3. BOR0 is enabled in all modes (except shutdown) and its consumption is therefore included in the supply current characteristics tables.

6.3.4 Embedded voltage reference

The parameters given in *Table 24* are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 21: General operating conditions*.

		ea internal voltage rele				
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{REFINT}	Internal reference voltage	–40 °C < T _A < +130 °C	1.182	1.212	1.232	V
t _{S_vrefint} ⁽¹⁾	ADC sampling time when reading the internal reference voltage	-	4 ⁽²⁾	-	-	μs
t _{start_vrefint}	Start time of reference voltage buffer when ADC is enable	-	-	8	12 ⁽²⁾	μs
I _{DD} (V _{REFINTBUF})	V_{REFINT} buffer consumption from V_{DD} when converted by ADC	-	-	12.5	20 ⁽²⁾	μA
ΔV_{REFINT}	Internal reference voltage spread over the temperature range	V _{DD} = 3 V	-	5	7.5 ⁽²⁾	mV
T _{Coeff}	Temperature coefficient	$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +130^{\circ}\text{C}$	-	30	50 ⁽²⁾	ppm/°C
A _{Coeff}	Long term stability	1000 hours, T = 25°C	-	-	TBD ⁽²⁾	ppm
V _{DDCoeff}	Voltage coefficient	3.0 V < V _{DD} < 3.6 V	-	250	1200 ⁽²⁾	ppm/V
V _{REFINT_DIV1}	1/4 reference voltage		24	25	26	
V _{REFINT_DIV2}	1/2 reference voltage] -	49	50	51	% V _{REFINT}
V _{REFINT_DIV3}	3/4 reference voltage		74	75	76	

1. The shortest sampling time can be determined in the application by multiple iterations.

2. Guaranteed by design.

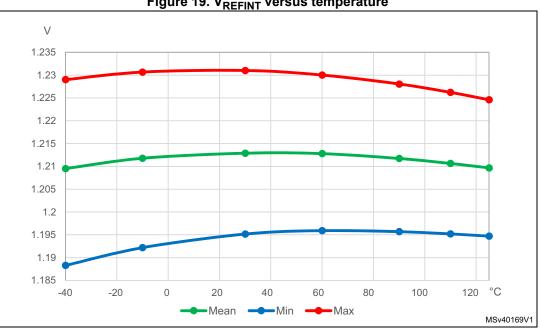


Figure 19. V_{REFINT} versus temperature

86/200

6.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 18: Current consumption measurement scheme*.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in analog input mode
- All peripherals are disabled except when explicitly mentioned
- The Flash memory access time is adjusted with the minimum wait states number, depending on the f_{HCLK} frequency (refer to the table "Number of wait states according to CPU clock (HCLK) frequency" available in the RM0392 reference manual).
- When the peripherals are enabled f_{PCLK} = f_{HCLK}

The parameters given in *Table 25* to *Table 38* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 21: General operating conditions*.

Electrical characteristics

		Condi	Conditions				ТҮР		_			MAX ⁽¹⁾			
Symbol	Parameter		Voltage scaling	fhcLK	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	Unit
				26 MHz	2.37	2.38	2.44	2.52	2.66	2.7	2.7	2.8	2.9	3.2	
				16 MHz	1.5	1.52	1.57	1.64	1.79	1.7	1.7	1.8	2.0	2.3	
				8 MHz	0.81	0.82	0.87	0.94	1.08	0.9	0.9	1.0	1.2	1.5	
			Range 2	4 MHz	0.46	0.47	0.52	0.59	0.73	0.5	0.6	0.6	0.8	1.1	
				2 MHz	0.29	0.3	0.34	0.41	0.55	0.3	0.4	0.4	0.6	0.9	
		fHCLK = fHSE up to		1 MHz	0.2	0.21	0.25	0.32	0.46	0.2	0.3	0.3	0.5	0.8	
	Supply	48MITZ Included, bypass mode		100 kHz	0.12	0.13	0.17	0.24	0.38	0.1	0.2	0.2	0.4	0.7	{
(IIII) DD(Ruil)	Run mode	PLL ON above		80 MHz	8.53	8.56	8.64	8.74	8.92	9.5	9.6	9.7	9.9	10.3	
		peripherals disable		72 MHz	7.7	7.73	7.8	7.9	8.08	8.6	8.6	8.7	8.9	9.3	
				64 MHz	6.86	6.9	6.97	7.06	7.23	7.7	7.7	7.8	8.0	8.3	
			Range 1	48 MHz	5.13	5.16	5.23	5.32	5.49	5.8	5.8	6.0	6.1	6.5	
				32 MHz	3.46	3.48	3.55	3.64	3.8	3.9	4.0	4.1	4.2	4.6	
				24 MHz	2.63	2.64	2.71	2.79	2.96	3.0	3.0	3.1	3.3	3.6	
				16 MHz	1.8	1.81	1.87	1.96	2.12	2.0	2.1	2.2	2.3	2.7	
	Shaan O			2 MHz	211	230	280	355	506	273.8	301.1	360.4	502.7	815.9	
	current in	fHCLK = fMSI		1 MHz	117	134	179	254	404	154.7	184.6	249.6	398.4	712.4	{
DD(ברהלטוו)	Low-power		le	400 kHz	58.5	70.4	116	189	338	80.2	111.5	179.7	330.8	643.4	5
				100 kHz	30	41.1	85.2	159	308	46.5	76.6	147.1	299.1	611.2	

s, code with data process	
Table 26. Current consumption in Run and Low-power run modes, code with data proces	runing from Elseh ADT disable

STM32L431xx

		Conditions	itions				ТҮР					MAX ⁽¹⁾			
Symbol	Parameter		Voltage scaling	fнськ	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	Unit
				26 MHz	2.66	2.68	2.73	2.81	2.96	3.0	3.1	3.2	3.3	3.6	
				16 MHz	1.88	1.9	1.94	2.02	2.17	2.1	2.2	2.3	2.4	2.7	
				8 MHz	1.05	1.06	1.11	1.18	1.33	1.2	1.2	1.3	1.4	1.7	
			Range 2	4 MHz	0.6	0.62	0.66	0.73	0.87	0.7	0.7	0.8	0.9	1.2	
				2 MHz	0.36	0.37	0.34	0.48	0.62	0.4	0.4	0.5	9.0	0.9	
		HCLK = HSE up to 48MHz included.		1 MHz	0.23	0.25	0.25	0.36	0.5	0.3	0.3	0.4	0.5	0.8	
	Supply current in	bypass mode		100 kHz	0.12	0.14	0.17	0.25	0.39	0.1	0.2	0.2	0.4	0.7	<
		PLL ON above		80 MHz	8.56	8.61	8.69	8.79	8.97	9.6	9.7	9.8	10.0	10.3	5
		48 MHZ all nerinherals disable		72 MHz	7.74	7.79	7.86	7.96	8.14	8.7	8.7	8.8	9.0	9.4	
				64 MHz	7.63	7.68	7.75	7.85	8.04	8.6	8.6	8.7	8.9	9.3	
			Range 1	48 MHz	6.36	6.4	6.48	6.58	6.76	7.2	7.3	7.4	7.6	7.9	
				32 MHz	4.56	4.6	4.66	4.76	4.93	5.2	5.2	5.3	5.5	5.8	
				24 MHz	3.45	3.48	3.54	3.64	3.8	3.9	4.0	4.1	4.2	4.6	
				16 MHz	2.48	2.51	2.56	2.65	2.82	2.8	2.9	3.0	3.1	3.5	
	Cumbro			2 MHz	310	317	364	440	593	375.3	400.9	456.7	595.3	906.6	
	supply current in			1 MHz	157	173	226	296	448	204.8	234.2	298.2	445.8	758.9	<
וDD(ברהשוו)	Low-power		le	400 kHz	72.6	89	130	206	356	99.7	131.2	199.7	349.3	663.7	5
				100 kHz	32.3	46	89.7	164	314	52.4	82.1	153.3	301.2	616.9	

57

DocID028800 Rev 1

able 27. Current consumption in Run and Low-power run modes, code with data process	Sincipa from SDAM1
Table 27. Cu	

		Condi	itions				ТҮР					MAX ⁽¹⁾			
Symbol	Parameter		Voltage scaling	fнськ	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	Unit
				26 MHz	2.42	2.43	2.49	2.56	2.71	2.7	2.7	2.8	3.0	3.3	1
				16 MHz	1.54	1.55	1.6	1.67	1.82	1.7	1.7	1.8	2.0	2.3	
				8 MHz	0.82	0.84	0.88	0.95	1.1	0.9	1.0	1.0	1.2	1.5	
			Range 2	4 MHz	0.47	0.48	0.52	0.59	0.73	0.5	0.6	9.0	0.8	1.1	
		- - - -		2 MHz	0.29	0.3	0.34	0.41	0.55	0.3	0.4	0.4	0.6	0.9	
		HCLK = HSE up to 48MHz included.		1 MHz	0.2	0.21	0.25	0.32	0.46	0.2	0.3	0.3	0.5	0.8	
	Supply	bypass mode		100 kHz	0.12	0.13	0.17	0.24	0.38	0.1	0.2	0.2	0.4	0.7	~
	Run mode	PLL ON above		80 MHz	8.63	8.68	8.74	8.84	9.01	9.5	9.6	9.7	9.9	10.2	
		48 MHZ all nerinherals disable		72 MHz	7.79	7.83	7.9	7.99	8.17	8.6	8.6	8.8	8.9	9.3	
				64 MHz	6.95	6.99	7.05	7.15	7.32	7.7	7.7	7.9	8.0	8.4	
			Range 1	48 MHz	5.19	5.22	5.29	5.38	5.55	5.8	5.8	5.9	6.1	6.5	
				32 MHz	3.51	3.53	3.6	3.68	3.85	3.9	4.0	4.1	4.2	4.6	
				24 MHz	2.66	2.68	2.74	2.83	2.99	3.0	3.0	3.1	3.3	3.6	
				16 MHz	1.82	1.84	1.89	1.98	2.14	2.0	2.1	2.2	2.3	2.7	
				2 MHz	205	228	275	352	501	276.5	302.3	358.4	502.5	816.4	
	suppiy current in	fHCLK = fMSI	(1 MHz	111	126	175	248	397	151.3	180.9	245.3	390.7	703.4	<
וDD(LLTKUII)	low-power	all periprierals uisable FLASH in power-down	p K	400 kHz	49.2	62.7	108	181	330	73.3	104.0	170.8	321.0	632.4	۲n ۲
				100 kHz	21.5	33.3	76.6	151	299	36.4	67.7	137.2	287.8	600.8	

90/200

						,	TVD	
			Conditio	ons	TYP		TYP	
Symbol	Parameter	-	Voltage scaling	Code	25 °C	Unit	25 °C	Unit
			Ν	Reduced code ⁽¹⁾	2.37		91	
			Range 2 f _{HCLK} = 26 MHz	Coremark	2.69		103	
		6 - 6	ange = 26	Dhrystone 2.1	2.74	mA	105	µA/MHz
		f _{HCLK} = f _{HSE} up to 48 MHz	R8 ICLK	Fibonacci	2.58		99	
I (Bup)	Supply current in	included, bypass mode PLL ON	ι,Ξ	While(1)	2.30		88	
I _{DD} (Run)	Run mode	above 48 MHz	Z	Reduced code ⁽¹⁾	8.53		107	
		all peripherals disable	Range 1 f _{HCLK} = 80 MHz	Coremark	9.68		121	
				Dhrystone 2.1	9.76	mA	122	µA/MHz
				Fibonacci	9.27		116	
			ι,Ξ	While(1)	8.20		103	
	Supply			Reduced code ⁽¹⁾	211		106	
				Coremark	251		126	
I _{DD} (LPRun)	current in Low-power	f _{HCLK} = f _{MSI} = 2 M all peripherals dis		Dhrystone 2.1	269	μA	135	µA/MHz
	run		-	Fibonacci	230		115	
				While(1)	286		143	

Table 28. Typical current consumption in Run and Low-power run modes, with different codesrunning from Flash, ART enable (Cache ON Prefetch OFF)

1. Reduced code used for characterization results provided in Table 25, Table 26, Table 27.

		rannių	9 11 0111 1	asii, ART uisable	· · · · ·			
			Conditio	ns	TYP		ТҮР	
Symbol	Parameter	-	Voltage scaling	Code	25 °C	Unit	25 °C	Unit
			Hz	Reduced code ⁽¹⁾	2.66		102	
			Range 2 _{LK} = 26 MHz	Coremark	2.44		94	
		f _{HCLK} = f _{HSE} up to	inge = 2(Dhrystone 2.1	2.46	mA	95	µA/MHz
	A 1	48 MHz included,	Ra ^f HCLK	Fibonacci	2.27		87	
I _{DD} (Run)	Supply current in	bypass mode PLL ON above	рн	While(1)	2.20		84.6	
	Run mode	48 MHz	보	Reduced code ⁽¹⁾	8.56		107	
		all peripherals disable	Range 1 f _{HCLK} = 80 MHz	Coremark	8.00		100	
				Dhrystone 2.1	7.98	mA	100	µA/MHz
				Fibonacci	7.41		93	
				While(1)	7.83		98	
	Supply			Reduced code ⁽¹⁾	310		155	
			-	Coremark	342		171	
I _{DD} (LPRun)	current in Low-power	f _{HCLK} = f _{MSI} = 2 Mł all peripherals disa		Dhrystone 2.1	324	μA	162	µA/MHz
	run			Fibonacci	324		162	
				While(1)	384		192	

Table 29. Typical current consumption in Run and Low-power run modes, with different codesrunning from Flash, ART disable

1. Reduced code used for characterization results provided in Table 25, Table 26, Table 27.

Table 30. Typical current consumption in Run and Low-power run modes, with different codes
running from SRAM1

			Conditio	ons	ТҮР		ТҮР	
Symbol	Parameter	-	Voltage scaling	Code	25 °C	Unit	25 °C	Unit
			Hz	Reduced code ⁽¹⁾	2.42		93	
			Range 2 _{LK} = 26 MHz	Coremark	2.18		84	
		f _{HCLK} = f _{HSE} up to	= 2(Dhrystone 2.1	2.40	mA	92	µA/MHz
	a 1	48 MHz included,	Ranç f _{HCLK} =	Fibonacci	2.40		92	
I _{DD} (Run)	Supply current in	bypass mode PLL ON above	f _{HC}	While(1)	2.29		88	
	Run mode	48 MHz all	1 MHz	Reduced code ⁽¹⁾	8.63		108	
		peripherals	- Σ	Coremark	7.76		97	
		disable	Range 1 _{LK} = 80 I	Dhrystone 2.1	8.55	mA	107	µA/MHz
			<u></u>	Fibonacci	8.56		107	
			f _{HC}	While(1)	8.12		102	
				Reduced code ⁽¹⁾	205		103	
	Supply	£ _£ _0.M	1-	Coremark	188		94	
I _{DD} (LPRun)	current in Low-power	f _{HCLK} = f _{MSI} = 2 MF all peripherals disa		Dhrystone 2.1	222	μA	111	µA/MHz
	run		~.~	Fibonacci	204		102	
				While(1)	211		106	

1. Reduced code used for characterization results provided in Table 25, Table 26, Table 27.

92/200

105 °C 125 °C	1.3						4	-								<			
ŝ		1.1	0.9	0.8	0.7	0.7	0.7	3.1	2.9	2.6	2.2	1.7	1.4	1.2	653.5	628.7	609.2	602.4	
105	1.0	0.8	0.6	0.5	0.4	0.4	0.4	2.8	2.5	2.3	1.8	1.4	1.1	0.9	341.5	316.5	297.6	290.8	
85 °C	0.9	0.6	0.4	0.3	0.3	0.3	0.2	2.6	2.4	2.1	1.7	1.2	1.0	0.7	191.3	165.4	147.2	140.9	
55 °C	0.8	0.6	0.4	0.3	0.2	0.2	0.2	2.5	2.3	2.1	1.6	1.1	0.9	0.6	122.7	95.4	75.8	67.9	
25 °C	0.8	0.5	0.3	0.2	0.2	0.1	0.1	2.5	2.2	2.0	1.5	1.1	0.8	0.6	91.1	63.2	43.9	35.2	
125 °C	0.95	0.73	0.55	0.46	0.42	0.40	0.38	2.54	2.34	2.14	1.66	1.25	1.04	0.84	350	325	308	207.7	
105 °C	0.81	0.59	0.41	0.32	0.28	0.26	0.24	2.38	2.18	1.98	1.50	1.09	0.88	0.68	200	176	158	113.2	
85 °C	0.74	0.52	0.34	0.25	0.21	0.19	0.17	2.30	2.10	1.89	1.42	1.01	0.80	0.60	125	101	84.6	63.3	
55 °C	0.69	0.48	0.30	0.21	0.17	0.15	0.13	2.25	2.04	1.84	1.36	0.95	0.75	0.55	80.7	57.3	40.7	30.9	
25 °C	0.68	0.46	0.29	0.20	0.16	0.13	0.11	2.23	2.02	1.82	1.34	0.93	0.73	0.53	71.8	45.0	27.0	22.8	
fнсLK	26 MHz	16 MHz	8 MHz	4 MHz	2 MHz	1 MHz	100 kHz	80 MHz	72 MHz	64 MHz	48 MHz	32 MHz	24 MHz	16 MHz	2 MHz	1 MHz	400 kHz	100 kHz	
Voltage scaling				Range 2							Range 1								
										HCLK = f _{MSI}									
Parameter															Supply	current in	iow-power sleep	mode	
Symbol							(Clean)										IDD(LL SIEEP)		
	Parameter Voltage f _{HCLK} 25 °C 55 °C 85 °C 105 °C 125 °C 55	Parameter - Voltage scaling f _{HcLK} 25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C - scaling f _{HcLK} 25 °C 55 °C 85 °C 105 °C 125 °C 55 °C	Parameter - Voltage scaling fHcLk 25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 50 °C	Parameter voltage fHcLK 25 °C 55 °C 85 °C 105 °C 125 °C 55 °C 50 °C	Parameter - Voltage scaling fHcLk 25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 50 °C	Parameter - Voltage scaling fHcLk 25 °C 55 °C 85 °C 105 °C 125 °C 55 °C 50 °C 55 °C 50 °C	Parameter - Voltage scaling fHcLk 25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 50 °C	Parameter - Voltage scaling f_{HCLK} 25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 50 °	Parameter - Voltage scaling f_{HCLK} 25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 50 °	SymbolParameter-voltage scaling f_{HCLK} $25 ^{\circ}$ C $55 ^{\circ}$ C $105 ^{\circ}$ C $125 ^{\circ}$ C $55 ^{\circ}$ C $50 ^{\circ}$ C $50 $	SymbolParameter-Voltage scaling f_{HCLK} 25 °C55 °C55 °C105 °C26 °C55 °C<	Symbol Barameter-Voltage scaling f_{HCLK} 25 °C55 °C85 °C105 °C125 °C25 °C55 °C-scaling-26 MHz0.680.690.740.810.950.8016 MHz0.460.480.520.590.730.50016 MHz0.200.210.250.340.460.250016 MHz0.200.210.210.250.320.460.2016 MHz0.200.210.210.250.320.460.2016 MHz0.160.170.210.210.260.400.1016 MHz0.160.170.210.210.2200010 A8 MHzincluded, bypass100 Hz0.110.170.210.280.420.2010D(Sleep)sleeppll ON above20 MHz2.132.252.302.382.542.5210D(Sleep)sleeppll ON above80 MHz1.821.841.891.982.142.0210D(Sleep)sleeppll ON above20 MHz2.022.042.102.182.342.252210D(Sleep)sleeppll ON above20 MHz2.022.042.102.182.342.252210D(Sleep)sleepperipheralsfd MHz1.341.361.932.14<	Symbol mode Parameter in the constant scaling - Voltage scaling f_{HCLK} 25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 50 °C 0	SymbolFarameter ameter-Voltage hcLK f_{hCLK} $25 ^{\circ}$ C $85 ^{\circ}$ C $105 ^{\circ}$ C $125 ^{\circ}$ C $55 ^{\circ}$ C $50 ^{\circ}$ C </td <td>Parameter - Voltage scaling f_{HCLK} 25 °C 55 °C 85 °C 105 °C 25 °C 55 °C 50 °C</td> <td>SymbolParameter-Voltagef_{HcLK}25 °C55 °C85 °C105 °C125 °C55 °C55</td> <td>Symbol Parameter - Voltage fheux 25 °C 55 °C 55 °C 105 °C 125 °C 25 °C 55 °C 55 °C 55 °C 105 °C 125 °C 25 °C 55 °C 50 °C 005 °C<!--</td--><td>Symbol Ion(Parameter - voltage scaling fuck fuck $Z5^{\circ}C$ $55^{\circ}C$ $105^{\circ}C$ $125^{\circ}C$ $25^{\circ}C$ $55^{\circ}C$ $55^{\circ}C$ $155^{\circ}C$ $25^{\circ}C$ $55^{\circ}C$ $55^{\circ}C$</br></td></td>	Parameter - Voltage scaling f_{HCLK} 25 °C 55 °C 85 °C 105 °C 25 °C 55 °C 50 °C	SymbolParameter-Voltage f_{HcLK} 25 °C55 °C85 °C105 °C125 °C55	Symbol Parameter - Voltage fheux 25 °C 55 °C 55 °C 105 °C 125 °C 25 °C 55 °C 55 °C 55 °C 105 °C 125 °C 25 °C 55 °C 50 °C 005 °C </td <td>Symbol Ion(Parameter - voltage scaling fuck fuck $Z5^{\circ}C$ $55^{\circ}C$ $105^{\circ}C$ $125^{\circ}C$ $25^{\circ}C$ $55^{\circ}C$ $55^{\circ}C$ $155^{\circ}C$ $25^{\circ}C$ $55^{\circ}C$ $55^{\circ}C$</br></td>	Symbol Ion(Parameter - voltage scaling fuck 	

STM32L431xx

93/200

		ő	Conditions				ТҮР					MAX ⁽¹⁾			
Symbol	Parameter		Voltage scaling	fнськ	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	Unit
				2 MHz	58.7	70.7	103.2	153.7	248.5	80	113	180	330	641	
I _{DD} (LPSleep	÷	fHCLK = fMSI	<u> </u>	1 MHz	39.4	47.2	79.3	129.6	224.8	53	86	154	304	616	<
	sleep mode	all peripherals di	sable	400 kHz	20.8	30.8	62.1	112.5	207.8	35	67	137	286	597	Ś
	_		<u> </u>	100 kHz	14.3	23.1	55.1	105.7	201.5	27	58	130	279	590	
ranteed t	1. Guaranteed by characterization results, unless otherwise specified	esults, unless o	therwise spe	cified.											
			Table	Table 33. Current consumption in Stop 2 mode	rent co	dunsu	tion in	Stop 2 I	node						
		Ŭ	Conditions				ТҮР					MAX ⁽¹⁾			1
юашуе	Parameter			V _{DD}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	OUIE
				1.8 V	~	2.54	8.74	19.8	43.4	2.0	5.6	21.1	50.8	116.0	
(c uoto	Supply current in			2.4 V	1.02	2.59	8.89	20.2	44.3	2.1	5.8	21.6	52.3	119.6	<
(2 doic) agi	RTC disabled	-	1	3 V	1.06	2.67	9.11	20.7	45.5	2.1	5.9	22.2	53.7	123.2	ç
				3.6 V	1.23	2.88	9.56	21.6	47.3	2.3	6.1	23.0	55.8	127.9	
				1.8 V	1.3	2.82	9.02	20.1	43.6	2.5	6.2	21.6	51.3	116.3	
		DTC clocked		2.4 V	1.39	2.95	9.24	20.5	44.6	2.8	6.4	22.3	52.8	120.0	
				3 V	1.5	3.11	9.55	21.1	45.8	3.0	6.8	23.0	54.5	123.8	
				3.6 V	1.76	3.42	10.1	22.1	47.8	3.3	7.2	24.1	56.7	128.7	
				1.8 V	1.36	2.9	9.1	20.1	43.7	ı	ı	ı	ı	ı	
I _{DD} (Stop 2	Supply current in Stop 2 mode		ed by LSE	2.4 V	1.48	3.09	9.44	20.8	45	ı	ı	ı	ı	ı	Ā
with RTC)	RTC enabled	bypassed a	bypassed at 32768 Hz	3 V	1.83	3.67	10.4	22.3	47.3	ı	I	ı	ı	ı	ç
					(1	0.01		Ċ						

94/200

Electrical characteristics

DocID028800 Rev 1

STM32L431xx

1 1 1 1

1 1 1 1

ī

ī

ī

ı

1 I I

ı

21.3

ı

ı

- 53

26.6 20.8

13.9 9.13 9.64 10.2

6.17 2.81 2.93

3.58 1.28 1.39 1.59 1.86

3.6 V 1.8 V 2.4 V ı

1 1

i i

21.8 22.8

3.45

3.6 V

3.1

3 V

RTC clocked by LSE quartz⁽²⁾ in low drive mode

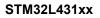
ı

ı

Vbb 25 °C 55 °C 55 °C 85 °C 105 °C 125 °C 55 °C 105 °C 105 °C 125 °C	Table 3	Table 33. Current consumption in Stop 2 mode (continued)	tion in Stop	2 mode	(continu	ed)		(1)		
25 °C 55 °C 85 °C 105 °C 125 °C 55 °C 85 °C 105 °C 125 °C 1.85 - - - - - - 125 °C 125 °C 1.85 -	Conditions		ТҮР				MAX	(1)		ļ
1.85 -	-	25 °C	55 °C 85 °C		125 °C			C 105 °C	125 °C	5
1.52 -	Wakeup clock is MSI = 48 MHz, voltage Range 1. See ⁽³⁾ .			'				'	-	
1.54	Wakeup clock is MSI = 4 MHz, voltage Range 2. See ⁽³⁾ .			ı	1	1		,	I	MM
	Wakeup clock is HSI16 = 16 MHz, voltage Range 1. See ⁽³⁾ .	3 V 1.54	1	I		ı	ı	1	-	

STM32L431xx

ю[.]


Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 40: Low-power mode wakeup timings.

			. curre		nduine			PUCE						
Chambol	Doromotor	Conditions				ТҮР					MAX ⁽¹⁾			1
odiniye	rarameter		V _{DD}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	
	Supply		1.8 V	4.34	12.4	43.6	96.4	204	9.3	27.4	98.9	198.7	397.5	
I (Stop 1)	current in		2.4 V	4.35	12.5	43.8	97	205	9.4	27.6	99.5	199.0	398.0	V
	Stop 1 mode,		3 V	4.41	12.6	44.1	97.7	207	9.5	27.8	100.3	200.4	400.8	ç
	KIC disabled		3.6 V	4.56	12.9	44.8	98.9	210	9.7	28.3	101.7	202.1	404.2	
			1.8 V	4.63	12.7	43.9	96.8	205	9.9	28.0	99.5	198.9	397.8	
		RTC clocked by I SI	2.4 V	4.78	12.8	44.2	97.4	206	10.1	28.3	100.3	199.5	399.0	
			3 V	4.93	13	44.6	98.1	207	10.4	28.7	101.2	200.9	401.9	
			3.6 V	5.05	13.4	45.3	99.5	210	10.8	29.4	102.8	202.5	405.0	
	Supply		1.8 V	4.7	12.8	44	96.9	205		ı	I	1	ı	
I _{DD} (Stop 1	current in stop	RTC clocked by LSE	2.4 V	4.95	13	44.4	97.6	206	ı	ı	I	,	ı	<
with RTC)	1 mode,	bypassed, at 32768 Hz	3 V	5.33	13.6	45.4	99.1	209		1		1	ı	ſ,
	KIC enabled		3.6 V	6.91	16.1	48.8	103	216	ı	ı	I	ı	ı	
			1.8 V	4.76	12.3	43.7	99.1	ı	·	ı		ı	ı	
		RTC clocked by LSE quartz ⁽²⁾	2.4 V	4.95	12.4	43.8	99.3	ı	I	ı	I	ı	ı	
		in low drive mode	3 V	5.1	12.6	44.1	9.66	ı		ı	I	ı	ı	
			3.6 V	5.65	13	44.8	101	ı	I	I	I	ı	ı	
	-	Wakeup clock MSI = 48 MHz, voltage Range 1. See ⁽³⁾ .	3 V	1.14	I	I	ı	I	I	I	I	ı	I	
I _{DD} (wakeup from Stop1)	supply current during wakeup from Stop 1	Wakeup clock MSI = 4 MHz, voltage Range 2. See ⁽³⁾ .	3 V	1.22	I	T	I	I	I	I	ı	I	I	MA
	-	Wakeup clock HSI16 = 16 MHz, voltage Range 1. See ⁽³⁾ .	3 V	1.20	I	I	ı	I	I	ı	I	ı	I	
1. Guaranteed	l based on test du	Guaranteed based on test during characterization, unless otherwise specified	ise spec	fied.										

Electrical characteristics

96/200

DocID028800 Rev 1

LY/

ы.

с,

Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 40: Low-power mode wakeup timings. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.

	1 tice		4	1	9	(2)	
		55 °C 85 °C 105 °C 125 °C	5 704	9 710	3 716	8 722 ⁽²⁾	
	(105	395	399	403	408	
	MAX ⁽¹⁾	85 °C	244	248	251	254	
		55 °C	158	161	164	167	
-		25 °C	133	136	139	142	
l doje L		125 °C	347	349	352	355	
lable 35. Current consumption in Stop u		25 °C 55 °C 85 °C 105 °C 125 °C 25 °C	221	223	224	227	
nsuo	ТҮР	85 °C	158	160	161	163	
Irrent (55 °C	119	121	123	125	- т
e 30. U		25 °C	108	110	111	114	e snecifie
Iabl	Conditions	V _{DD}	1.8 V	2.4 V	3 V	3.6 V	results unless otherwise specified
	Daramotor		Supply	current in	Stop 0 mode,		Guaranteed by characterization
	Cumbol	odillito					1 Guaranteed I

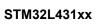
Table 35 Current consumption in Stop 0

Guaranteed by characterization results, unless otherwise specified.

Guaranteed by test in production.

Ň

Downloaded from Arrow.com.


57

	l nit	5				٩u	ſ							hA								<	ſ			
		125 °C	20510	23768	26976	30758	ı	ı	ı	,	20504	23824	27124	30954 (2)	ı	ı	ı	ı	ı	I	I	I	I	ı	ı	,
		105 °C	7524	8778	10071	11659	ı	ı	I	ı	7866	9246	10671	12383	ı	ı	ı	ı	I	I	I	I	I	I	ı	ı
	MAX ⁽¹⁾	85 °C	2866	3383	3912	4638	ı	ı	ı	,	3344	4007	4683	5577	I	I	I	I	I	ı	I	ı	ı	I	ı	ı
		55 °C	425	564	681	877	•	•	ı	•	944	1230	1521	1924	ı	ı	ı	ı	I	ı	I	ı	ı	ı	ı	1
		25 °C	119	183	225	292			ı	,	585	811	1022	1284					ı		ı		ı		ı	,
mode		125 °C	5 425	6 247	7 409	8 836	ı	ı	I	,	5 396	6 274	7 414	9 039	ı	I	ı	I	5 650	6 600	7 850	002 6	5 700	6 564	7 694	9 338
andby		105 °C	2 072	2 408	2 884	3 575			ı	,	2 230	2 638	3 167	3 992	I	ı	ı	ı	2 220	2 660	3 260	4 230	2 410	2 847	3 420	4 311
on in St	ТҮР	85 °C	758	892	1 090	1 474	,	,	ı		989	1 201	1 478	1 963	ı	ı	ı	ı	865	1 090	1 4 10	2 000	1 046	1 268	1 565	2 081
sumpti		55 °C	144	187	253	459	,	,	ı	ı	407	526	679	978	ı	ı	ı	ı	126	219	364	670	423	548	715	1 048
nt cons		25 °C	27.7	50.9	90.2	253	216	342	416	551	287	386	513	771	342	521	655	865	142	249	404	742	281	388	535	836
Currel		V _{DD}	1.8 V	2.4 V	3 V	3.6 V	1.8 V	2.4 V	3 V	3.6 V	1.8 V	2.4 V	3 V	3.6 V	1.8 V	2.4 V	3 V	3.6 V	1.8 V	2.4 V	3 V	3.6 V	1.8 V	2.4 V	3 V	3.6 V
Table 36. Current consumption in Standby mode	Conditions	•		po independent watchdoo				with independent	watchdog			DTC clocked by I Cl. no	independent watchdog			RTC clocked by LSI, with	independent watchdog			RTC clocked by LSE	bypassed at 32768Hz			RTC clocked by LSE	quartz ⁽³⁾ in low drive mode	
	Darameter	Parameter Supply current no in Standby mode (backup registers retained), with RTC disabled wait										Supply current	in Standby	mode (backup	retained),	RTC enabled										
	Svmhol					I(Standby)												I _{DD} (Standby								

Electrical characteristics

98/200

DocID028800 Rev 1

57

ż	:		-			4	1						. <u>.</u>	-				
ti u			۵ م	<u> </u>		ММ							1 Init				An	
	125 °C	6908	6924	6935	6948	ı				+ RTC) +				125 °C	15543	17639	19984	22860
	105 °C	3402	3438	3467	3480	-				(Standby				105 °C	5052	5878	6755	7939
MAX	3° 28	1604	1623	1628	1631	-			ú	de is: I _{DD}	timings.		MAX ⁽¹⁾	85 °C	1721	2085	2454	2992
	2° 33	527	589	594	611	-			capacitor	RAM2 mc	e wakeup			55 °C	255	270	345	496
	25 °C	249	271	277	293	-			F loading	FC with SI	ower mod			25 °C	25.0	34.9	70.1	119.1
	125 °C	4 542	4 535	4 419	4 610	-			two 6.8 pl	by with R ⁻	10: Low-po	i mode		125 °C	3 854	4 431	5 310	6 656
	105 °C	2 158	2 163	2 148	2 208	-			/NY) with	ıt in Stand	in <i>Table</i> 4	utdown		105 °C	1 286	1517	1 878	2 516
ר ד ד	85 °C	1 009	1 015	1 019	1 033				cturer JF\	ply curren	specified	n in Sh	ТҮР	85 °C	386	485	634	977
	55 °C	349	345	350	352	I			3, manufa	. The sup	ıp time as	sumptio		55 °C	190	229	290	397
	25 °C	173	174	178	184	1.23			Q-32.768	(SRAM2)	al wakeu	nt cons		25 °C	7.82	23	44.3	212
	<pre> </pre>	1.8 V	2.4 V	3 <	3.6 V	3 <	100	lied.	306-G-06	by) + l _{DD}	or a typic	Currel		V _{DD}	1.8 V	2.4 V	3 V	3.6 V
			I	ı		Wakeup clock is MSI = 4 MHz. See ⁽⁵⁾ .	in a second s	Guaranteed by criatacterization results, unless otherwise specified. Guaranteed by test in production	becommon of your production. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.	The supply current in Standby with SRAM2 mode is: I _{DD} (Standby) + I _{DD} (SRAM2). The supply current in Standby with RTC with SRAM2 mode is: I _{DD} (Standby + RTC) + I _{DD} (SRAM2).	Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 40: Low-power mode wakeup timings.	Table 37. Current consumption in Shutdown mode	Conditions	•			ı	
Daramatar		Supply current	to be added in	standoy mode when SRAM2	is retained	Supply current during wakeup from Standby mode		Guaranteed by criaracterization re Guaranteed by test in production	racterization done v	irrent in Standby wit	code execution fron		Daramatar		Supply current	in Shutdown mode	(backup	registers retained) RTC disabled
Symbol			I _{DD} (SRAM2)		=	I _{DD} (wakeup from Standby)	- Currentered h.	 Guaranteed by Guaranteed by 		 The supply curl I_{DD}(SRAM2). 	5. Wakeup with c		Sumhol				I _{DD} (Shutdown) (backup	

STM32L431xx

57

99/200

		Table 37. Current consumption in Shutdown mode (continued)	ent cor	sumpti	ion in (Shutdov	vn mod	e (conti	(panu					
Sumbol	Daramotor	Conditions				ТҮР					MAX ⁽¹⁾			, tid
ogilion o		•	۷ _{DD}	25 °C	55 °C	85 °C	105 °C 125 °C	125 °C	25 °C	55 °C	85 °C	85 °C 105 °C 125 °C	125 °C	
			1.8 V	63	133	522	1 490	4 270		ı	ı	I	ı	
	Supply current	RTC clocked by LSE	2.4 V	165	253	710	1 830	4 980	ı	ı	ı	I	ı	
	in Shutdown	bypassed at 32768 Hz	3 V	316	423	066	2 340	6 050	ı	I	ı	I	I	
I _{DD} (Shutdown	mode		3.6 V	649	787	1 530	3 220	7 710				I	I	4
with RTC)			1.8 V	203	293	700	1 675			ı	ı	ı	ı	5
	retained) RTC	RTC clocked by LSE	2.4 V	303	411	880	2 001				•	ı	ı	
	enabled	mode	3 V	448	567	1 136	2 479	,	ı	ı	ı	ı	ı	
			3.6 V	744	887	1 609	3 256	ı	ı	ı	ı	I	ı	
l _{DD} (wakeup from Shutdown)	Supply current during wakeup from Shutdown mode	Wakeup clock is MSI = 4 MHz. See ⁽³⁾ .	3 <	0.780	ı	ı	I	I		ı	ı	ı	I	mA
	y characterization r	1. Guaranteed by characterization results, unless otherwise specified.	fied.											
Z. Based on che	aracterization done v	Based on characterization done with a 32.768 KHZ crystal (MC306-G-06Q-32.768, manuracturer JFVNY) with two 6.8 pF loading capacitors.	200-9-900	07-32.769	s, manuta	acturer JF	VNY) WITH	two 6.8 p	F loading	capacitor	Ś.			
3. Wakeup with	code execution fron	Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 40: Low-power mode wakeup timings.	or a typic	al wakeu	ip time as	s specifiec	l in Table	40: Low-p	ower moc	le wakeup	timings.			

100/200

DocID028800 Rev 1

57

Downloaded from Arrow.com.

DocID028800 Rev	1

¢.

Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.

	llnit							٨d	<u>c</u>]
		125 °C	1350	1500	1928	3173	I	ı	I	I	I	I	I	I	
	MAX ⁽¹⁾	105 °C	482	542	665	1147	ı	ı	I	I	ı	I	I	I	
		85 °C	165	182	230	402	ı	ı	ı	ı	ı	I	ı	I	
		55 °C	30	30	40	75	I	ı	I	I	I	I	I	I	
		25 °C	2	9	12.5	15	ı	ı	I	I	I	I	,	I	
Jode		125 °C	540	600	731	1 269	I	ı	I	I	823	906	1 085	1 733	
VBAT n		105 °C	193	217	266	459	430	542	714	1 140	558	673	836	1 207	
otion in	ТҮР	85 °C	99	73	92	161	247	335	459	684	385	477	603	824	
dunsu		55 °C	12	12	16	30	175	246	340	462	297	381	495	642	
rent co		25 °C	2	Ţ	5	9	154	228	316	419	256	345	455	591	
Table 38. Current consumption in VBAT mode		V _{BAT}	1.8 V	2.4 V	3 V	3.6 V	1.8 V	2.4 V	3 V	3.6 V	1.8 V	2.4 V	3 V	3.6 V	ecified.
Table	Conditions	•		RTC disabled				RTC enabled and	bypassed at 32768 Hz	:		RTC enabled and	clocked by LSE quartz ⁽²⁾		 Guaranteed by characterization results, unless otherwise specified.
	Darameter								supply current		<u> </u>				by characterization r
	Symbol I _{DD} (VBAT) B								1. Guaranteed						

STM32L431xx

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 59: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption measured previously (see *Table 39: Peripheral current consumption*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the I/O supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DDIOx} \times f_{SW} \times C$$

where

 ${\rm I}_{\rm SW}$ is the current sunk by a switching I/O to charge/discharge the capacitive load

V_{DDIOx} is the I/O supply voltage

 f_{SW} is the I/O switching frequency

C is the total capacitance seen by the I/O pin: C = C_{INT} + C_{EXT} + C_S

C_S is the PCB board capacitance including the pad pin.

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in *Table 39*. The MCU is placed under the following conditions:

- All I/O pins are in Analog mode
- The given value is calculated by measuring the difference of the current consumptions:
 - when the peripheral is clocked on
 - when the peripheral is clocked off
- Ambient operating temperature and supply voltage conditions summarized in *Table 18: Voltage characteristics*
- The power consumption of the digital part of the on-chip peripherals is given in *Table 39*. The power consumption of the analog part of the peripherals (where applicable) is indicated in each related section of the datasheet.

	Peripheral	Range 1	Range 2	Low-power run and sleep	Unit
	Bus Matrix ⁽¹⁾	3.2	2.9	3.1	
	ADC independent clock domain	0.4	0.1	0.2	
	ADC clock domain	2.1	1.9	1.9	
	CRC	0.4	0.2	0.3	
	DMA1	1.4	1.3	1.4	
	DMA2	1.5	1.3	1.4	
	FLASH	6.2	5.2	5.8	
	GPIOA ⁽²⁾	1.7	1.4	1.6	
	GPIOB ⁽²⁾)	1.6	1.3	1.6	
AHB	GPIOC ⁽²⁾	1.7	1.5	1.6	
АНВ	GPIOD ⁽²⁾	1.8	1.6	1.7	
	GPIOE ⁽²⁾	1.7	1.6	1.6	µA/MHz
	GPIOH ⁽²⁾	0.6	0.6	0.5	
	QSPI	7.0	5.8	7.3	
	RNG independent clock domain	2.2	NA	NA	
	RNG clock domain	0.5	NA	NA	
	SRAM1	0.8	0.9	0.7	
	SRAM2	1.0	0.8	0.8	
	TSC	1.6	1.3	1.3	
	All AHB Peripherals	25.2	21.7	23.6	
	AHB to APB1 bridge ⁽³⁾	0.9	0.7	0.9	
APB1	CAN1	4.1	3.2	3.9	
	DAC1	2.4	1.8	2.2	

Table 39. Peripheral current consumption

	Peripheral	Range 1	Range 2	Low-power run and sleep	Unit
	RTCA	1.7	1.1	2.1	
	CRS	0.3	0.3	0.6	
	I2C1 independent clock domain	3.5	2.8	3.4	
	I2C1 clock domain	1.1	0.9	1.0	
	I2C2 independent clock domain	3.5	3.0	3.4	
	I2C2 clock domain	1.1	0.7	0.9	
	I2C3 independent clock domain	2.9	2.3	2.5	
	I2C3 clock domain	0.9	0.4	0.8	
	LPUART1 independent clock domain	1.9	1.6	1.8	
	LPUART1 clock domain	0.6	0.6	0.6	
	LPTIM1 independent clock domain	2.9	2.4	2.8	
	LPTIM1 clock domain	0.8	0.4	0.7	
	LPTIM2 independent clock domain	3.1	2.7	3.9	
	LPTIM2 clock domain	0.8	0.7	0.8	
APB1	OPAMP	0.4	0.2	0.4	μΑ/MH
	PWR	0.4	0.1	0.4	μΑνινιπ
	SPI2	1.8	1.6	1.6	
	SPI3	1.7	1.3	1.6	
	SWPMI1 independent clock domain	1.9	1.6	1.9	
	SWPMI1 clock domain	0.9	0.7	0.8	
	TIM2	6.2	5.0	5.9	
	TIM6	1.0	0.6	0.9	
	TIM7	1.0	0.6	0.6	
	USART2 independent clock domain	4.1	3.6	3.8	
	USART2 clock domain	1.3	0.9	1.1	
	USART3 independent clock domain	4.3	3.5	4.2	
	USART3 clock domain	1.5	1.1	1.3	
	WWDG	0.5	0.5	0.5	
	All APB1 on	45.4	35	47.8	•
APB2	AHB to APB2 ⁽⁴⁾	1.0	0.9	0.9	

Table 39. Periphera	al current consu	umption (c	ontinued)

104/200

	Peripheral	Range 1	Range 2	Low-power run and sleep	Unit
	FW	0.2	0.2	0.2	
	SAI1 independent clock domain	2.3	1.8	1.9	
	SAI1 clock domain	2.1	1.8	2.0	
	SDMMC1 independent clock domain	4.7	3.9	3.9	
	SDMMC1 clock domain	2.5	1.9	1.9	
	SPI1	1.8	1.6	1.7	
APB2	SYSCFG/VREFBUF/COMP	0.6	0.5	0.6	
	TIM1	8.1	6.5	7.6	µA/MHz
	TIM15	3.7	3.0	3.4	
	TIM16	2.7	2.1	2.6	
	USART1 independent clock domain	4.8	4.2	4.6	
	USART1 clock domain	1.5	1.3	1.7	
	All APB2 on	24.2	19.9	22.6	
	ALL	94.8	76.5	94.0	

Table 39. Peripheral	current consum	ption (continued)
----------------------	----------------	-------------------

1. The BusMatrix is automatically active when at least one master is ON (CPU, DMA).

2. The GPIOx (x= A...H) dynamic current consumption is approximately divided by a factor two versus this table values when the GPIO port is locked thanks to LCKK and LCKy bits in the GPIOx_LCKR register. In order to save the full GPIOx current consumption, the GPIOx clock should be disabled in the RCC when all port I/Os are used in alternate function or analog mode (clock is only required to read or write into GPIO registers, and is not used in AF or analog modes).

3. The AHB to APB1 Bridge is automatically active when at least one peripheral is ON on the APB1.

4. The AHB to APB2 Bridge is automatically active when at least one peripheral is ON on the APB2.

6.3.6 Wakeup time from low-power modes and voltage scaling transition times

The wakeup times given in *Table 40* are the latency between the event and the execution of the first user instruction.

The device goes in low-power mode after the WFE (Wait For Event) instruction.

Symbol	Parameter	Conditions	Тур	Мах	Unit
t _{WUSLEEP}	Wakeup time from Sleep mode to Run mode	-	6	6	Nb of
t _{WULPSLEEP}	Wakeup time from Low- power sleep mode to Low- power run mode	Wakeup in Flash with Flash in power-down during low-power sleep mode (SLEEP_PD=1 in FLASH_ACR) and with clock MSI = 2 MHz	6	8.3	CPU cycles

Table 40. Low-power mode wakeup timings⁽¹⁾

Symbol	Parameter		Conditions			Unit	
		Range 1	Wakeup clock MSI = 48 MHz	3.8	5.7		
	Wake up time from Stop 0	Range	Wakeup clock HSI16 = 16 MHz	4.1	6.9		
	mode to Run mode in		Wakeup clock MSI = 24 MHz	4.07	6.2		
	Flash	Range 2	Wakeup clock HSI16 = 16 MHz	4.1	6.8		
+			Wakeup clock MSI = 4 MHz	8.45	11.8		
twustop0		Range 1	Wakeup clock MSI = 48 MHz	1.5	2.9	μs	
	Wake up time from Stop 0	Range	Wakeup clock HSI16 = 16 MHz	2.4	2.76		
	mode to Run mode in		Wakeup clock MSI = 24 MHz	2.4	3.48		
	SRAM1	Range 2	Wakeup clock HSI16 = 16 MHz	2.4	2.76		
			Wakeup clock MSI = 4 MHz	8.16	10.94		
	Wake up time from Stop 1 mode to Run in Flash	Range 1	Wakeup clock MSI = 48 MHz	6.34	7.86		
		Range	Wakeup clock HSI16 = 16 MHz	6.84	8.23		
			Wakeup clock MSI = 24 MHz	6.74	8.1		
		Range 2	Wakeup clock HSI16 = 16 MHz	6.89	8.21		
			Wakeup clock MSI = 4 MHz	10.47	12.1		
		Range 1	Wakeup clock MSI = 48 MHz	4.7	5.97		
	Wake up time from Stop 1	Range	Wakeup clock HSI16 = 16 MHz	5.9	6.92		
t _{WUSTOP1}	mode to Run mode in		Wakeup clock MSI = 24 MHz	5.4	6.51	μs	
	SRAM1	Range 2	Wakeup clock HSI16 = 16 MHz	5.9	6.92		
			Wakeup clock MSI = 4 MHz	11.1	12.2		
	Wake up time from Stop 1 mode to Low-power run mode in Flash	Regulator in low-power		16.4	17.73		
	Wake up time from Stop 1 mode to Low-power run mode in SRAM1	mode (LPR=1 in PWR_CR1)	Wakeup clock MSI = 2 MHz	17.3	18.82		

Table 40. Low-power mode wakeup timings⁽¹⁾ (continued)

106/200

Symbol	Parameter	Conditions			Max	Unit
		Danga 1	Wakeup clock MSI = 48 MHz	8.02	8.02 9.24	
	Wake up time from Stop 2	Range 1	Wakeup clock HSI16 = 16 MHz	7.66	8.95	
	mode to Run mode in		Wakeup clock MSI = 24 MHz	8.5	9.54	
	Flash	Range 2	Wakeup clock HSI16 = 16 MHz	7.75	8.95	
+			Wakeup clock MSI = 4 MHz	12.06	13.16	
twustop2	Wake up time from Stop 2 mode to Run mode in SRAM1	Range 1	Wakeup clock MSI = 48 MHz	5.45	6.79	μs
		Range	Wakeup clock HSI16 = 16 MHz	6.9	7.98	
			Wakeup clock MSI = 24 MHz	24 MHz 6.3 7.36	7.36	
		Range 2	Wakeup clock HSI16 = 16 MHz	6.9	7.9	
			Wakeup clock MSI = 4 MHz	13.1	13.31	
+	Wakeup time from Standby	Range 1	Wakeup clock MSI = 8 MHz	12.2	18.35	
^t WUSTBY	mode to Run mode	Range	Wakeup clock MSI = 4 MHz	19.14	25.8	μs
t _{WUSTBY}	Wakeup time from Standby	Range 1	Wakeup clock MSI = 8 MHz	12.1	18.3	
SRAM2	with SRAM2 to Run mode	Range	Wakeup clock MSI = 4 MHz	19.2	25.87	μs
twushdn	Wakeup time from Shutdown mode to Run mode	Range 1	Wakeup clock MSI = 4 MHz	261.5	315.7	μs

 Table 40. Low-power mode wakeup timings⁽¹⁾ (continued)

1. Guaranteed by characterization results.

Table 41. Regulator modes transition times⁽¹⁾

Symbol	Parameter	Conditions	Тур	Max	Unit
t _{WULPRUN}	Wakeup time from Low-power run mode to Run mode $^{(2)}$	Code run with MSI 2 MHz	5	7	19
t _{VOST}	Regulator transition time from Range 2 to Range 1 or Range 1 to Range $2^{(3)}$	Code run with MSI 24 MHz	20	40	μs

1. Guaranteed by characterization results.

2. Time until REGLPF flag is cleared in PWR_SR2.

3. Time until VOSF flag is cleared in PWR_SR2.

Table 42. Wakeup time using USART/LPUART⁽¹⁾

Symbol	Parameter	Conditions	Тур	Max	Unit
		Stop mode 0	-	1.7	
^t wuusart ^t wulpuart	maximum USART/LPUART baudrate allowing to wakeup up from stop mode when USART/LPUART clock source is HSI	Stop mode 1/2	-	8.5	μs

1. Guaranteed by design.

6.3.7 External clock source characteristics

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.

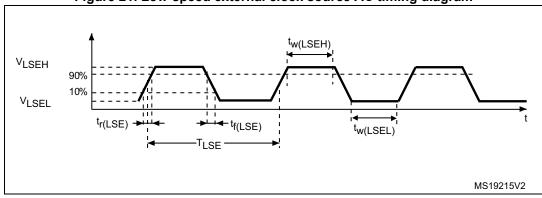
The external clock signal has to respect the I/O characteristics in *Section 6.3.14*. However, the recommended clock input waveform is shown in *Figure 20: High-speed external clock source AC timing diagram*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
f _{HSE_ext}	User external clock source frequency	Voltage scaling Range 1	-	8	48	MHz	
		Voltage scaling Range 2	-	8	26		
V _{HSEH}	OSC_IN input pin high level voltage	-	$0.7 V_{\text{DDIOx}}$	-	V _{DDIOx}	V	
V _{HSEL}	OSC_IN input pin low level voltage	-	V _{SS}	-	0.3 V _{DDIOx}		
t _{w(HSEH)} t _{w(HSEL)}	OSC_IN high or low time	Voltage scaling Range 1	7	-	-	- ns	
		Voltage scaling Range 2	18	-	-		

Tahlo 43	High-speed	ovtornal	user clock	characteristics ⁽¹⁾
Table 45.	nigii-speeu	external	usel clock	characteristics.

1. Guaranteed by design.

Low-speed external user clock generated from an external source


In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.

The external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the recommended clock input waveform is shown in *Figure 21*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
f _{LSE_ext}	User external clock source frequency	-	-	32.768	1000	kHz		
V _{LSEH}	OSC32_IN input pin high level voltage	-	$0.7 V_{\text{DDIOx}}$	-	V _{DDIOx}	V		
V _{LSEL}	OSC32_IN input pin low level voltage	-	V _{SS}	-	0.3 V _{DDIOx}			
t _{w(LSEH)} t _{w(LSEL)}	OSC32_IN high or low time	-	250	_	-	ns		

Table 44. Low-speed external user clock characteristics⁽¹⁾

1. Guaranteed by design.

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 48 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 45*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽²⁾	Min	Тур	Мах	Unit
f _{OSC_IN}	Oscillator frequency	-	4	8	48	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
		During startup ⁽³⁾	-	-	5.5	
		V _{DD} = 3 V, Rm = 30 Ω, CL = 10 pF@8 MHz	-	0.44	-	
		V _{DD} = 3 V, Rm = 45 Ω, CL = 10 pF@8 MHz	-	0.45	-	
I _{DD(HSE)}	HSE current consumption	V _{DD} = 3 V, Rm = 30 Ω, CL = 5 pF@48 MHz	-	0.68	-	mA
		V _{DD} = 3 V, Rm = 30 Ω, CL = 10 pF@48 MHz	-	0.94	-	
		V _{DD} = 3 V, Rm = 30 Ω, CL = 20 pF@48 MHz	-	1.77	-	
G _m	Maximum critical crystal transconductance	Startup	-	-	1.5	mA/V
$t_{SU(HSE)}^{(4)}$	Startup time	V _{DD} is stabilized	-	2	-	ms

	Table 45.	HSE oscill	ator chara	cteristics ⁽¹⁾
--	-----------	------------	------------	---------------------------

1. Guaranteed by design.

2. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

3. This consumption level occurs during the first 2/3 of the $t_{SU(\text{HSE})}$ startup time

4. t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 20 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 22*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

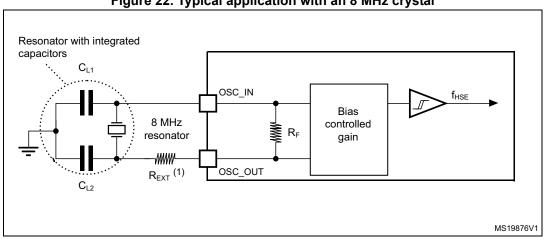


Figure 22. Typical application with an 8 MHz crystal

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 46*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽²⁾	Min	Тур	Max	Unit
	LSEDRV[1:0] = 00 Low drive capability	-	250	-		
	LSEDRV[1:0] = 01 Medium low drive capability	-	315	-	nA	
IDD(LSE)	LSE current consumption	LSEDRV[1:0] = 10 Medium high drive capability	-	500	-	
		LSEDRV[1:0] = 11 High drive capability	-	630	-	
		LSEDRV[1:0] = 00 Low drive capability	-	-	0.5	
Gm	Maximum critical crystal	LSEDRV[1:0] = 01 Medium low drive capability	-	-	0.75	µA/V
Gm _{critmax}	gm	LSEDRV[1:0] = 10 Medium high drive capability	-	-	1.7	μ~ν
		LSEDRV[1:0] = 11 High drive capability	-	-	2.7	
$t_{SU(LSE)}^{(3)}$	Startup time	V _{DD} is stabilized	-	2	-	S

		(4)
Table 46. LSE oscillator	characteristics (fusi	= 32.768 kHz) ⁽¹⁾

- 1. Guaranteed by design.
- 2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".
- t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

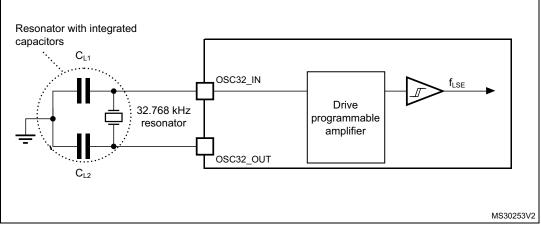


Figure 23. Typical application with a 32.768 kHz crystal

Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

6.3.8 Internal clock source characteristics

The parameters given in *Table 47* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 21: General operating conditions*. The provided curves are characterization results, not tested in production.

High-speed internal (HSI16) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI16}	HSI16 Frequency	V _{DD} =3.0 V, T _A =30 °C	15.88	-	16.08	MHz
TRIM	HSI16 user trimming step	Trimming code is not a multiple of 64	0.2	0.3	0.4	%
	HSI16 user trimming step	Trimming code is a multiple of 64	-4	-6	-8	70
DuCy(HSI16) ⁽²⁾	Duty Cycle	-	45	-	55	%
A (USI16)	HSI16 oscillator frequency	T _A = 0 to 85 °C	-1	-	1	%
∆ _{Temp} (HSI16)	drift over temperature	T _A = -40 to 125 °C	-2	-	1.5	%
$\Delta_{VDD}(HSI16)$	HSI16 oscillator frequency drift over V _{DD}	V _{DD} =1.62 V to 3.6 V	-0.1	-	0.05	%
t _{su} (HSI16) ⁽²⁾	HSI16 oscillator start-up time	-	-	0.8	1.2	μs
t _{stab} (HSI16) ⁽²⁾	HSI16 oscillator stabilization time	-	-	3	5	μs
I _{DD} (HSI16) ⁽²⁾	HSI16 oscillator power consumption	-	-	155	190	μA

Table 47. HSI16	oscillator	characteristics ⁽¹⁾
-----------------	------------	--------------------------------

1. Guaranteed by characterization results.

2. Guaranteed by design.

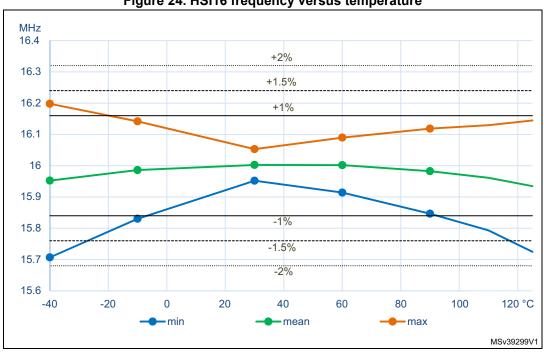


Figure 24. HSI16 frequency versus temperature

114/200

DocID028800 Rev 1

Symbol	Parameter		Conditions	Min	Тур	Мах	Unit						
			Range 0	98.7	100	101.3							
						Range 1	197.4	200	202.6	kHz			
				Range 2	394.8	400	405.2	КП2					
			Range 3	789.6	800	810.4							
			Range 4	0.987	1	1.013							
		MSI mode	Range 5	1.974	2	2.026							
		INISI MODE	Range 6	3.948	4	4.052							
			Range 7	7.896	8	8.104	MH						
			Range 8	15.79	16	16.21							
			Range 9	23.69	24	24.31							
	MSI frequency after factory calibration, done	MSI frequency	MSI frequency		Range 10	31.58	32	32.42					
4			Range 11	47.38	48	48.62							
f _{MSI}	at V _{DD} =3 V and	₀ =3 V and	Range 0	-	98.304	-							
	T _A =30 °C		Range 1	-	196.608	-							
		PLL mode	PLL mode XTAL=						Range 2	-	393.216	-	kH:
									Range 3	-	786.432	-	
								Range 4	-	1.016	-		
						Range 5	-	1.999	-				
		32.768 kHz	Range 6	-	3.998	-							
			Range 7	-	7.995	-							
			Range 8	-	15.991	-	MH						
		Range 9	-	23.986	-								
			Range 10	-	32.014	-	1						
			Range 11	-	48.005	-							
(2)	MSI oscillator		T _A = -0 to 85 °C	-3.5	-	3							
$\Delta_{TEMP}(MSI)^{(2)}$	frequency drift over temperature	MSI mode	T _A = -40 to 125 °C	-8	-	6	%						

Table 48. MSI oscillator characteristics⁽¹⁾

Multi-speed internal (MSI) RC oscillator

Electrical characteristics

• • •			tor characteris			-					
Symbol	Parameter		Conditions		Min	Тур	Мах	Unit			
			Range 0 to 3	V _{DD} =1.62 V to 3.6 V	-1.2	-	0.5				
			Tange 0 to 5	V _{DD} =2.4 V to 3.6 V	-0.5	-	0.5				
(MCI)(2)	MSI oscillator frequency drift	MCI mede	Denne 4 to 7	V _{DD} =1.62 V to 3.6 V	-2.5	-	0.7	%			
Δ_{VDD} (MSI) ⁽²⁾	over V _{DD} (reference is 3 V)	MSI mode	MSI mode	Range 4 to 7	V _{DD} =2.4 V to 3.6 V	-0.8	-	0.7	%		
			Range 8 to 11	V _{DD} =1.62 V to 3.6 V	-5	-	1				
			Range 6 to 11	V _{DD} =2.4 V to 3.6 V	-1.6	-					
	Frequency	T _A = -40 to 85 °C		°C	-	1	2				
∆F _{SAMPLING} (MSI) ⁽²⁾⁽⁴⁾	variation in sampling mode ⁽³⁾	MSI mode T_A = -40 to 125 °		°C	-	2	4	%			
CC jitter(MSI) ⁽⁴⁾	RMS cycle-to- cycle jitter	PLL mode R	ange 11	-	-	60	-	ps			
P jitter(MSI) ⁽⁴⁾	RMS Period jitter	PLL mode R	ange 11	-	-	50	-	ps			
		Range 0		-	-	10	20				
		Range 1		-	-	5	10				
$(\mathbf{MO})(4)$	MSI oscillator	Range 2	Range 2	Range 2	Range 2		-	-	4	8	-
t _{SU} (MSI) ⁽⁴⁾	start-up time	Range 3		-	-	3	7	us			
		Range 4 to 7	7	-	-	3	6				
		Range 8 to 7	11	-	-	2.5	6				
			10 % of final frequency	-	-	0.25	0.5				
t _{STAB} (MSI) ⁽⁴⁾	MSI oscillator stabilization time	PLL mode Range 11	5 % of final frequency	-	-	0.5	1.25	ms			
			1 % of final frequency	-	-	-	2.5				

Table 48. MSI oscillator characteristics⁽¹⁾ (continued)

Symbol	Parameter		Conditions		Min	Тур	Мах	Unit		
			Range 0	-	-	0.6	1			
			Range 1	-	-	0.8	1.2			
			Range 2	-	-	1.2	1.7			
			Range 3	-	-	1.9	2.5			
	MSI oscillator power consumption	MSI and PLL mode	Range 4	-	-	4.7	6			
I _{DD} (MSI) ⁽⁴⁾			MSI and	Range 5	-	-	6.5	9		
			Range 6	-	-	11	15	μA		
			Range 7	-	-	18.5	25			
			Range 8	-	-	62	80	80		
							Range 9	-		85
			Range 10	-	-	110	130			
			Range 11	-	-	155	190			

Table 48. MSI oscillator characteristics⁽¹⁾ (continued)

1. Guaranteed by characterization results.

2. This is a deviation for an individual part once the initial frequency has been measured.

3. Sampling mode means Low-power run/Low-power sleep modes with Temperature sensor disable.

4. Guaranteed by design.

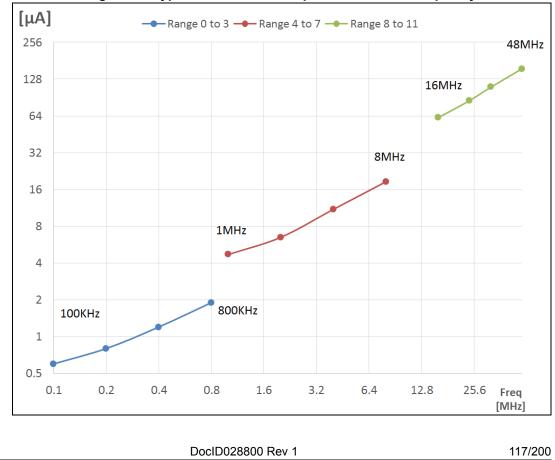


Figure 25. Typical current consumption versus MSI frequency

57

High-speed internal 48 MHz (HSI48) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI48}	HSI48 Frequency	V _{DD} =3.0V, T _A =30°C	-	48	-	MHz
TRIM	HSI48 user trimming step	-	-	0.11 ⁽²⁾	0.18 ⁽²⁾	%
USER TRIM COVERAGE	HSI48 user trimming coverage	±32 steps	±3 ⁽³⁾	±3.5 ⁽³⁾	-	%
DuCy(HSI48)	Duty Cycle	-	45 ⁽²⁾	-	55 ⁽²⁾	%
400	Accuracy of the HSI48 oscillator	V _{DD} = 3.0 V to 3.6 V, T _A = -15 to 85 °C	-	-	±3 ⁽³⁾	%
ACC _{HSI48_REL}	8_REL over temperature (factory calibrated)	V_{DD} = 1.65 V to 3.6 V, T _A = -40 to 125 °C	-	-	±4.5 ⁽³⁾	70
	HSI48 oscillator frequency drift	V _{DD} = 3 V to 3.6 V	-	0.025 ⁽³⁾	0.05 ⁽³⁾	%
D _{VDD} (HSI48)	with V _{DD}	V _{DD} = 1.65 V to 3.6 V	-	0.05 ⁽³⁾	0.1 ⁽³⁾	70
t _{su} (HSI48)	HSI48 oscillator start-up time	-	-	2.5 ⁽²⁾	6 ⁽²⁾	μs
I _{DD} (HSI48)	HSI48 oscillator power consumption	-	-	340 ⁽²⁾	380 ⁽²⁾	μA
N _T jitter	Next transition jitter Accumulated jitter on 28 cycles ⁽⁴⁾	-	-	+/-0.15 ⁽²⁾	-	ns
P _T jitter	Paired transition jitter Accumulated jitter on 56 cycles ⁽⁴⁾	-	-	+/-0.25 ⁽²⁾	-	ns

Table 49. HSI48 oscillator characteristics⁽¹⁾

1. V_{DD} = 3 V, T_A = -40 to 125°C unless otherwise specified.

2. Guaranteed by design.

3. Guaranteed by characterization results.

4. Jitter measurement are performed without clock source activated in parallel.

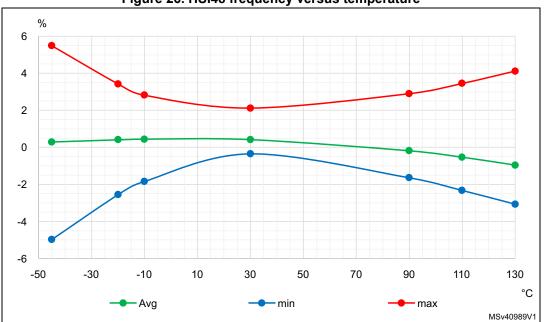


Figure 26. HSI48 frequency versus temperature

Low-speed internal (LSI) RC oscillator

Table 50. LSI oscillator ch	haracteristics ⁽¹⁾
-----------------------------	-------------------------------

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{LSI} LS		V _{DD} = 3.0 V, T _A = 30 °C	31.04	-	32.96	kHz
	LSI Frequency	V _{DD} = 1.62 to 3.6 V, TA = -40 to 125 °C	29.5	-	34	KI IZ
t _{SU} (LSI) ⁽²⁾	LSI oscillator start- up time	-	-	80	130	μs
t _{STAB} (LSI) ⁽²⁾	LSI oscillator stabilization time	5% of final frequency	-	125	180	μs
I _{DD} (LSI) ⁽²⁾	LSI oscillator power consumption	-	-	110	180	nA

1. Guaranteed by characterization results.

2. Guaranteed by design.

6.3.9 PLL characteristics

The parameters given in *Table 51* are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 21: General operating conditions*.

	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	f	PLL input clock ⁽²⁾	-	4	-	16	MHz
^T PLL_IN	PLL input clock duty cycle	-	45	-	55	%	

Table 51. PLL, PLLSAI1 characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{PLL_P_OUT}	PLL multiplier output clock P	Voltage scaling Range 1	3.0968	-	80	N 41 1-
		Voltage scaling Range 2	3.0968	-	26	MHz
f _{PLL_Q_OUT}	PLL multiplier output clock Q	Voltage scaling Range 1	12	-	80	MHz
		Voltage scaling Range 2	12	-	26	
f _{PLL_R_OUT}	PLL multiplier output clock R	Voltage scaling Range 1	12	-	80	MHz
		Voltage scaling Range 2	12	-	26	
f	PLL VCO output	Voltage scaling Range 1	96	-	344	MHz
fvco_out		Voltage scaling Range 2	96	-	128	
t _{LOCK}	PLL lock time	-	-	15	40	μs
Jitter	RMS cycle-to-cycle jitter		-	40	-	+00
Jillei	RMS period jitter	System clock 80 MHz	-	30	-	±ps
		VCO freq = 96 MHz	-	200	260	μA
I _{DD} (PLL)	PLL power consumption on $V_{DD}^{(1)}$	VCO freq = 192 MHz	-	300	380	
		VCO freq = 344 MHz	-	520	650	1

Table 51. PLL, PLLSAI1 characteristics⁽¹⁾ (continued)

1. Guaranteed by design.

2. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared between the 2 PLLs.

6.3.10 Flash memory characteristics

Table 52. Flash memory characteristics								
Symbol	Parameter	Conditions	Тур	Max	Unit			
t _{prog}	64-bit programming time	-	81.69	90.76	μs			
	one row (32 double	normal programming	2.61	2.90				
^t prog_row	word) programming time	fast programming	1.91	2.12				
	one page (2 Kbyte)	normal programming	20.91	23.24	ms			
t _{prog_page}	programming time	fast programming	15.29	16.98				
t _{ERASE}	Page (2 KB) erase time	-	22.02	24.47				
	one bank (512 Kbyte)	normal programming	5.35	5.95	s			
^t prog_bank	programming time	fast programming	3.91	4.35	5			
t _{ME}	Mass erase time (one or two banks)	-	22.13	24.59	ms			
	Average consumption	Write mode	3.4	-				
	from V _{DD}	Erase mode	3.4	-	mA			
I _{DD}	Maximum aurrant (naak)	Write mode	7 (for 2 μs)	-	- mA			
	Maximum current (peak)	Erase mode	7 (for 41 µs)	-				

Table 52. Flash memory characteristics⁽¹⁾

1. Guaranteed by design.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit
N _{END}	Endurance	T _A = -40 to +105 °C	10	kcycles
t _{RET} Data retent		1 kcycle ⁽²⁾ at T _A = 85 °C	30	
		1 kcycle ⁽²⁾ at T _A = 105 °C	15	
		1 kcycle ⁽²⁾ at T _A = 125 °C	7	Years
	Data retention	10 kcycles ⁽²⁾ at T _A = 55 °C	30	rears
		10 kcycles ⁽²⁾ at T _A = 85 °C	15	
		10 kcycles ⁽²⁾ at T _A = 105 °C	10	

Table 53. Flash memory endurance and data retention

1. Guaranteed by characterization results.

2. Cycling performed over the whole temperature range.

6.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 54*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, T_A = +25 °C, f _{HCLK} = 80 MHz, conforming to IEC 61000-4-2	3B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V_{DD} = 3.3 V, T_A = +25 °C, f _{HCLK} = 80 MHz, conforming to IEC 61000-4-4	5A

Table 54. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	Conditions Monitored frequency band		Max vs. [f _{HSE} /f _{HCLK}]	Unit
			8 MHz/ 80 MHz		
		ak level V_{DD} = 3.6 V, T _A = 25 °C, LQFP100 package compliant with IEC 61967-2	0.1 MHz to 30 MHz	-8	
	S Peak level		30 MHz to 130 MHz	2	dBµV
S _{EMI}			130 MHz to 1 GHz	5	υБμν
			1 GHz to 2 GHz	8	
			EMI Level	2.5	-

Table 55. EMI characteristics

6.3.12 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the ANSI/JEDEC standard.

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25 \degree C$, conforming to ANSI/ESDA/JEDEC JS-001	2	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	$T_A = +25$ °C, conforming to ANSI/ESD STM5.3.1	C3	250	V

Table 56. ESD absolute maximum rating	e 56. ESD absolute maximum	ratings
---------------------------------------	----------------------------	---------

1. Guaranteed by characterization results.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin.
- A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table	57	Flectrical	sensitivities
Table	57.	LIECUICAI	36113111411163

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +105 \text{ °C conforming to JESD78A}$	II

6.3.13 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DDIOx} (for standard, 3.3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of the -5 μ A/+0 μ A range) or other functional failure (for example reset occurrence or oscillator frequency deviation).

The characterization results are given in Table 58.

Negative induced leakage current is caused by negative injection and positive induced leakage current is caused by positive injection.

Symbol	Description		Functional susceptibility		
	Description	Negative injection	Positive injection	Unit	
I _{INJ}	Injected current on all pins except PA4, PA5, PE8, PE9, PE10, PE11, PE12	-5	NA		
	Injected current on PE8, PE9, PE10, PE11, PE12	-0	NA	mA	
	Injected current on PA4, PA5 pins	-5	0		

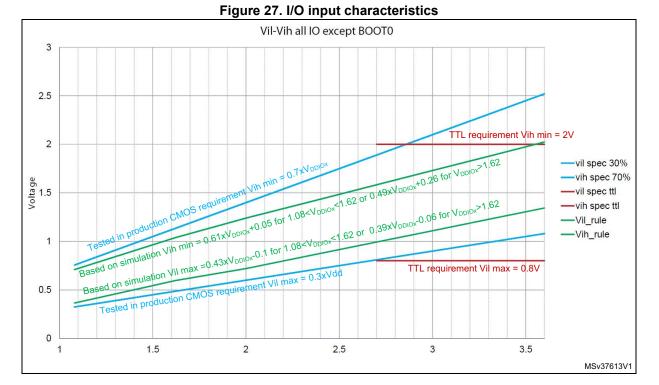
Table 58. I/O current injection susceptibility⁽¹⁾

1. Guaranteed by characterization results.

6.3.14 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 59* are derived from tests performed under the conditions summarized in *Table 21: General operating conditions*. All I/Os are designed as CMOS- and TTL-compliant.


Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
	I/O input low level voltage	1.62 V <v<sub>DDIOx<3.6 V</v<sub>	-	-	0.3xV _{DDIOx} ⁽²⁾		
$V_{IL}^{(1)}$	I/O input low level voltage	1.62 V <v<sub>DDIOx<3.6 V</v<sub>		-	0.39xV _{DDIOx} -0.06 ⁽³⁾	v	
	I/O input low level voltage	1.08 V <v<sub>DDIOx<1.62 V</v<sub>	-	-	0.43xV _{DDIOx} -0.1 ⁽³⁾		
	I/O input high level voltage	1.62 V <v<sub>DDIOx<3.6 V</v<sub>	0.7xV _{DDIOx} ⁽²⁾	-	-		
$V_{IH}^{(1)}$	I/O input high level voltage	1.62 V <v<sub>DDIOx<3.6 V</v<sub>	0.49xV _{DDIOX} +0.26 ⁽³⁾	-	-	V	
	I/O input high level voltage	1.08 V <v<sub>DDIOx<1.62 V</v<sub>	0.61xV _{DDIOX} +0.05 ⁽³⁾	-	-		
V _{hys} ⁽³⁾	TT_xx, FT_xxx and NRST I/O input hysteresis	1.62 V <v<sub>DDIOX<3.6 V</v<sub>	-	200	-	mV	
	FT_sx	1.08 V <v<sub>DDIOx<1.62 V</v<sub>	-	150 -			
	FT_xx input leakage current ⁽³⁾	$V_{IN} \le Max(V_{DDXXX})^{(4)}$	-	-	±100		
		$\begin{array}{l} Max(V_{DDXXX}) \leq V_{IN} \leq \\ Max(V_{DDXXX}) + 1 \ V^{(4)(5)} \end{array}$	-	-	650 ⁽³⁾⁽⁶⁾		
		$\begin{array}{l} {\sf Max}({\sf V}_{{\sf DDXXX}}){+}1 \; {\sf V} < \\ {\sf VIN} \leq 5.5 \; {\sf V}^{(3)(5)} \end{array}$	-	-	200 ⁽⁶⁾		
		$V_{IN} \le Max(V_{DDXXX})^{(4)}$	-	-	±150		
l _{lkg}	FT_u and PC3 IO	$\begin{array}{l} Max(V_{DDXXX}) \leq V_{IN} \leq \\ Max(V_{DDXXX}) + 1 \ V^{(4)} \end{array}$	-	-	2500 ⁽³⁾⁽⁷⁾	nA	
		$\begin{array}{l} {\sf Max}({\sf V}_{{\sf DDXXX}}){+}1\;{\sf V}{<} \\ {\sf VIN} \leq 5.5\;{\sf V}^{(4)(5)(7)} \end{array}$	-	-	250 ⁽⁷⁾		
		$V_{IN} \le Max(V_{DDXXX})^{(6)}$	-	-	±150		
	TT_xx input leakage current	$\begin{array}{l} {\sf Max}({\sf V}_{{\sf DDXXX}}) \leq {\sf V}_{{\sf IN}} < \\ {\sf 3.6} \ {\sf V}^{(6)} \end{array}$	-	-	2000 ⁽³⁾		
R _{PU}	Weak pull-up equivalent resistor ⁽⁸⁾	V _{IN} = V _{SS}	25	40	55	kΩ	
R _{PD}	Weak pull-down equivalent resistor ⁽⁸⁾	V _{IN} = V _{DDIOx}	25	40	55	kΩ	
C _{IO}	I/O pin capacitance	-	-	5	-	pF	

1. Refer to Figure 27: I/O input characteristics.

- 2. Tested in production.
- 3. Guaranteed by design.
- 4. Max(V_{DDXXX}) is the maximum value of all the I/O supplies. Refer to Table: Legend/Abbreviations used in the pinout table.
- 5. All TX_xx IO except FT_u and PC3.
- This value represents the pad leakage of the IO itself. The total product pad leakage is provided by this formula: I_{Total_lleak_max} = 10 μA + [number of IOs where V_{IN} is applied on the pad] x I_{lkg}(Max).
- 7. To sustain a voltage higher than MIN(V_{DD}, V_{DDA}) +0.3 V, the internal Pull-up and Pull-Down resistors must be disabled.
- Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10% order).

All I/Os are CMOS- and TTL-compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in *Figure 27* for standard I/Os, and in *Figure 27* for 5 V tolerant I/Os.

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or source up to ± 20 mA (with a relaxed V_{OL}/V_{OH}).

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 6.2*:

- The sum of the currents sourced by all the I/Os on V_{DDIOx}, plus the maximum consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see *Table 18: Voltage characteristics*).
- The sum of the currents sunk by all the I/Os on V_{SS}, plus the maximum consumption of the MCU sunk on V_{SS}, cannot exceed the absolute maximum rating ΣI_{VSS} (see *Table 18: Voltage characteristics*).

126/200

DocID028800 Rev 1

Output voltage levels

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 21: General operating conditions*. All I/Os are CMOS- and TTL-compliant (FT OR TT unless otherwise specified).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL}	Output low level voltage for an I/O pin	CMOS port ⁽²⁾	-	0.4	
V _{OH}	Output high level voltage for an I/O pin	I _{IO} = 8 mA V _{DDIOx} ≥ 2.7 V	V _{DDIOx} -0.4	-	
V _{OL} ⁽³⁾	Output low level voltage for an I/O pin	TTL port ⁽²⁾	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	I _{IO} = 8 mA V _{DDIOx} ≥ 2.7 V	2.4	-	
V _{OL} ⁽³⁾	Output low level voltage for an I/O pin	I _{IO} = 20 mA	-	1.3	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	$V_{\text{DDIOx}} \ge 2.7 \text{ V}$	V _{DDIOx} -1.3	-	
V _{OL} ⁽³⁾	Output low level voltage for an I/O pin	I _{IO} = 4 mA	-	0.45	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	V _{DDIOx} ≥ 1.62 V	V _{DDIOx} -0.45	-	V
V _{OL} ⁽³⁾	Output low level voltage for an I/O pin	I _{IO} = 2 mA	-	0.35 _x V _{DDIOx}	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	1.62 V ≥ V _{DDIOx} ≥ 1.08 V	0.65 _x V _{DDIOx}	-	
		I _{IO} = 20 mA V _{DDIOx} ≥ 2.7 V	-	0.4	
$V_{\substack{OLFM+\\(3)}}$	Output low level voltage for an FT I/O pin in FM+ mode (FT I/O with "f" option)	I _{IO} = 10 mA V _{DDIOx} ≥ 1.62 V	-	0.4	
		I _{IO} = 2 mA 1.62 V ≥ V _{DDIOx} ≥ 1.08 V	-	0.4	

Table 60.	Output	voltage	characteristics ⁽¹⁾	
-----------	--------	---------	--------------------------------	--

 The I_{IO} current sourced or sunk by the device must always respect the absolute maximum rating specified in *Table 18:* Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always respect the absolute maximum ratings ΣI_{IO}.

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. Guaranteed by design.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 28* and *Table 61*, respectively.

Unless otherwise specified, the parameters given are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 21: General operating conditions*.

Electrical characteristics

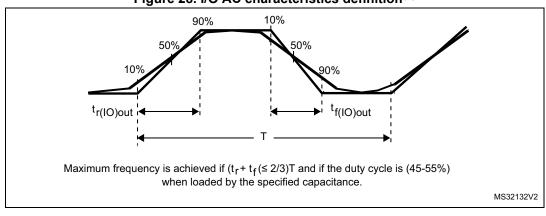
Speed	Symbol	Parameter	Conditions	Min	Max	Unit	
			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	5		
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	1		
Fmax	Maximum fraguanay	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	0.1	MHz		
	Maximum frequency	C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	10			
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	1.5		
00			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	0.1		
00			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	25		
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	52		
	Tr/Tf	Output rise and fall time	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	140	ns	
	11/11		C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	17	115	
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	37		
			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	110		
		Fmax Maximum frequency	C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	- 25		
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	10	MHz	
	Emay		C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	1		
	Tinax		C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	50		
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	15		
01			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	1		
01			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	9		
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	16		
	Tr/Tf	Output rise and fall time	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	40		
	11/11		C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	4.5	ns	
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	9		
			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	21		

Table 61. I/	O AC	characteristics ⁽¹⁾⁽²⁾
--------------	------	-----------------------------------

DocID028800 Rev 1

Speed	Symbol	Parameter	Conditions	Min	Мах	Unit	
		C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V		-	50		
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	25		
	Emoy	Maximum fraguanay	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	5	MHz	
	Fmax	Maximum frequency	C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	100 ⁽³⁾		
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	37.5		
10			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	5		
10			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	5.8		
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	11		
	Tr/Tf	r/Tf Output rise and fall time	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	28		
			C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	2.5	ns	
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	5		
			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	12		
			C=30 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	120 ⁽³⁾	50 10 MHz	
			C=30 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	50		
	Emo y		C=30 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	10		
	Fmax	Maximum frequency	C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	180 ⁽³⁾		
11			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	75		
			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	10		
			C=30 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	3.3		
Tr/	Tr/Tf	Output rise and fall time	C=30 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	6	ns	
			C=30 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	16		
Emt	Fmax	Maximum frequency	$C = 50 \text{ pE} (1.6)/(c)/(c) = c^2.6)/(c)$	-	1	MHz	
Fm+	Tf	Output fall time ⁽⁴⁾	C=50 pF, 1.6 V≤V _{DDIOx} ≤3.6 V	-	5	ns	

Table 61. I/O AC characteristics ⁽¹⁾⁽²⁾ (continued)
--


 The I/O speed is configured using the OSPEEDRy[1:0] bits. The Fm+ mode is configured in the SYSCFG_CFGR1 register. Refer to the RM0392 reference manual for a description of GPIO Port configuration register.

2. Guaranteed by design.

3. This value represents the I/O capability but the maximum system frequency is limited to 80 MHz.

4. The fall time is defined between 70% and 30% of the output waveform accordingly to I²C specification.

1. Refer to Table 61: I/O AC characteristics.

6.3.15 NRST pin characteristics

The NRST pin input driver uses the CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} .

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 21: General operating conditions*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{IL(NRST)}	NRST input low level voltage	-	-	-	0.3 _x V _{DDIOx}	v
V _{IH(NRST)}	NRST input high level voltage	-	0.7 _x V _{DDIOx}	-	-	v
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis	-	-	200	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	V _{IN} = V _{SS}	25	40	55	kΩ
V _{F(NRST)}	NRST input filtered pulse	-	-	-	70	ns
V _{NF(NRST)}	NRST input not filtered pulse	1.71 V ≤ V _{DD} ≤ 3.6 V	350	-	-	ns

Table 62. NRST pin characteristics⁽¹⁾

1. Guaranteed by design.

2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order).

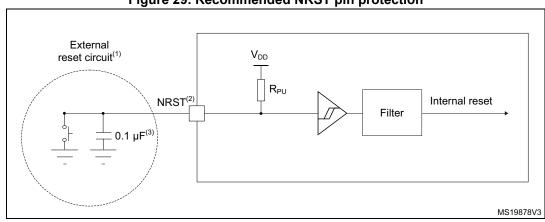


Figure 29. Recommended NRST pin protection

- 1. The reset network protects the device against parasitic resets.
- The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 62: NRST pin characteristics. Otherwise the reset will not be taken into account by the device.
- 3. The external capacitor on NRST must be placed as close as possible to the device.

6.3.16 Analog switches booster

Symbol	Parameter	Min	Тур	Max	Unit		
V _{DD}	Supply voltage	1.62	-	3.6	V		
t _{SU(BOOST)}	Booster startup time	-	-	240	μs		
I _{DD(BOOST)}	Booster consumption for $1.62 \text{ V} \le \text{V}_{\text{DD}} \le 2.0 \text{ V}$	-	-	250			
	Booster consumption for $2.0 V \le V_{DD} \le 2.7 V$	-	-	500	μA		
	Booster consumption for $2.7 \vee \leq \vee_{DD} \leq 3.6 \vee$	-	-	900			

Table 63. Analog switches booster characteristics⁽¹⁾

1. Guaranteed by design.

6.3.17 Analog-to-Digital converter characteristics

Unless otherwise specified, the parameters given in *Table 64* are preliminary values derived from tests performed under ambient temperature, f_{PCLK} frequency and V_{DDA} supply voltage conditions summarized in *Table 21: General operating conditions*.

Note: It is recommended to perform a calibration after each power-up.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA}	Analog supply voltage	-	1.62	-	3.6	V
		V _{DDA} ≥2V	2	-	V _{DDA}	V
V _{REF+}	Positive reference voltage	V _{DDA} < 2 V		V _{DDA}		V
V _{REF-}	Negative reference voltage	-		V _{SSA}		V
£	ADC clock frequency	Range 1	-	-	80	MHz
f _{ADC}	ADC Clock frequency	Range 2	-	-	26	
		Resolution = 12 bits	-	-	5.33	
	Sampling rate for FAST	Resolution = 10 bits	-	-	6.15	
	channels	Resolution = 8 bits	-	-	7.27	
f _s		Resolution = 6 bits	-	-	8.88	Mono
	Sampling rate for SLOW channels	Resolution = 12 bits	-	-	4.21	- Msps - -
		Resolution = 10 bits	-	-	4.71	
		Resolution = 8 bits	-	-	5.33	
		Resolution = 6 bits	-	-	6.15	
f _{TRIG}	External trigger frequency	f _{ADC} = 80 MHz Resolution = 12 bits	-	-	5.33	MHz
		Resolution = 12 bits	-	-	15	1/f _{ADC}
V _{CMIN}	Input common mode	Differential mode	(V _{REF+} + V _{REF-})/2 - 0.18	(V _{REF+} + V _{REF-})/2	(V _{REF+} + V _{REF-})/2 + 0.18	V
V _{AIN} ⁽³⁾	Conversion voltage range(2)	-	0	-	V _{REF+}	V
R _{AIN}	External input impedance	-	-	-	50	kΩ
C _{ADC}	Internal sample and hold capacitor	-	-	5	-	pF
t _{STAB}	Power-up time	-		1		conversion cycle
+	Calibration time	f _{ADC} = 80 MHz		1.45		μs
t _{CAL}		-		116		1/f _{ADC}

1) (2)	
) (2)

132/200

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	- ·	CKMODE = 00	1.5	2	2.5	
1	Trigger conversion latency Regular and	CKMODE = 01	-	-	2.0	A 15
t _{LATR}	injected channels without conversion abort	CKMODE = 10	-	-	2.25	1/f _{ADC}
		CKMODE = 11	-	-	2.125	
	Trianana	CKMODE = 00	2.5	3	3.5	
	Trigger conversion latency Injected channels	CKMODE = 01	-	-	3.0	1 /5
t _{latrinj}	aborting a regular conversion	CKMODE = 10	-	-	3.25	1/f _{ADC}
	Conversion	CKMODE = 11	-	-	3.125	
4	Sompling time	f _{ADC} = 80 MHz	0.03125	-	8.00625	μs
t _s	Sampling time	-	2.5	-	640.5	1/f _{ADC}
t _{ADCVREG_STUP}	ADC voltage regulator start-up time	-	-	-	20	μs
	T -4-1	f _{ADC} = 80 MHz Resolution = 12 bits	0.1875	-	8.1625	μs
t _{CONV}	Total conversion time (including sampling time)	Resolution = 12 bits	success	ts + 12.5 cycles for successive approximation = 15 to 653		
		fs = 5 Msps	-	730	830	
I _{DDA} (ADC)	ADC consumption from the V _{DDA} supply	fs = 1 Msps	-	160	220	μA
		fs = 10 ksps	-	16	50	
	ADC consumption from	fs = 5 Msps	-	130	160	
I _{DDV_S} (ADC)	the V _{REF+} single ended	fs = 1 Msps	-	30	40	μA
	mode	fs = 10 ksps	-	0.6	2	
	ADC consumption from	fs = 5 Msps	-	260	310	
I _{DDV_D} (ADC)	the V _{REF+} differential	fs = 1 Msps	-	60	70	μA
-	mode	fs = 10 ksps	-	1.3	3	

 Table 64. ADC characteristics^{(1) (2)} (continued)

1. Guaranteed by design

2. The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4V). It is disable when V_{DDA} \geq 2.4 V.

 V_{REF+} can be internally connected to V_{DDA} and V_{REF-} can be internally connected to V_{SSA}, depending on the package. Refer to Section 4: Pinouts and pin description for further details.

Equation 1: R_{AIN} max formula

$$R_{AIN} < \frac{T_{S}}{f_{ADC} \times C_{ADC} \times \ln(2^{N+2})} - R_{ADC}$$

The formula above (*Equation 1*) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

Deschriter	Sampling cycle	Sampling time [ns]	RAIN	max (Ω)
Resolution	@80 MHz	@80 MHz	Fast channels ⁽³⁾	Slow channels ⁽⁴⁾
	2.5	31.25	100	N/A
	6.5	81.25	330	100
	12.5	156.25	680	470
	24.5	306.25	1500	1200
12 bits	47.5	593.75	2200	1800
	92.5	1156.25	4700	3900
	247.5	3093.75	12000	10000
	640.5	8006.75	39000	33000
	2.5	31.25	120	N/A
	6.5	81.25	390	180
	12.5	156.25	820	560
	24.5	306.25	1500	1200
10 bits	47.5	593.75	2200	1800
	92.5	1156.25	5600	4700
	247.5	3093.75	12000	10000
	640.5	8006.75	47000	39000
	2.5	31.25	180	N/A
	6.5	81.25	470	270
	12.5	156.25	1000	680
	24.5	306.25	1800	1500
8 bits	47.5	593.75	2700	2200
	92.5	1156.25	6800	5600
	247.5	3093.75	15000	12000
	640.5	8006.75	50000	50000

Table	65.	Maximum	ADC	RAIN ⁽¹⁾⁽²⁾
-------	-----	---------	-----	------------------------

Table 65. Maximum ADC RAIN, A7 (Continued)								
Resolution	Sampling cycle	Sampling time [ns]	RAIN max (Ω)					
Resolution	@80 MHz	@80 MHz	Fast channels ⁽³⁾	Slow channels ⁽⁴⁾				
	2.5	31.25	220	N/A				
	6.5	81.25	560	330				
	12.5	156.25	1200	1000				
6 bits	24.5	306.25	2700	2200				
0 010	47.5	593.75	3900	3300				
	92.5	1156.25 8200		6800				
	247.5	3093.75	18000	15000				
	640.5	8006.75	50000	50000				

Table 65. Maximum ADC RAIN⁽¹⁾⁽²⁾ (continued)

1. Guaranteed by design.

2. The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4V). It is disable when V_{DDA} \geq 2.4 V.

3. Fast channels are: PC0, PC1, PC2, PC3, PA0, PA1.

4. Slow channels are: all ADC inputs except the fast channels.

Sym- bol	Parameter	(Conditions ⁽⁴)	Min	Тур	Max	Unit
			Single	Fast channel (max speed)	-	4	5	
ET	Total		ended	Slow channel (max speed)	-	4	5	-
	unadjusted error		Differential	Fast channel (max speed)	-	3.5	4.5	
			Dillerential	Slow channel (max speed)	-	3.5	4.5	
		-	Single	Fast channel (max speed)	-	1	2.5	
E0	EO Offset		ended	Slow channel (max speed)	-	1	2.5	
EO	error		Differential	Fast channel (max speed)	-	1.5	2.5	
			Differential	Slow channel (max speed)	-	1.5	2.5	
			Single	Fast channel (max speed)	-	2.5	4.5	
EG Gain error		ended	Slow channel (max speed)	-	2.5	4.5		
EG	Gainenor	r	Differential	Fast channel (max speed)	-	2.5	3.5	LSB
			Dillerential	Slow channel (max speed)	-	2.5	3.5	
		_	Single	Fast channel (max speed)	-	1	1.5	
ED Differential ED linearity error	ADC clock frequency ≤	ended	Slow channel (max speed)	-	1	1.5		
		Differential	Fast channel (max speed)	-	1	1.2		
		80 MHz, Sampling rate ≤ 5.33 Msps,	Dillerential	Slow channel (max speed)	-	1	1.2	-
		$V_{DDA} = VREF + = 3 V,$	Single	Fast channel (max speed)	-	1.5	2.5	
EL	Integral	TA = 25 °C	ended	Slow channel (max speed)	-	1.5	2.5	
	linearity error		Differential	Fast channel (max speed)	-	1	2	
			Differential	Slow channel (max speed)	-	1	2	
			Single	Fast channel (max speed)	10.4	10.5	-	
ENOB	Effective number of		ended	Slow channel (max speed)	10.4	10.5	-	bits
ENOD	bits		Differential	Fast channel (max speed)	10.8	10.9	-	DILS
			Dillerential	Slow channel (max speed)	10.8	10.9	-	
	Signal to		Single	Fast channel (max speed)	64.4	65	-	
SINAD	Signal-to- noise and		ended	Slow channel (max speed)	64.4	65	-	
SINAD	distortion ratio		Differential	Fast channel (max speed)	66.8	67.4	-	
	1410		Dillerential	Slow channel (max speed)	66.8	67.4	-	
			Single	Fast channel (max speed)	65	66	-	dB
SNR	Signal-to-		ended	Slow channel (max speed)	65	66	-	1
SINK	noise ratio		Differential	Fast channel (max speed)	67	68	-	
			Differential	Slow channel (max speed)	67	68	-	

Table 66. ADC accuracy	/ - limited test	conditions	1(1)(2)(3)
Table 00. ADC accurac	y - miniteu tesi	conunions	1

136/200

	Table 60. Abb accuracy - minted test conditions 14 44 (continued)								
Sym- bol	Parameter	C	Min	Тур	Max	Unit			
	ADC clock frequency ≤	Single	Fast channel (max speed)	-	-74	-73			
THD	Total harmonic		ended	Slow channel (max speed)	-	-74	-73	dB	
distortion	$V_{DDA} = V_{REF+} = 3 V,$	Differential	Fast channel (max speed)	-	-79	-76	uВ		
		TA = 25 °C	Differential	Slow channel (max speed)	-	-79	-76		

Table 66. ADC accuracy - limited test conditions $1^{(1)(2)(3)}$ (continued)

1. Guaranteed by design.

2. ADC DC accuracy values are measured after internal calibration.

- ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
- 4. The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4 V). It is disable when V_{DDA} \geq 2.4 V. No oversampling.

Sym- bol	Parameter	(Conditions ⁽⁴)	Min	Тур	Max	Unit
			Single	Fast channel (max speed)	-	4	6.5	
ET	Total		ended	Slow channel (max speed)	-	4	6.5	
	unadjusted error		Differential	Fast channel (max speed)	-	3.5	5.5	
			Dillerential	Slow channel (max speed)	-	3.5	5.5	
			Single	Fast channel (max speed)	-	1	4.5	
E0	EO Offset		ended	Slow channel (max speed)	-	1	5	
EU	error		Differential	Fast channel (max speed)	-	1.5	3	
			Differential	Slow channel (max speed)	-	1.5	3	
			Single	Fast channel (max speed)	-	2.5	6	
50 0.1		ended	Slow channel (max speed)	-	2.5	6		
EG	Gain error	r 	Differential	Fast channel (max speed)	-	2.5	3.5	LSB
			Dillerential	Slow channel (max speed)	-	2.5	3.5	
			Single	Fast channel (max speed)	-	1	1.5	
Differential		ended	Slow channel (max speed)	-	1	1.5		
ED	ED linearity error	ADC clock frequency ≤ 80 MHz, Sampling rate ≤ 5.33 Msps,	Differential	Fast channel (max speed)	-	1	1.2	-
				Slow channel (max speed)	-	1	1.2	
			Single ended	Fast channel (max speed)	-	1.5	3.5	
EL	Integral	$2 V \leq V_{DDA}$		Slow channel (max speed)	-	1.5	3.5	
EL	linearity error			Fast channel (max speed)	-	1	3	
			Differential	Slow channel (max speed)	-	1	2.5	
			Single	Fast channel (max speed)	10	10.5	-	
ENOB	Effective number of		ended	Slow channel (max speed)	10	10.5	-	bits
ENOD	bits		Differential	Fast channel (max speed)	10.7	10.9	-	DILS
			Dillerential	Slow channel (max speed)	10.7	10.9	-	
	Signal to		Single	Fast channel (max speed)	62	65	-	
SINAD	Signal-to- noise and		ended	Slow channel (max speed)	62	65	-	
SINAD	distortion ratio		Differential	Fast channel (max speed)	66	67.4	-	
	1400		Differential	Slow channel (max speed)	66	67.4	-	
			Single	Fast channel (max speed)	64	66	-	dB
SNR	Signal-to-		ended	Slow channel (max speed)	64	66	-	1
SINK	noise ratio		Differential	Fast channel (max speed)	66.5	68	-	
			Differential	Slow channel (max speed)	66.5	68	-	

Table 67. ADC accuracy	/ - limited test	conditions $2^{(1)(2)}$	3)
Table 67. ADC accuracy	/ - limitea test		-,

138/200

	Table 01. Abo accuracy - minted test conditions 2.4.4.4 (continued)								
Sym- bol	Parameter	Conditions ⁽⁴⁾				Тур	Max	Unit	
		ADC clock frequency ≤	Single	Fast channel (max speed)	-	-74	-65		
Total THD harmonic distortion		80 MHz,	ended	Slow channel (max speed)	-	-74	-67	dB	
	Sampling rate ≤ 5.33 Msps,	Differential	Fast channel (max speed)	-	-79	-70	uВ		
	$2 V \leq V_{DDA}$	Differential	Slow channel (max speed)	-	-79	-71			

Table 67. ADC accuracy - limited test conditions $2^{(1)(2)(3)}$ (continued)

1. Guaranteed by design.

2. ADC DC accuracy values are measured after internal calibration.

- ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
- 4. The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4 V). It is disable when V_{DDA} \geq 2.4 V. No oversampling.

Sym- bol	Parameter	(Conditions ⁽⁴)	Min	Тур	Max	Unit
			Single	Fast channel (max speed)	-	5.5	7.5	
ET	Total		ended	Slow channel (max speed)	-	4.5	6.5	
	unadjusted error		Differential	Fast channel (max speed)	-	4.5	7.5	
			Dillerential	Slow channel (max speed)	-	4.5	5.5	
			Single	Fast channel (max speed)	-	2	5	
FO	EO Offset		ended	Slow channel (max speed)	-	2.5	5	
LU	error		Differential	Fast channel (max speed)	-	2	3.5	
			Dillerential	Slow channel (max speed)	-	2.5	3	
			Single	Fast channel (max speed)	-	4.5	7	
EG Gain error		ended	Slow channel (max speed)	-	3.5	6	LSB	
EG	Gain enor		Differential	Fast channel (max speed)	-	3.5	4	LOD
			Dillerential	Slow channel (max speed)	-	3.5	5	
			Single	Fast channel (max speed)	-	1.2	1.5	
Differential ED linearity		ended	Slow channel (max speed)	-	1.2	1.5		
	ED linearity error	ADC clock frequency \leq 80 MHz, Sampling rate \leq 5.33 Msps, 1.65 V \leq V _{DDA} = V _{REF+} \leq 3.6 V, Voltage scaling Range 1	Differential	Fast channel (max speed)	-	1	1.2	-
				Slow channel (max speed)	-	1	1.2	
			Single ended	Fast channel (max speed)	-	3	3.5	
EL	Integral linearity			Slow channel (max speed)	-	2.5	3.5	
	error			Fast channel (max speed)	-	2	2.5	
			Differential	Slow channel (max speed)	-	2	2.5	1
			Single	Fast channel (max speed)	10	10.4	-	
ENOB	Effective number of		ended	Slow channel (max speed)	10	10.4	-	bits
ENOB	bits		Differential	Fast channel (max speed)	10.6	10.7	-	DILS
			Dillerential	Slow channel (max speed)	10.6	10.7	-	
	Signal to		Single	Fast channel (max speed)	62	64	-	
SINAD	Signal-to- noise and		ended	Slow channel (max speed)	62	64	-	
SINAD	distortion ratio		Differential	Fast channel (max speed)	65	66	-	
	1410		Dillerential	Slow channel (max speed)	65	66	-	
			Single	Fast channel (max speed)	63	65	-	dB
SNR	Signal-to-		ended	Slow channel (max speed)	63	65	-	1
SINK	noise ratio		Differential	Fast channel (max speed)	66	67	-	
			Differential	Slow channel (max speed)	66	67	-	

Table 68. ADC accuracy - limited test conditions $3^{(1)(2)(3)}$	

140/200

Table 60. Abc accuracy - minied test conditions 5. A A (continued)									
Sym- bol	Parameter	Conditions ⁽⁴⁾				Тур	Max	Unit	
THD	Total harmonic distortion	ADC clock frequency \leq 80 MHz, Sampling rate \leq 5.33 Msps, 1.65 V \leq V _{DDA} = V _{REF+} \leq 3.6 V, Voltage scaling Range 1	Single	Fast channel (max speed)	-	-69	-67		
			ended	Slow channel (max speed)	-	-71	-67		
			Differential	Fast channel (max speed)	-	-72	-71	dB	
				Slow channel (max speed)	-	-72	-71		

Table 68. ADC accuracy - limited test conditions $3^{(1)(2)(3)}$ (continued)

1. Guaranteed by design.

2. ADC DC accuracy values are measured after internal calibration.

 ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current.

4. The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4 V). It is disable when V_{DDA} \geq 2.4 V. No oversampling.

Sym- bol	Parameter	Conditions ⁽⁴⁾			Min	Тур	Max	Unit
ET	Total unadjusted error		Single ended	Fast channel (max speed)	-	5	5.4	_
				Slow channel (max speed)	-	4	5	
			Differential	Fast channel (max speed)	-	4	5	
				Slow channel (max speed)	-	3.5	4.5	
EO	Offset error		Single ended	Fast channel (max speed)	-	2	4	-
				Slow channel (max speed)	-	2	4	
			Differential	Fast channel (max speed)	-	2	3.5	
			Differential	Slow channel (max speed)	-	2	3.5	
EG			Single	Fast channel (max speed)	-	4	4.5	
	Gain error	-	ended	Slow channel (max speed)	-	4	4.5	LSB
			Differential	Fast channel (max speed)	-	3	4	
				Slow channel (max speed)	-	3	4	
	Differential linearity error		Single ended	Fast channel (max speed)	-	1	1.5	
ED				Slow channel (max speed)	-	1	1.5	
		ADC clock frequency ≤ 26 MHz, 1.65 V ≤ V _{DDA} = VREF+ ≤ 3.6 V, Voltage scaling Range 2	Differential	Fast channel (max speed)	-	1	1.2	
				Slow channel (max speed)	-	1	1.2	
	Integral linearity error		Single ended	Fast channel (max speed)	-	2.5	3	
-				Slow channel (max speed)	-	2.5	3	
EL			Differential	Fast channel (max speed)	-	2	2.5	-
				Slow channel (max speed)	-	2	2.5	
	Effective number of bits		Single ended	Fast channel (max speed)	10.2	10.5	-	
ENOB				Slow channel (max speed)	10.2	10.5	-	hito
ENOD			Differential	Fast channel (max speed)	10.6	10.7	-	bits
				Slow channel (max speed)	10.6	10.7	-	
	Signal-to- noise and distortion ratio		Single ended	Fast channel (max speed)	63	65	-	
				Slow channel (max speed)	63	65	-	
SINAD			Differential	Fast channel (max speed)	65	66	-	
				Slow channel (max speed)	65	66	-	
SNR	Signal-to- noise ratio		Single ended	Fast channel (max speed)	64	65	-	dB
				Slow channel (max speed)	64	65	-	
			Differential	Fast channel (max speed)	66	67	-	
				Slow channel (max speed)	66	67	-	

142/200

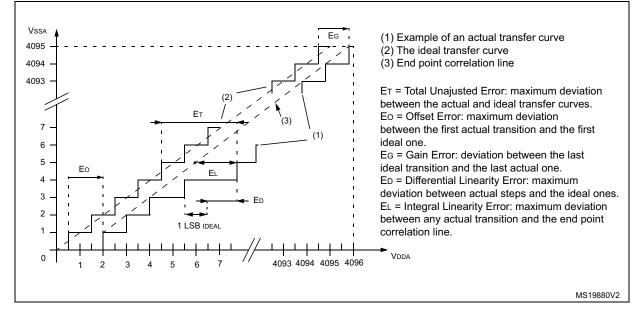

Table 03. Abo accuracy - initied test conditions 4.4.4.4 (continued)										
Sym- bol	Parameter	Conditions ⁽⁴⁾				Тур	Max	Unit		
	Total harmonic distortion	ADC clock frequency \leq 26 MHz, 1.65 V \leq V _{DDA} = VREF+ \leq 3.6 V,	Single	Fast channel (max speed)	-	-71	-69	- dB		
THD			ended	Slow channel (max speed)	-	-71	-69			
			Differential -	Fast channel (max speed)	-	-73	-72	uВ		
		Voltage scaling Range 2		Slow channel (max speed)	-	-73	-72			

Table 69. ADC accuracy - limited test conditions $4^{(1)(2)(3)}$ (continued)

1. Guaranteed by design.

2. ADC DC accuracy values are measured after internal calibration.

- ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
- 4. The I/O analog switch voltage booster is enable when $V_{DDA} < 2.4 \text{ V}$ (BOOSTEN = 1 in the SYSCFG_CFGR1 when $V_{DDA} < 2.4 \text{ V}$). It is disable when $V_{DDA} \ge 2.4 \text{ V}$. No oversampling.

Figure 30. ADC accuracy characteristics

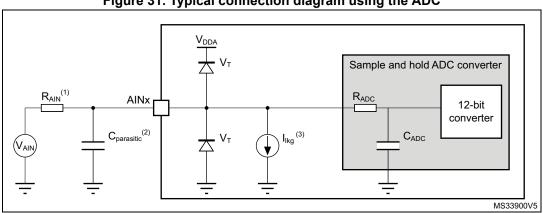


Figure 31. Typical connection diagram using the ADC

- Refer to Table 64: ADC characteristics for the values of $\mathsf{R}_{AIN},\,\mathsf{R}_{ADC}$ and $\mathsf{C}_{ADC}.$ 1.
- $C_{parasitic}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (refer to *Table 59: I/O static characteristics* for the value of the pad capacitance). A high $C_{parasitic}$ value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced. 2.
- 3. Refer to Table 59: I/O static characteristics for the values of Ilkg.

General PCB design guidelines

Power supply decoupling should be performed as shown in Figure 17: Power supply scheme. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip.

6.3.18 Digital-to-Analog converter characteristics

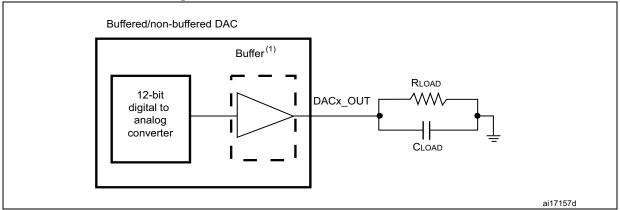
Symbol	Parameter		naracteristics(")	Min	Тур	Max	Unit
Symbol			onations	IVIIII	тур	IVIdX	Unit
V_{DDA}	Analog supply voltage for DAC ON		-	1.8	-	3.6	
V_{REF^+}	Positive reference voltage	- 1.8		1.8	-	V_{DDA}	V
V _{REF-}	Negative reference voltage		-		V _{SSA}		
RL	Resistive load	DAC output	connected to V_{SSA}	5	-	-	kΩ
ι Υ <u>Γ</u>	I Cesistive Ioau	buffer ON	connected to V_{DDA}	25	-	-	K32
R _O	Output Impedance	DAC output bu	ffer OFF	9.6	11.7	13.8	kΩ
-	Output impedance sample	V _{DD} = 2.7 V		-	-	2	
R _{BON}	and hold mode, output buffer ON	V _{DD} = 2.0 V		-	-	3.5	kΩ
_	Output impedance sample	V _{DD} = 2.7 V		-	-	16.5	
R _{BOFF}	and hold mode, output buffer OFF	V _{DD} = 2.0 V		-	-	18.0	kΩ
CL	Concettive lead	DAC output bu	ffer ON	-	-	50	pF
C _{SH}	Capacitive load	Sample and ho	old mode	-	0.1	1	μF
V _{DAC_OUT}	Voltage on DAC_OUT	DAC output bu	ffer ON	0.2	-	V _{REF+} - 0.2	V
27.02001	output	DAC output bu	ffer OFF	0	-	V _{REF+}	1
			±0.5 LSB	-	1.7	3	-
	Settling time (full scale: for a 12-bit code transition	Normal mode DAC output	±1 LSB	-	1.6	2.9	
	between the lowest and	buffer ON	±2 LSB	-	1.55	2.85	
t _{SETTLING}	the highest input codes when DAC_OUT reaches	CL ≤ 50 pF, RL ≥ 5 kΩ	±4 LSB	-	1.48	2.8	μs
	final value ±0.5LSB, ±1 LSB, ±2 LSB, ±4 LSB,		±8 LSB	-	1.4	2.75]
	±8 LSB)	Normal mode I OFF, ±1LSB, C	DAC output buffer CL = 10 pF	-	2	2.5	
t (2)	Wakeup time from off state (setting the ENx bit in the	Normal mode I CL ≤ 50 pF, RL	DAC output buffer ON . ≥ 5 kΩ	_	4.2	7.5	
t _{WAKEUP} ⁽²⁾	DAC Control register) until final value ±1 LSB	Normal mode DAC output buffer OFF, CL ≤ 10 pF		_	2	5	μs
PSRR	V _{DDA} supply rejection ratio	Normal mode [CL ≤ 50 pF, RL	DAC output buffer ON . = 5 kΩ, DC	-	-80	-28	dB

Table 70. DAC characteristics⁽¹⁾

Symbol	Parameter		onditions	Min	Тур	Max	Unit	
		DAC_OUT	DAC output buffer ON, C _{SH} = 100 nF	-	0.7	3.5		
	Sampling time in sample and hold mode (code transition between the	pin connected	DAC output buffer OFF, C _{SH} = 100 nF	-	10.5	18	ms	
t _{SAMP}	lowest input code and the highest input code when DACOUT reaches final value ±1LSB)	DAC_OUT pin not connected (internal connection only)	DAC output buffer OFF	-	2	3.5	μs	
I _{leak}	Output leakage current	Sample and ho DAC_OUT pin		-	-	_(3)	nA	
Cl _{int}	Internal sample and hold capacitor		-	5.2	7	8.8	pF	
t _{TRIM}	Middle code offset trim time	DAC output bu	ffer ON	50	-	-	μs	
Varia	Middle code offset for 1	V _{REF+} = 3.6 V		-	1500	-	μV	
V _{offset}	trim code step	V _{REF+} = 1.8 V		-	750	-	μv	
	DAC consumption from V _{DDA}	DAC output buffer ON	No load, middle code (0x800)	-	315	500		
			No load, worst code (0xF1C)	-	450	670		
I _{DDA} (DAC)		DAC output buffer OFF	No load, middle code (0x800)	-	-	0.2	μA	
		Sample and hold mode, C _{SH} = 100 nF		-	315 x Ton/(Ton +Toff) (4)	670 x Ton/(Ton +Toff) (4)		
		DAC output	No load, middle code (0x800)	-	185	240		
		buffer ON	No load, worst code (0xF1C)	-	340	400		
		DAC output buffer OFF	No load, middle code (0x800)	-	155	205		
I _{DDV} (DAC)	DAC consumption from V _{REF+}	Sample and ho C _{SH} = 100 nF,	old mode, buffer ON, worst case	-	185 x Ton/(Ton +Toff) (4)	400 x Ton/(Ton +Toff) (4)	μA	
		Sample and hold mode, buffer OFF, C_{SH} = 100 nF, worst case		-	155 x Ton/(Ton +Toff) (4)	205 x Ton/(Ton +Toff) (4)		

Table 70. DAC characteristics⁽¹⁾ (continued)

1. Guaranteed by design.


2. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).

146/200

3. Refer to Table 59: I/O static characteristics.

4. Ton is the Refresh phase duration. Toff is the Hold phase duration. Refer to RM0392 reference manual for more details.

Figure 32. 12-bit buffered / non-buffered DAC

 The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

Symbol	Parameter	Conditio	ns	Min	Тур	Max	Unit
DNL	Differential non	DAC output buffer ON		-	-	±2	
DINL	linearity ⁽²⁾	DAC output buffer OFF		-	-	±2	
-	monotonicity	10 bits		Ģ	guaranteed		
INL Integral non linearity ⁽³⁾	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ		-	-	±4		
	DAC output buffer OFF CL ≤ 50 pF, no RL		-	-	±4		
		DAC output buffer ON	V _{REF+} = 3.6 V	-	-	±12	
Offect	Offset error at code 0x800 ⁽³⁾	CL ≤ 50 pF, RL ≥ 5 kΩ	V _{REF+} = 1.8 V	-	-	±25	LSB
		DAC output buffer OFF CL ≤ 50 pF, no RL		-	-	±8	
Offset1	Offset error at code 0x001 ⁽⁴⁾	DAC output buffer OFF CL ≤ 50 pF, no RL		-	-	±5	
OffectCel	Offset Error at code 0x800	DAC output buffer ON	V _{REF+} = 3.6 V	-	-	±5	
	after calibration	CL ≤ 50 pF, RL ≥ 5 kΩ	V _{REF+} = 1.8 V	-	-	±7	

Table 71. DAC accuracy⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Osia	Q(5)	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ	-	-	±0.5	0/
Gain	Gain error ⁽⁵⁾	DAC output buffer OFF CL ≤ 50 pF, no RL	-	-	±0.5	%
TUE	Total unadjusted	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ	-	-	±30	LSB
TUE	error	DAC output buffer OFF CL ≤ 50 pF, no RL	-	-	±12	LOD
TUECal	Total unadjusted error after calibration	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ	-	-	±23	LSB
SND	SNR Signal-to-noise ratio	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ 1 kHz, BW 500 kHz	-	71.2	-	dB
SNK		DAC output buffer OFF CL ≤ 50 pF, no RL, 1 kHz BW 500 kHz	- 71.6	-	uD	
THD	Total harmonic	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ, 1 kHz	-	-78	-	dB
IIID	distortion	DAC output buffer OFF CL ≤ 50 pF, no RL, 1 kHz	-	-79	-	UB
SINAD	Signal-to-noise and distortion	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ, 1 kHz	-	70.4	-	dB
SINAD	ratio	DAC output buffer OFF CL ≤ 50 pF, no RL, 1 kHz	-	71	-	UB
ENOB	Effective	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ, 1 kHz	-	11.4	-	bits
LINOD	number of bits	DAC output buffer OFF CL ≤ 50 pF, no RL, 1 kHz	-	11.5	-	DILO

Table 71.	DAC	accuracy	y ⁽¹⁾ ((continued)	
-----------	-----	----------	--------------------	-------------	--

1. Guaranteed by design.

2. Difference between two consecutive codes - 1 LSB.

3. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095.

4. Difference between the value measured at Code (0x001) and the ideal value.

5. Difference between ideal slope of the transfer function and measured slope computed from code 0x000 and 0xFFF when buffer is OFF, and from code giving 0.2 V and ($V_{REF+} - 0.2$) V when buffer is ON.

6.3.19 Voltage reference buffer characteristics

		Table 72. VRE				T		
Symbol	Parameter	Conditio	ons	Min	Тур	Мах	Unit	
		Normal mode	V _{RS} = 0	2.4	-	3.6		
V	Analog supply	Normarmode	V _{RS} = 1	2.8	-	3.6		
V _{DDA}	voltage	Degraded mode ⁽²⁾	V _{RS} = 0	1.65	-	2.4		
			V _{RS} = 1	1.65	-	2.8	V	
		Normal mode	V _{RS} = 0	2.046 ⁽³⁾	2.048	2.049 ⁽³⁾	v	
V _{REFBUF} _	Voltage reference	Normal mode	V _{RS} = 1	2.498 ⁽³⁾	2.5	2.502 ⁽³⁾		
OUT	output	Degraded mode ⁽²⁾	V _{RS} = 0	V _{DDA} -150 mV	-	V _{DDA}		
			V _{RS} = 1	V _{DDA} -150 mV	-	V _{DDA}		
TRIM	Trim step resolution	-	-	-	±0.05	±0.1	%	
CL	Load capacitor	-	-	0.5	1	1.5	μF	
esr	Equivalent Serial Resistor of Cload	-	-	-	-	2	Ω	
I _{load}	Static load current	-	-	-	-	4	mA	
	Line regulation	291/21/ 2261/	I _{load} = 500 μA	-	200	1000	nnm\/	
I _{line_reg}		2.8 V ≤ V _{DDA} ≤ 3.6 V	I _{load} = 4 mA		100	500	ppm/V	
I _{load_reg}	Load regulation	500 µA ≤ I _{load} ≤4 mA	Normal mode	-	50	500	ppm/mA	
Τ	Temperature	-40 °C < T _J < +125 °C	-40 °C < T _J < +125 °C		-	T _{coeff_} vrefint + 50	ppm/°C	
T _{Coeff}	coefficient	0 °C < T _J < +50 °C	-	-	T _{coeff} vrefint + 50	ppm/ °C		
PSRR	Power supply	DC		40	60	-	dB	
FORK	rejection	100 kHz		25	40	-	uБ	
		$CL = 0.5 \ \mu F^{(4)}$		-	300	350		
t _{START}	Start-up time	$CL = 1.1 \ \mu F^{(4)}$		-	500	650	μs	
		$CL = 1.5 \ \mu F^{(4)}$		-	650	800		
I _{INRUSH}	Control of maximum DC current drive on VREFBUF_ OUT during start-up phase (5)	-	-	-	8	-	mA	

Table 72. VREFBUF characteristics⁽¹⁾

Electrical characteristics

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
I _{DDA} (VREF BUE) consun	VREFBUF	I _{load} = 0 μA	-	16	25	25	
	consumption	I _{load} = 500 μA	-	18	30	μΑ	
	from V _{DDA}	I _{load} = 4 mA	-	35	50		

Table 72. VREFBUF characteristics⁽¹⁾ (continued)

1. Guaranteed by design, unless otherwise specified.

2. In degraded mode, the voltage reference buffer can not maintain accurately the output voltage which will follow (V_{DDA} - drop voltage).

3. Guaranteed by test in production.

4. The capacitive load must include a 100 nF capacitor in order to cut-off the high frequency noise.

5. To correctly control the VREFBUF inrush current during start-up phase and scaling change, the V_{DDA} voltage should be in the range [2.4 V to 3.6 V] and [2.8 V to 3.6 V] respectively for V_{RS} = 0 and V_{RS} = 1.

6.3.20 Comparator characteristics

Symbol	Parameter	Co	onditions	Min	Тур	Max	Unit
V _{DDA}	Analog supply voltage		-	1.62	-	3.6	
V _{IN}	Comparator input voltage range		-	0	-	V _{DDA}	V
$V_{BG}^{(2)}$	Scaler input voltage		-		V _{REFINT}		
V _{SC}	Scaler offset voltage		-	-	±5	±10	mV
I _{DDA} (SCALER)	Scaler static consumption	BRG_EN=0 (br	idge disable)	-	200	300	nA
IDDA(SCALER)	from V _{DDA}	BRG_EN=1 (br	idge enable)	-	0.8	1	μA
t _{START_SCALER}	Scaler startup time		-	-	100	200	μs
		High-speed	$V_{DDA} \ge 2.7 V$	-	-	5	
	Comparator startup time to	mode	V _{DDA} < 2.7 V	-	-	7	
t _{START}	reach propagation delay	Medium mode	$V_{DDA} \ge 2.7 V$	-	-	15	μs
	specification	Wediam mode	V _{DDA} < 2.7 V	-	-	25	
		Ultra-low-power mode		-	-	40	
		High-speed	$V_{DDA} \ge 2.7 V$	-	55	80	ns
t _D (3)	Propagation delay with	mode	V _{DDA} < 2.7 V	-	65	100	
U.	100 mV overdrive	Medium mode	·	-	0.55	0.9	
		Ultra-low-powe	r mode	-	4	7	μs
V _{offset}	Comparator offset error	Full common		-	±5	±20	mV
		No hysteresis		-	0	-	- mV
V	Comparator hystoresia	Low hysteresis	-	8	-		
V _{hys}	Comparator hysteresis	Medium hysteresis		-	15	-	
		High hysteresis	3	-	27	-	
			Static	-	400	600	
		Ultra-low- power mode	With 50 kHz ±100 mV overdrive square signal	-	1200	-	nA
			Static	-	5	7	
I _{DDA} (COMP)	Comparator consumption from V _{DDA}	Medium mode	With 50 kHz ±100 mV overdrive square signal	-	6	-	
			Static	-	70	100	- μΑ -
		High-speed mode	With 50 kHz ±100 mV overdrive square signal	-	75	-	

Table 73. COMP characteristics ⁽¹⁾	able 73	. COMP	characteristics ⁽¹⁾
---	---------	--------	--------------------------------

1. Guaranteed by design, unless otherwise specified.

- 2. Refer to Table 24: Embedded internal voltage reference.
- 3. Guaranteed by characterization results.

6.3.21 Operational amplifiers characteristics

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{DDA}	Analog supply voltage ⁽²⁾		-	1.8	-	3.6	V
CMIR	Common mode input range		-	0	-	V _{DDA}	V
VI _{OFFSET}	Input offset	25 °C, No Load on	output.	-	-	±1.5	mV
VOFFSET	voltage	All voltage/Temp.		-	-	±3	IIIV
∆VI _{OFFSET}	Input offset	Normal mode		-	±5	-	µV/°C
OFFSET	voltage drift	Low-power mode		-	±10	-	μν/Ο
TRIMOFFSETP TRIMLPOFFSETP	Offset trim step at low common input voltage (0.1 _x V _{DDA})		-	-	0.8	1.1	mV
TRIMOFFSETN TRIMLPOFFSETN	Offset trim step at high common input voltage (0.9 _x V _{DDA})		-	-	1	1.35	
I _{LOAD}	Drive current	Normal mode	V _{DDA} ≥2V	-	-	500	
LOAD	Dive current	Low-power mode		-	-	100	μA
	Drive current in	Normal mode	ormal modeV _{DDA} ≥ 2 V	-	-	450	P** 1
I _{LOAD_PGA}	PGA mode	Low-power mode	VDDA = 2 V	-	-	50	
R _{LOAD}	Resistive load (connected to	Normal mode	rmal mode V _{DDA} < 2 V	4	-	-	
' LOAD	VSSA or to VDDA)	Low-power mode		20	-	-	
5	Resistive load in PGA mode	Normal mode	V 0.V	4.5	-	-	kΩ
R _{LOAD_PGA}	(connected to VSSA or to V _{DDA})	Low-power mode	- V _{DDA} < 2 V	40	-	-	
C _{LOAD}	Capacitive load		-	-	-	50	pF
	Common mode	Normal mode		-	-85	-	40
CMRR	rejection ratio	Low-power mode		-	-90	-	dB
PSRR	Power supply	Normal mode	C _{LOAD} ≤ 50 pf, R _{LOAD} ≥ 4 kΩ DC	70	85	-	dB
	rejection ratio	Low-power mode	C _{LOAD} ≤ 50 pf, R _{LOAD} ≥ 20 kΩ DC	72	90	-	UD

Table 74. OPAMP characteristics⁽¹⁾

152/200

Symbol	Parameter	Con	ditions	Min	Тур	Max	Unit
		Normal mode	V _{DDA} ≥ 2.4 V	550	1600	2200	
	Gain Bandwidth	Low-power mode	(OPA_RANGE = 1)	100	420	600	
GBW	Product	Normal mode	V _{DDA} < 2.4 V	250	700	950	kHz
		Low-power mode	(OPA_RANGE = 0)	40	180	280	
	Claw rate	Normal mode		-	700	-	
SR ⁽³⁾	Slew rate (from 10 and	Low-power mode	V _{DDA} ≥ 2.4 V	-	180	-	V/ms
SR	90% of output	Normal mode	V 2 4 V	-	300	-	
	voltage)	Low-power mode	V _{DDA} < 2.4 V	-	80	-	
40		Normal mode		55	110	-	٩D
AO	Open loop gain	Low-power mode		45	110	-	dB
V _{OHSAT} ⁽³⁾	High saturation	Normal mode	I _{load} = max or R _{load} =	V _{DDA} - 100	-	-	
VOHSAT` ∕	voltage	Low-power mode	min Input at V _{DDA} .	V _{DDA} - 50	-	-	mV
V _{OLSAT} ⁽³⁾	Low saturation	Normal mode	I _{load} = max or R _{load} =	-	-	100	
VOLSAT` ′		Low-power mode	min Input at 0.	-	-	50	
<i>(</i>)	Dhase margin	Normal mode		-	74	-	0
Φm	Phase margin	Low-power mode		-	66	-	
GM	Gain margin	Normal mode		-	13	-	dB
Givi	Gain margin	Low-power mode		-	20	-	uВ
	Wake up time	Normal mode	$C_{LOAD} \le 50 \text{ pf},$ $R_{LOAD} \ge 4 \text{ k}\Omega$ follower configuration	-	5	10	
^t WAKEUP	from OFF state.	Low-power mode	$C_{LOAD} \le 50 \text{ pf},$ $R_{LOAD} \ge 20 \text{ k}\Omega$ follower configuration	-	10	30	μs
l _{bias}	OPAMP input bias current	General purpose in	put	-	-	_(4)	nA
				-	2	-	
PGA gain ⁽³⁾	Non inverting			-	4	-	
F GA Yalli '	gain value	-		-	8	-	_
				-	16	-	

 Table 74. OPAMP characteristics⁽¹⁾ (continued)

Electrical characteristics

			cteristics ⁽¹⁾ (contin	, 			_
Symbol	Parameter	Con	ditions	Min	Тур	Мах	Unit
		PGA Gain = 2		-	80/80	-	
	R2/R1 internal resistance	PGA Gain = 4		-	120/ 40	-	
R _{network}	values in PGA mode ⁽⁵⁾	PGA Gain = 8		-	140/ 20	-	kΩ/kΩ
		PGA Gain = 16		-	150/ 10	-	
Delta R	Resistance variation (R1 or R2)		-	-15	-	15	%
PGA gain error	PGA gain error		-	-1	-	1	%
PGA BW	PGA bandwidth for different non inverting gain	Gain = 2	-	-	GBW/ 2	-	
		Gain = 4	-	-	GBW/ 4	-	
		Gain = 8	-	-	GBW/ 8	-	MHz
		Gain = 16	-	-	GBW/ 16	-	
		Normal mode	at 1 kHz, Output loaded with 4 kΩ	-	500	-	
on	Voltage noise	Low-power mode	at 1 kHz, Output loaded with 20 kΩ	-	600	-	
en	density	Normal mode	at 10 kHz, Output loaded with 4 kΩ	-	180	-	nV/√Hz
		Low-power mode	at 10 kHz, Output loaded with 20 kΩ	-	290	-	
(2)	OPAMP	Normal mode	no Load, quiescent	-	120	260	
I _{DDA} (OPAMP) ⁽³⁾	consumption from V _{DDA}	Low-power mode	mode	-	45	100	μA

Table 74.	OPAMP	characteristics ⁽¹⁾	(continued)
-----------	-------	--------------------------------	-------------

1. Guaranteed by design, unless otherwise specified.

2. The temperature range is limited to 0 °C-125 °C when V_{DDA} is below 2 V

3. Guaranteed by characterization results.

4. Mostly I/O leakage, when used in analog mode. Refer to IIkg parameter in Table 59: I/O static characteristics.

5. R2 is the internal resistance between OPAMP output and OPAMP inverting input. R1 is the internal resistance between OPAMP inverting input and ground. The PGA gain =1+R2/R1

6.3.22 Temperature sensor characteristics

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{TS} linearity with temperature	-	±1	±2	°C
Avg_Slope ⁽²⁾	Average slope	2.3	2.5	2.7	mV/°C
V ₃₀	Voltage at 30°C (±5 °C) ⁽³⁾	0.742	0.76	0.785	V
t _{START} (TS_BUF) ⁽¹⁾	Sensor Buffer Start-up time in continuous mode ⁽⁴⁾	-	8	15	μs
t _{START} ⁽¹⁾	Start-up time when entering in continuous mode ⁽⁴⁾	-	70	120	μs
t _{S_temp} ⁽¹⁾	ADC sampling time when reading the temperature	5	-	-	μs
I _{DD} (TS) ⁽¹⁾	Temperature sensor consumption from $V_{DD},$ when selected by ADC	-	4.7	7	μA

1. Guaranteed by design.

2. Guaranteed by characterization results.

3. Measured at V_{DDA} = 3.0 V ±10 mV. The V₃₀ ADC conversion result is stored in the TS_CAL1 byte. Refer to *Table 7: Temperature sensor calibration values*.

4. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes.

6.3.23 V_{BAT} monitoring characteristics

Table 76. V_{BAT} monitoring characteristics

Symbol	Parameter		Тур	Max	Unit
R	Resistor bridge for V _{BAT}	-	39	-	kΩ
Q	Ratio on V _{BAT} measurement	-	3	-	-
Er ⁽¹⁾	Error on Q	-10	-	10	%
t _{S_vbat} ⁽¹⁾	ADC sampling time when reading the VBAT	12	-	-	μs

1. Guaranteed by design.

Table 77. V _B	T charging	characteristics
--------------------------	------------	-----------------

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
R _{BC}	Battery	VBRS = 0	-	5	-	
	charging resistor	VBRS = 1	-	1.5	-	kΩ

6.3.24 Timer characteristics

The parameters given in the following tables are guaranteed by design.

Refer to *Section 6.3.14: I/O port characteristics* for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions	Min	Мах	Unit
+	Timer resolution time	-	1	-	t _{TIMxCLK}
t _{res(TIM)}		f _{TIMxCLK} = 80 MHz	12.5	-	ns
f	Timer external clock	-	0	f _{TIMxCLK} /2	MHz
f _{EXT}	frequency on CH1 to CH4	f _{TIMxCLK} = 80 MHz	0	40	MHz
Res _{TIM}	Timer resolution	TIMx (except TIM2)	-	16	bit
		TIM2	-	32	
+	16-bit counter clock	-	1	65536	t _{TIMxCLK}
^t COUNTER	period	f _{TIMxCLK} = 80 MHz	0.0125	819.2	μs
, Maximum possible cou	Maximum possible count	-	-	65536 × 65536	t _{TIMxCLK}
^t MAX_COUNT	with 32-bit counter	f _{TIMxCLK} = 80 MHz	-	53.68	S

Table 78. TIMx⁽¹⁾ characteristics

1. TIMx, is used as a general term in which x stands for 1,2,3,4,5,6,7,8,15,16 or 17.

Table 79. IWDG min/max timeout	period at 32 kHz (LSI) ⁽¹)
--------------------------------	--------------------------------------	---

Prescaler divider	PR[2:0] bits	Min timeout RL[11:0]= 0x000	Max timeout RL[11:0]= 0xFFF	Unit
/4	0	0.125	512	
/8	1	0.250	1024	
/16	2	0.500	2048	
/32	3	1.0	4096	ms
/64	4	2.0	8192	
/128	5	4.0	16384	
/256	6 or 7	8.0	32768	

1. The exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.

Prescaler	WDGTB	Min timeout value	Max timeout value	Unit	
1	0	0.0512	3.2768		
2	1	0.1024	6.5536		
4	2	0.2048	13.1072	ms	
8	3	0.4096	26.2144	1	

Table 80. WWDG min/max timeout	value at 80 MHz (PCLK)
--------------------------------	------------------------

6.3.25 Communication interfaces characteristics

I²C interface characteristics

The I2C interface meets the timings requirements of the I²C-bus specification and user manual rev. 03 for:

- Standard-mode (Sm): with a bit rate up to 100 kbit/s
- Fast-mode (Fm): with a bit rate up to 400 kbit/s
- Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.

The I2C timings requirements are guaranteed by design when the I2C peripheral is properly configured (refer to RM0392 reference manual).

The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DDIOx} is disabled, but is still present. Only FT_f I/O pins support Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O port characteristics for the I2C I/Os characteristics.

All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics:

Symbol	Parameter	Min	Мах	Unit
t _{AF}	Maximum pulse width of spikes that are suppressed by the analog filter	50 ⁽²⁾	260 ⁽³⁾	ns

Table 81. I2C analog filter characteristics⁽¹⁾

1. Guaranteed by design.

2. Spikes with widths below $t_{AF(min)}$ are filtered.

3. Spikes with widths above $t_{AF(max)}$ are not filtered

Г

Т

Т

٦

SPI characteristics

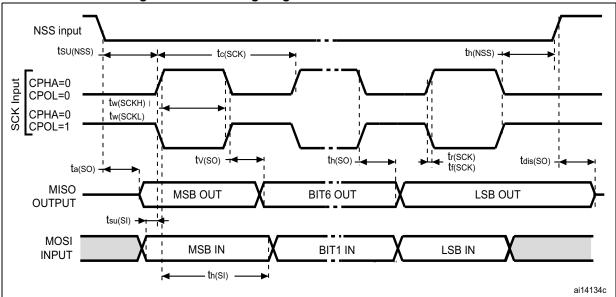
Unless otherwise specified, the parameters given in *Table 82* for SPI are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and supply voltage conditions summarized in *Table 21: General operating conditions*.

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 x V_{DD}

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI).

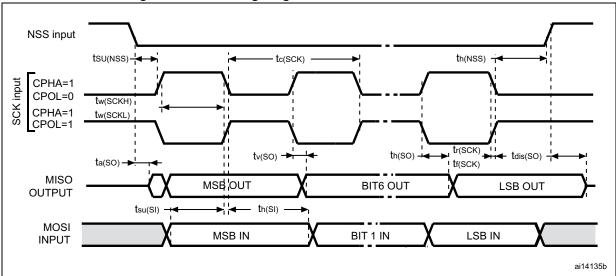
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		Master mode receiver/full duplex 2.7 < V _{DD} < 3.6 V Voltage Range 1			40	
		Master mode receiver/full duplex 1.71 < V _{DD} < 3.6 V Voltage Range 1			16	
f _{SCK} 1/t _{c(SCK)}		Master mode transmitter 1.71 < V _{DD} < 3.6 V Voltage Range 1			40	
	SPI clock frequency	Slave mode receiver 1.71 < V _{DD} < 3.6 V Voltage Range 1	-	-	40	MHz
		Slave mode transmitter/full duplex 2.7 < V _{DD} < 3.6 V Voltage Range 1			37 ⁽²⁾	
		Slave mode transmitter/full duplex 1.71 < V _{DD} < 3.6 V Voltage Range 1			20 ⁽²⁾	
		Voltage Range 2			13	
t _{su(NSS)}	NSS setup time	Slave mode, SPI prescaler = 2	4 _x T _{PCLK}	-	-	ns
t _{h(NSS)}	NSS hold time	Slave mode, SPI prescaler = 2	2 _x T _{PCLK}	-	-	ns
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode	T _{PCLK} -2	T _{PCLK}	T _{PCLK} +2	ns
t _{su(MI)}	Data input setup time	Master mode	4	-	-	ns
t _{su(SI)}		Slave mode	1.5	-	-	115
t _{h(MI)}	Data input hold time	Master mode	6.5	-	-	ns
t _{h(SI)}		Slave mode	1.5	-	-	115
t _{a(SO)}	Data output access time	Slave mode	9	-	36	ns
t _{dis(SO)}	Data output disable time	Slave mode	9	-	16	ns

Table 8	2. SPI	characteristics(1)
---------	--------	------------------	----

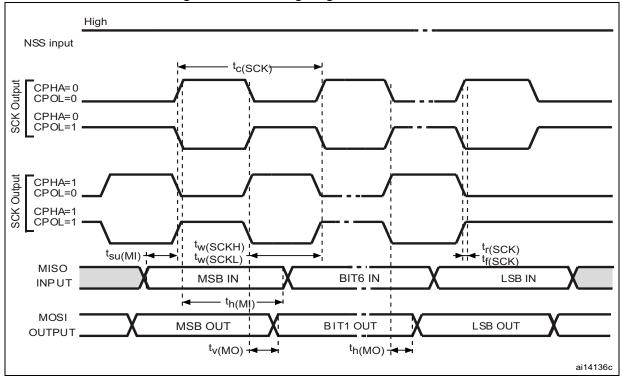


Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		Slave mode 2.7 < V _{DD} < 3.6 V Voltage Range 1	-	12.5	13.5	
t _{v(SO)}	Data output valid time	Slave mode 1.71 < V _{DD} < 3.6 V Voltage Range 1	-	12.5	24	ns
		Slave mode 1.71 < V _{DD} < 3.6 V Voltage Range 2	-	12.5	33	
t _{v(MO)}		Master mode	-	4.5	6	
t _{h(SO)}	Data output hold time	Slave mode	7	-	-	ns
t _{h(MO)}		Master mode	0	-	-	

Table 82. SPI characteristics⁽¹⁾ (continued)


1. Guaranteed by characterization results.

2. Maximum frequency in Slave transmitter mode is determined by the sum of $t_{v(SO)}$ and $t_{su(MI)}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while Duty(SCK) = 50 %.



1. Measurement points are done at CMOS levels: 0.3 V_{DD} and 0.7 $V_{\text{DD}}.$

Figure 35. SPI timing diagram - master mode

1. Measurement points are done at CMOS levels: 0.3 V_{DD} and 0.7 $V_{\text{DD}}.$

Quad SPI characteristics

Unless otherwise specified, the parameters given in *Table 83* and *Table 84* for Quad SPI are derived from tests performed under the ambient temperature, f_{AHB} frequency and V_{DD} supply voltage conditions summarized in *Table 21: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 15 or 20 pF
- Measurement points are done at CMOS levels: 0.5 x V_{DD}

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		1.71 < V _{DD} < 3.6 V, C _{LOAD} = 20 pF Voltage Range 1	-	-	40	
F _{СК} 1/t _(СК)		1.71 < V _{DD} < 3.6 V, C _{LOAD} = 15 pF Voltage Range 1	-	-	48	MHz
	Quad SPI clock frequency	$2.7 < V_{DD} < 3.6 V$, $C_{LOAD} = 15 pF$ Voltage Range 1	-	-	60	101112
		$1.71 < V_{DD} < 3.6 V C_{LOAD} = 20 pF$ Voltage Range 2	-	-	26	
t _{w(CKH)}	Quad SPI clock high and	f = 48 MHz proce-0	t _(CK) /2-2	-	t _(CK) /2	
t _{w(CKL)}	low time	f _{AHBCLK} = 48 MHz, presc=0	t _(CK) /2	-	t _(CK) /2+2	
t	Data input satur timo	Voltage Range 1	2	-	-	
t _{s(IN)}	Data input setup time	Voltage Range 2	3.5	-	-	
+	Data input hold time	Voltage Range 1	5	-	-	ns
t _{h(IN)}	Data input hold time	Voltage Range 2	6.5	-	-	115
+	Data autaut valid tima	Voltage Range 1	-	1	5	
t _{v(OUT)}	Data output valid time	Voltage Range 2	-	3	5	
+	Data output hold time	Voltage Range 1	0	-	-	
t _{h(OUT)}	Data output hold time	Voltage Range 2	0	-	-	

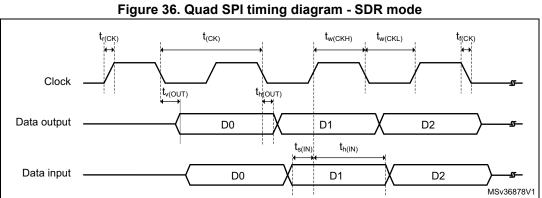
1. Guaranteed by characterization results.

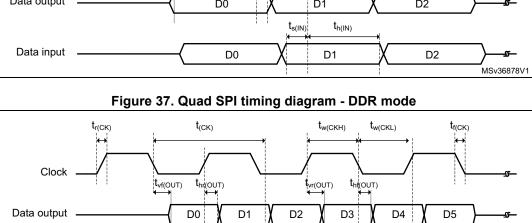
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		$1.71 < V_{DD} < 3.6 V$, $C_{LOAD} = 20 pF$ Voltage Range 1	-	-	40	
F _{СК} 1/t _(СК)	Quad SPI clock	2 < V _{DD} < 3.6 V, C _{LOAD} = 20 pF Voltage Range 1	-	-	48	MHz
	frequency	$1.71 < V_{DD} < 3.6 V$, $C_{LOAD} = 15 pF$ Voltage Range 1	-	-	48	
		$1.71 < V_{DD} < 3.6 V C_{LOAD} = 20 pF$ Voltage Range 2	-	-	26	
t _{w(CKH)}	Quad SPI clock high	f _{AHBCLK} = 48 MHz, presc=0	t _(CK) /2-2	-	t _(CK) /2	
t _{w(CKL)}	and low time	AHBCLK - 40 Miliz, presc-0	t _(CK) /2	-	t _(CK) /2+2	
+	Data input setup time	Voltage Range 1	1			
t _{sr(IN)}	on rising edge	Voltage Range 2	3.5] -	-	
4	Data input setup time	Voltage Range 1	1		-	
t _{sf(IN)}	on falling edge	Voltage Range 2	1.5			
4	Data input hold time	Voltage Range 1	6			
t _{hr(IN)}	on rising edge	Voltage Range 2	6.5		-	
+	Data input hold time	Voltage Range 1	5.5			
t _{hf(IN)}	on falling edge	Voltage Range 2	5.5		-	ns
+	Data output valid time	Voltage Range 1		5 5.5	5.5	
t _{vr(OUT)}	on rising edge	Voltage Range 2	-	9.5	14	
4	Data output valid time	Voltage Range 1		5	8.5	
t _{vf(OUT)}	on falling edge	Voltage Range 2	-	15	19	
+	Data output hold time	Voltage Range 1	3.5	-]
t _{hr(OUT)}	on rising edge	Voltage Range 2	8	-	-	
+	Data output hold time	Voltage Range 1	3.5	-		1
t _{hf(OUT)}	on falling edge	Voltage Range 2	13	-	-	

Table 84. QUADSPI characteristics in DDR mode ⁽¹⁾
--

1. Guaranteed by characterization results.

162/200




 $t_{sr(IN)}t_{hr(IN)}$

D4

D5

MSv36879V1

 $t_{sf(IN)}\,t_{hf(IN)}$

D1

D2

D3

÷

D0

Data input

SAI characteristics

Unless otherwise specified, the parameters given in *Table 85* for SAI are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in*Table 21: General operating conditions*, with the following configuration:

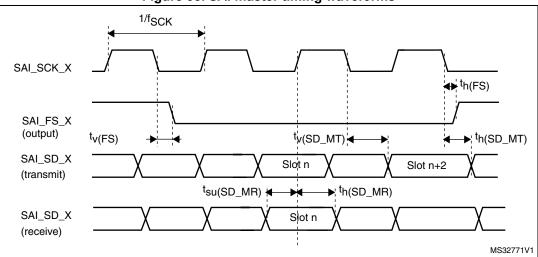
- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: $0.5 \times V_{DD}$

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CK,SD,FS).

Symbol	Parameter	Conditions	Min	Мах	Unit
f _{MCLK}	SAI Main clock output	-	-	50	MHz
		Master transmitter 2.7 ≤ V _{DD} ≤ 3.6 Voltage Range 1	-	18.5	
		Master transmitter 1.71 ≤ V _{DD} ≤ 3.6 Voltage Range 1	-	12.5	
		Master receiver Voltage Range 1	-	25	
f _{CK}	SAI clock frequency ⁽²⁾	Slave transmitter 2.7 ≤ V _{DD} ≤ 3.6 Voltage Range 1	-	22.5	MHz
		Slave transmitter 1.71 ≤ V _{DD} ≤ 3.6 Voltage Range 1	-	14.5	
		Slave receiver Voltage Range 1	-	25	
		Voltage Range 2	-	12.5	
+	FS valid time	Master mode 2.7 \leq V _{DD} \leq 3.6	-	22	
t _{v(FS)}		Master mode $1.71 \le V_{DD} \le 3.6$	-	40 r	ns
t _{h(FS)}	FS hold time	Master mode	10	-	ns
t _{su(FS)}	FS setup time	Slave mode	1	-	ns
t _{h(FS)}	FS hold time	Slave mode	2	-	ns
t _{su(SD_A_MR)}	Data input setup time	Master receiver	2	-	ns
t _{su(SD_B_SR)}		Slave receiver	1.5	-	115
t _{h(SD_A_MR)}	Data input hold time	Master receiver	5	-	ns
t _{h(SD_B_SR)}		Slave receiver	2.5	-	113

Table 85. SAI characteristic

164/200



r						
Symbol	Parameter	Conditions	Min	Мах	Unit	
t	Data output valid time	Slave transmitter (after enable edge) $2.7 \le V_{DD} \le 3.6$	-	22	ns	
t _{v(SD_B_ST)}		Slave transmitter (after enable edge) $1.71 \le V_{DD} \le 3.6$	-	34	115	
t _{h(SD_B_ST)}	Data output hold time	Slave transmitter (after enable edge)	10	-	ns	
+	Data output valid time	Master transmitter (after enable edge) 2.7 \leq V _{DD} \leq 3.6	-	27	ne	
^t v(SD_A_MT)		Master transmitter (after enable edge) $1.71 \le V_{DD} \le 3.6$	-	40	- ns	
t _{h(SD_A_MT)}	Data output hold time	Master transmitter (after enable edge)	10	-	ns	

Table 85. SAI characteristics⁽¹⁾ (continued)

1. Guaranteed by characterization results.

2. APB clock frequency must be at least twice SAI clock frequency.

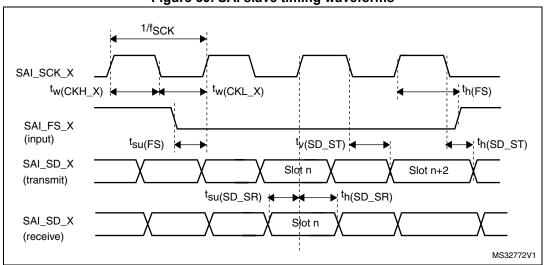


Figure 39. SAI slave timing waveforms

SDMMC characteristics

Unless otherwise specified, the parameters given in *Table 86* for SDIO are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 21: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 x V_{DD}

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output characteristics.

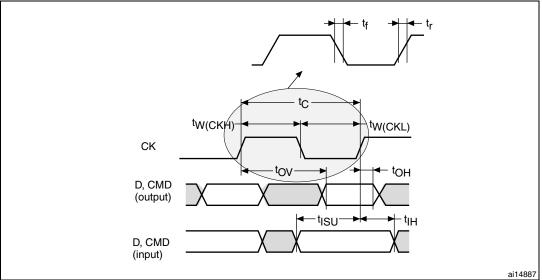
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{PP}	Clock frequency in data transfer mode	-	0	-	50	MHz
-	SDIO_CK/fPCLK2 frequency ratio	-	-	-	4/3	-
t _{W(CKL)}	Clock low time	f _{PP} = 50 MHz	8	10	-	ns
t _{W(CKH)}	Clock high time	f _{PP} = 50 MHz	8	10	-	ns
CMD, D inpu	ts (referenced to CK) in MMC and SD H	S mode				
t _{ISU}	Input setup time HS	f _{PP} = 50 MHz	3.5	-	-	ns
t _{IH}	Input hold time HS	f _{PP} = 50 MHz	2.5	-	-	ns
CMD, D outputs (referenced to CK) in MMC and SD HS mode						
t _{OV}	Output valid time HS	f _{PP} = 50 MHz	-	12	13	ns
t _{OH}	Output hold time HS	f _{PP} = 50 MHz	10	-	-	ns
CMD, D inputs (referenced to CK) in SD default mode						
t _{ISUD}	Input setup time SD	f _{PP} = 50 MHz	3.5	-	-	ns
t _{IHD}	Input hold time SD	f _{PP} = 50 MHz	3	-	-	ns

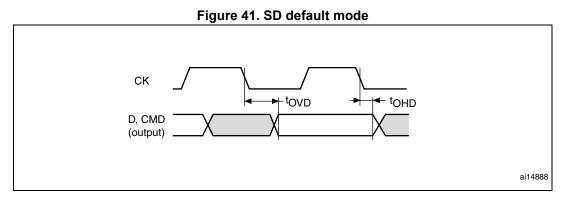
Table 86. SD / MMC d	ynamic characteristics	. V _{DD} =2.7 V to 3.6 V ⁽¹⁾

166/200

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
CMD, D outputs (referenced to CK) in SD default mode						
t _{OVD}	Output valid default time SD	f _{PP} = 50 MHz	-	2	3	ns
t _{OHD}	Output hold default time SD	f_{PP} = 50 MHz	0	-	-	ns

Table 86	. SD / MMC dynamic characteristic	s, V _{DD} =2.7 V	to 3.6 '	V ⁽¹⁾ (co	ontinue	ed)


1. Guaranteed by characterization results.


Table 87. eMMC dynamic characteristics, V_{DD} = 1.71 V to 1.9 V ⁽¹⁾⁽²⁾
--

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
f _{PP}	Clock frequency in data transfer mode	-	0	-	50	MHz		
-	SDIO_CK/f _{PCLK2} frequency ratio	-	-	-	4/3	-		
t _{W(CKL)}	Clock low time	f _{PP} = 50 MHz	8	10	-	ns		
t _{W(CKH)}	Clock high time	f _{PP} = 50 MHz	8	10	-	ns		
CMD, D inpu	CMD, D inputs (referenced to CK) in eMMC mode							
t _{ISU}	Input setup time HS	f _{PP} = 50 MHz	0	-	-	ns		
t _{IH}	Input hold time HS	f _{PP} = 50 MHz	1.5	-	-	ns		
CMD, D outp	CMD, D outputs (referenced to CK) in eMMC mode							
t _{OV}	Output valid time HS	f _{PP} = 50 MHz	-	13.5	15	ns		
t _{ОН}	Output hold time HS	f _{PP} = 50 MHz	9	-	-	ns		

1. Guaranteed by characterization results.

2. C_{LOAD} = 20pF.

CAN (controller area network) interface

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX).

SWPMI characteristics

The Single Wire Protocol Master Interface (SWPMI) and the associated SWPMI_IO transceiver are compliant with the ETSI TS 102 613 technical specification.

Symbol	Parameter Conditions		Min	Тур	Max	Unit		
t _{SWPSTART}	SWPMI regulator startup time	SWP Class B 2.7 V ≤ V _{DD} ≤ 3,3V	-	-	300	μs		
towner	SWP bit duration	V _{CORE} voltage range 1	500	-	-	ns		
ISWPBIT		V _{CORE} voltage range 2	620	-	-	115		

Table 88. SWPMI electrical characteristics

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7.1 LQFP100 package information

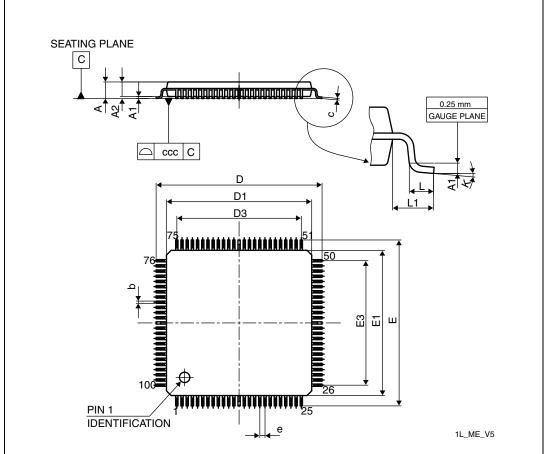
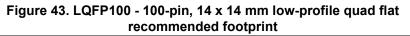
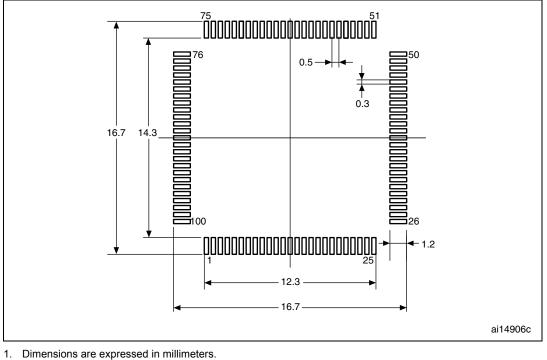


Figure 42. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline

1. Drawing is not to scale.

Table 89. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package	
mechanical data	

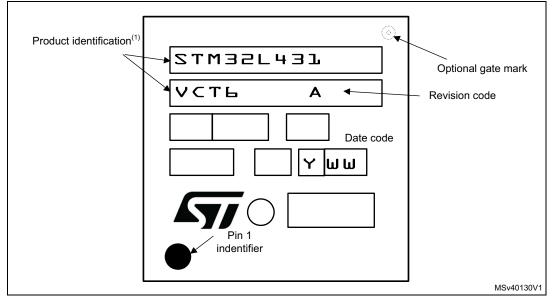

Symbol		millimeters		inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Max	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	



Cumhal		millimeters		inches ⁽¹⁾				
Symbol	Min	Тур	Мах	Min	Тур	Мах		
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571		
b	0.170	0.220	0.270	0.0067	0.0087	0.0106		
с	0.090	-	0.200	0.0035	-	0.0079		
D	15.800	16.000	16.200	0.6220	0.6299	0.6378		
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591		
D3	-	12.000	-	-	0.4724	-		
E	15.800	16.000	16.200	0.6220	0.6299	0.6378		
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591		
E3	-	12.000	-	-	0.4724	-		
е	-	0.500	-	-	0.0197	-		
L	0.450	0.600	0.750	0.0177	0.0236	0.0295		
L1	-	1.000	-	-	0.0394	-		
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°		
CCC	-	-	0.080	-	-	0.0031		

Table 89. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data (continued)

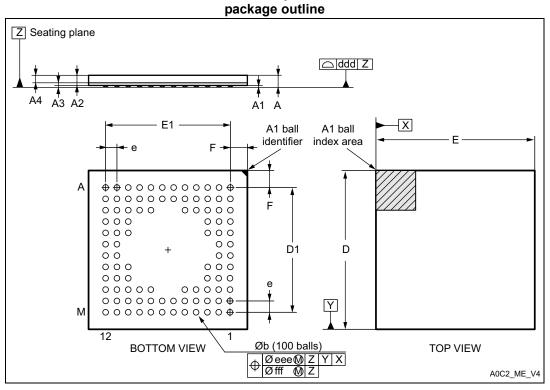
1. Values in inches are converted from mm and rounded to 4 decimal digits.



170/200

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.



 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

7.2 UFBGA100 package information

Figure 45. UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array

1. Drawing is not to scale.

Table 90. UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array
package mechanical data

Symbol		millimeters					
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	0.460	0.530	0.600	0.0181	0.0209	0.0236	
A1	0.050	0.080	0.110	0.0020	0.0031	0.0043	
A2	0.400	0.450	0.500	0.0157	0.0177	0.0197	
A3	-	0.130	-	-	0.0051	-	
A4	0.270	0.320	0.370	0.0106	0.0126	0.0146	
b	0.200	0.250	0.300	0.0079	0.0098	0.0118	
D	6.950	7.000	7.050	0.2736	0.2756	0.2776	
D1	5.450	5.500	5.550	0.2146	0.2165	0.2185	
E	6.950	7.000	7.050	0.2736	0.2756	0.2776	
E1	5.450	5.500	5.550	0.2146	0.2165	0.2185	
е	-	0.500	-	-	0.0197	-	

172/200

Table 90. UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid arraypackage mechanical data (continued)

Symphol	millimeters			inches ⁽¹⁾		
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
F	0.700	0.750	0.800	0.0276	0.0295	0.0315
ddd	-	-	0.100	-	-	0.0039
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 46. UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array

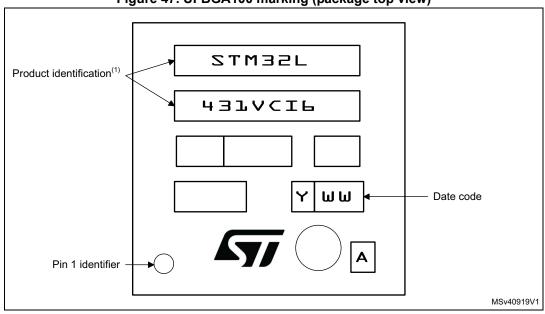
package recommended footprint 00 00 000 Dpad Ô O _Dsm ▼ 000 ψ. ŏŏŏ 000 4 ≱ 00000 õõ 0 0000000000000 A0C2_FP_V1

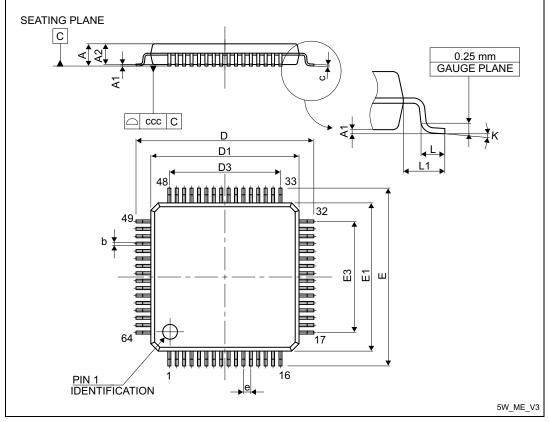
Table 91. UFBGA100 recommended PCB design rules (0.5 mm pitch BGA) Image: Comparison of the second seco

Dimension	Recommended values		
Pitch	0.5		
Dpad	0.280 mm		
Dsm	0.370 mm typ. (depends on the soldermask registration tolerance)		
Stencil opening	0.280 mm		
Stencil thickness	Between 0.100 mm and 0.125 mm		

Device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.




Figure 47. UFBGA100 marking (package top view)

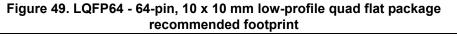
 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

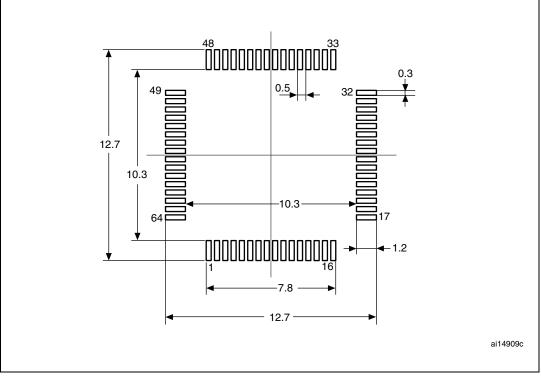
7.3 LQFP64 package information

Figure 48. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline

1. Drawing is not to scale.

Table 92. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat					
package mechanical data					


Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	-	12.000	-	-	0.4724	-
D1	-	10.000	-	-	0.3937	-
D3	-	7.500	-	-	0.2953	-
E	-	12.000	-	-	0.4724	-
E1	-	10.000	-	-	0.3937	-



	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах
E3	-	7.500	-	-	0.2953	-
е	-	0.500	-	-	0.0197	-
К	0°	3.5°	7°	0°	3.5°	7°
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
ссс	-	-	0.080	-	-	0.0031

Table 92. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flatpackage mechanical data (continued)

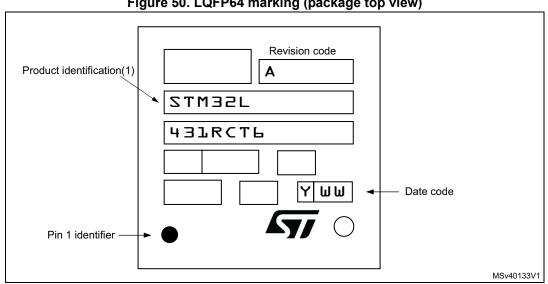
1. Values in inches are converted from mm and rounded to 4 decimal digits.

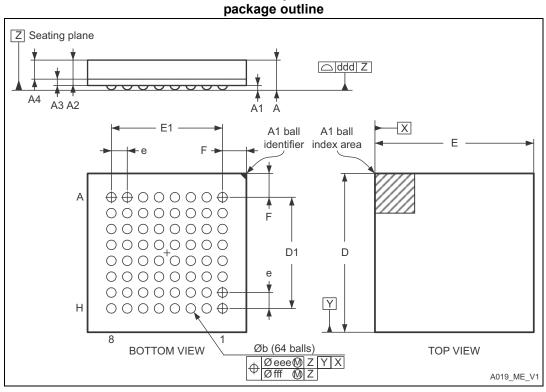
1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

176/200




Figure 50. LQFP64 marking (package top view)

Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. 1.

7.4 UFBGA64 package information

Figure 51. UFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch ball grid array

1. Drawing is not to scale.

Table 93. UFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch ball grid arraypackage mechanical data

Symphol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах
А	0.460	0.530	0.600	0.0181	0.0209	0.0236
A1	0.050	0.080	0.110	0.0020	0.0031	0.0043
A2	0.400	0.450	0.500	0.0157	0.0177	0.0197
A3	0.080	0.130	0.180	0.0031	0.0051	0.0071
A4	0.270	0.320	0.370	0.0106	0.0126	0.0146
b	0.170	0.280	0.330	0.0067	0.0110	0.0130
D	4.850	5.000	5.150	0.1909	0.1969	0.2028
D1	3.450	3.500	3.550	0.1358	0.1378	0.1398
E	4.850	5.000	5.150	0.1909	0.1969	0.2028
E1	3.450	3.500	3.550	0.1358	0.1378	0.1398
е	-	0.500	-	-	0.0197	-

178/200

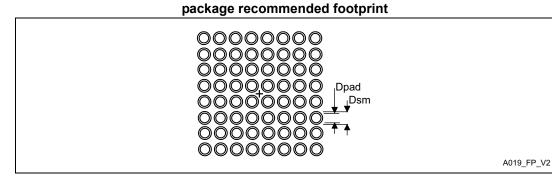


Table 93. UFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch ball grid arraypackage mechanical data (continued)

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Max
А	0.460	0.530	0.600	0.0181	0.0209	0.0236
F	0.700	0.750	0.800	0.0276	0.0295	0.0315
ddd	-	-	0.080	-	-	0.0031
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 52. UFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch ball grid array

Table 94. UFBGA64 recommended PCB design rules (0.5 mm pitch BGA)

Dimension	Recommended values		
Pitch	0.5		
Dpad	0.280 mm		
Dsm	0.370 mm typ. (depends on the soldermask registration tolerance)		
Stencil opening	0.280 mm		
Stencil thickness	Between 0.100 mm and 0.125 mm		
Pad trace width	0.100 mm		

Device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

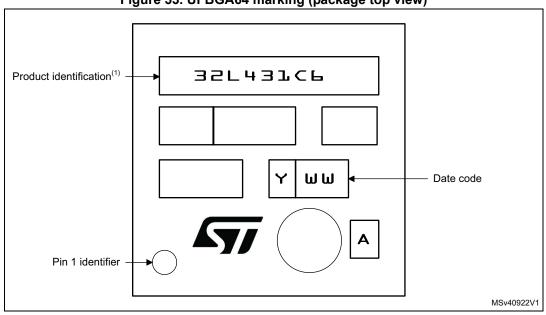


Figure 53. UFBGA64 marking (package top view)

Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. 1.

180/200

7.5 WLCSP64 package information

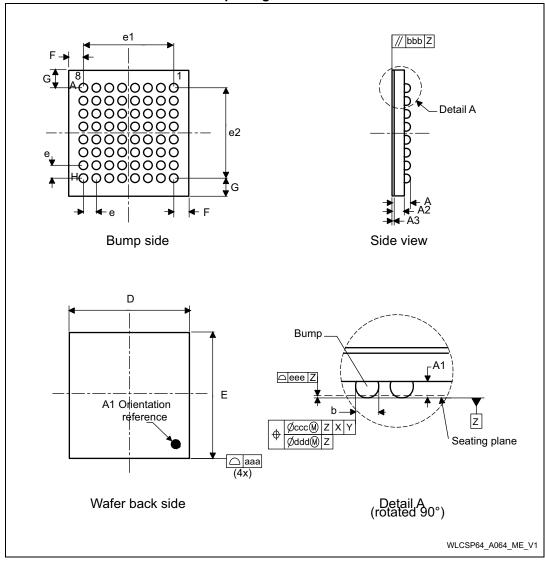


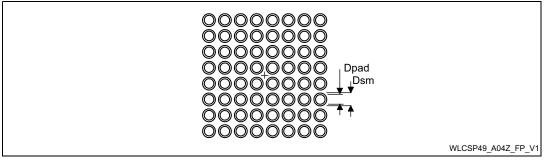
Figure 54. WLCSP64 - 64-ball, 3.141 x 3.127 mm, 0.35 mm pitch wafer level chip scale package outline

1. Drawing is not to scale.

Table 95. WLCSP64 - 64-ball, 3.141 x 3.127 mm, 0.35 mm pitch wafer level chip scale package mechanical data

Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min Typ Max		Min	Тур	Max	
A	0.516	0.546	0.576	0.0203	0.0215	0.0227
A1	-	0.166	-	-	0.0065	-
A2	-	0.380	-	-	0.0150	-
A3 ⁽²⁾	-	0.025	-	-	0.0010	-

package mechanical data (continued)							
Symbol		millimeters			inches ⁽¹⁾		
Зушьог	Min	Тур	Max	Min	Тур	Max	
b ⁽³⁾	0.190	0.220	0.250	0.0075	0.0087	0.0098	
D	3.106	3.141	3.176	0.1223	0.1237	0.1250	
Е	3.092	3.127	3.162	0.1217	0.1231	0.1245	
е	-	0.350	-	-	0.0138	-	
e1	-	2.450	-	-	0.0965	-	
e2	-	2.450	-	-	0.0965	-	
F	-	0.3455	-	-	0.0136	-	
G	-	0.3385	-	-	0.0133	-	
aaa	-	-	0.100	-	-	0.0039	
bbb	-	-	0.100	-	-	0.0039	
CCC	-	-	0.100	-	-	0.0039	
ddd	-	-	0.050	-	-	0.0020	
eee	-	-	0.050	-	-	0.0020	

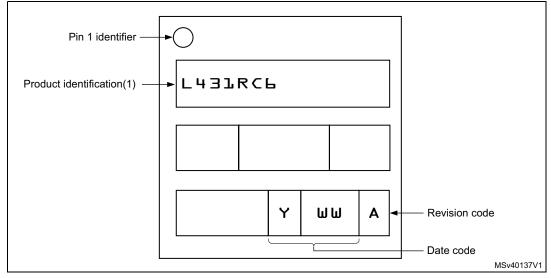

Table 95. WLCSP64 - 64-ball, 3.141 x 3.127 mm, 0.35 mm pitch wafer level chip scale package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Back side coating.

3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

Figure 55. WLCSP64 - 64-ball, 3.141 x 3.127 mm, 0.35 mm pitch wafer level chip scale package recommended footprint


Table 96. WLCSP64 recommended PCB design rules (0.35 mm pitch)

Dimension	Recommended values
Pitch	0.35 mm
Dpad	0.210 mm
Dsm	0.275 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.235 mm
Stencil thickness	0.100 mm

Device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

7.6 WLCSP49 package information

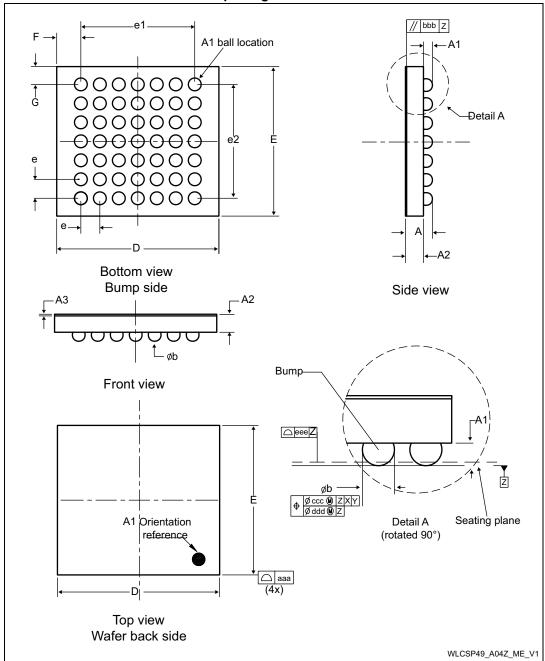
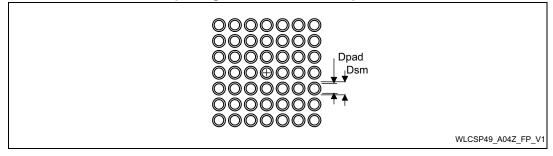


Figure 57. WLCSP49 - 49-ball, 3.141 x 3.127 mm, 0.4 mm pitch wafer level chip scale package outline

1. Drawing is not to scale.

package mechanical data								
Symbol	millimeters			inches ⁽¹⁾				
Symbol	Min	Тур	Max	Min	Тур	Max		
А	0.525	0.555	0.585	0.0207	0.0219	0.0230		
A1	-	0.175	-	-	0.0069	-		
A2	-	0.380	-	-	0.0150	-		
A3 ⁽²⁾	-	0.025	-	-	0.0010	-		
b ⁽³⁾	0.220	0.250	0.280	0.0087	0.0098	0.0110		
D	3.106	3.141	3.176	0.1223	0.1237	0.1250		
E	3.092	3.127	3.162	0.1217	0.1231	0.1245		
е	-	0.400	-	-	0.0157	-		
e1	-	2.400	-	-	0.0945	-		
e2	-	2.400	-	-	0.0945	-		
F	-	0.3705	-	-	0.0146	-		
G	-	0.3635	-	-	0.0143	-		
aaa	-	-	0.100	-	-	0.0039		
bbb	-	-	0.100	-	-	0.0039		
ссс	-	-	0.100	-	-	0.0039		
ddd	-	-	0.050			0.0020		
eee	-	-	0.050	-	-	0.0020		


Table 97. WLCSP49 - 49-ball, 3.141 x 3.127 mm, 0.4 mm pitch wafer level chip scalepackage mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Back side coating

3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

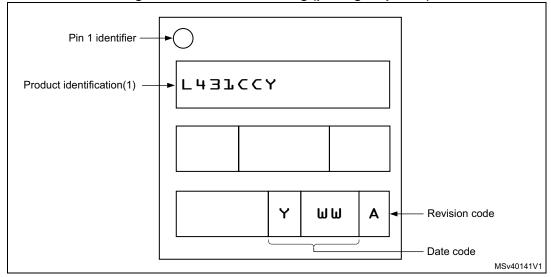
Figure 58. WLCSP49 - 49-ball, 3.141 x 3.127 mm, 0.4 mm pitch wafer level chip scale package recommended footprint

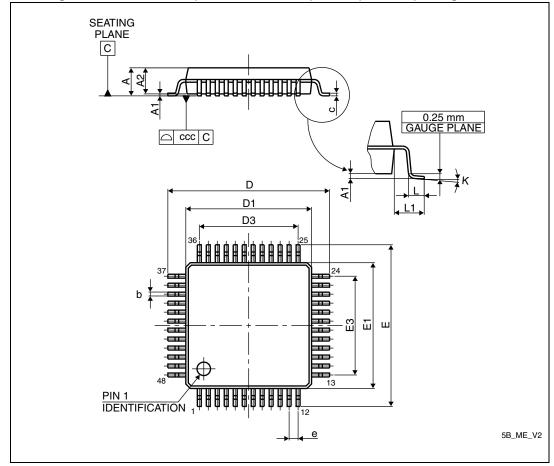
······································						
Dimension	Recommended values					
Pitch	0.4					
Dpad	0.225 mm					
Dsm	0.290 mm typ. (depends on the soldermask registration tolerance)					
Stencil opening	0.250 mm					
Stencil thickness	0.100 mm					

 Table 98. WLCSP49 recommended PCB design rules (0.4 mm pitch)

Device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.



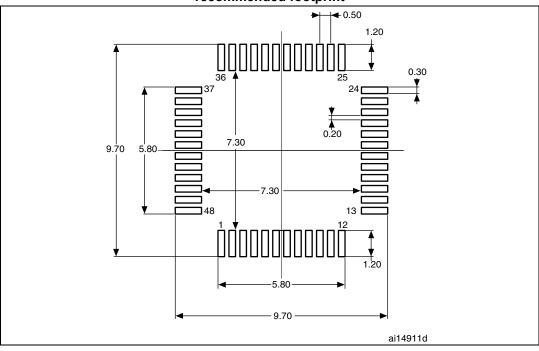

Figure 59. WLCSP49 marking (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

7.7 LQFP48 package information

Figure 60. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline

1. Drawing is not to scale.



millimeters					inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Мах		
А	-	-	1.600	-	-	0.0630		
A1	0.050	-	0.150	0.0020	-	0.0059		
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571		
b	0.170	0.220	0.270	0.0067	0.0087	0.0106		
с	0.090	-	0.200	0.0035	-	0.0079		
D	8.800	9.000	9.200	0.3465	0.3543	0.3622		
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835		
D3	-	5.500	-	-	0.2165	-		
E	8.800	9.000	9.200	0.3465	0.3543	0.3622		
E1	6.800	7.000	7.200	0.2677	0.2677 0.2756			
E3	-	5.500	-	- 0.2165		-		
е	-	0.500	-	-	0.0197	-		
L	0.450	0.600	0.750	0.0177	0.0236	0.0295		
L1	-	1.000	-	-	0.0394	-		
k	0°	3.5°	7°	0°	3.5°	7°		
CCC	-	-	0.080	-	-	0.0031		

Table 99. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package					
mechanical data					

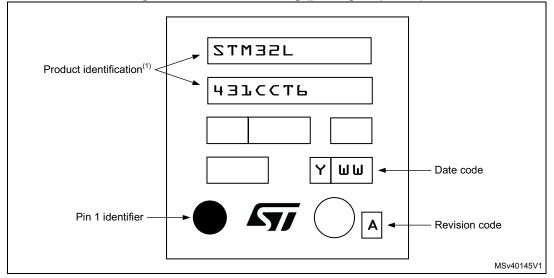
1. Values in inches are converted from mm and rounded to 4 decimal digits.

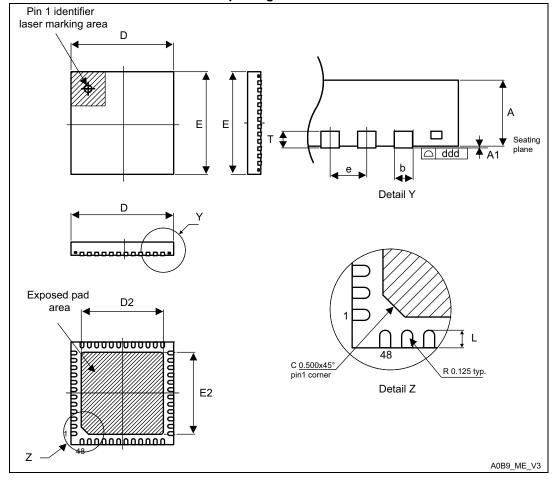
Figure 61. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.



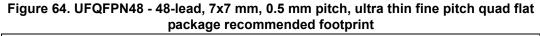

Figure 62. LQFP48 marking (package top view)

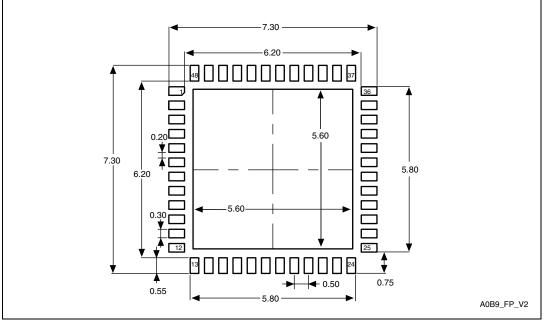
 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

7.8 UFQFPN48 package information

Figure 63. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline

1. Drawing is not to scale.


- 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
- 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground.



Symbol	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Мах	
А	0.500	0.550	0.600	0.0197	0.0217	0.0236	
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020	
D	6.900	7.000	7.100	0.2717	0.2756	0.2795	
E	6.900	7.000	7.100	0.2717	0.2756	0.2795	
D2	5.500	5.600	5.700	0.2165	0.2205	0.2244	
E2	5.500	5.600	5.700	0.2165	0.2205	0.2244	
L	0.300	0.400	0.500	0.0118	0.0157	0.0197	
Т	-	0.152	-	-	0.0060	-	
b	0.200	0.250	0.300	0.0079	0.0098	0.0118	
е	-	0.500	-	-	0.0197	-	
ddd	-	-	0.080	-	-	0.0031	

Table 100. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flatpackage mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

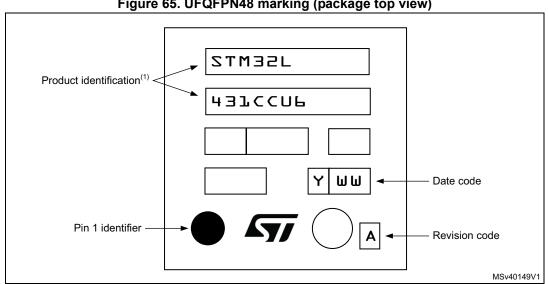


Figure 65. UFQFPN48 marking (package top view)

Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering 1. samples to run qualification activity.

7.9 **UFQFPN32** package information

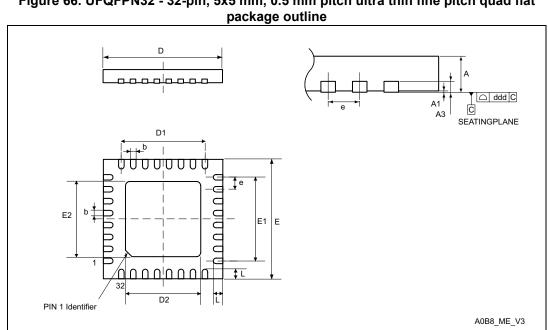
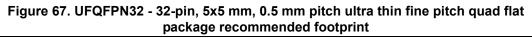
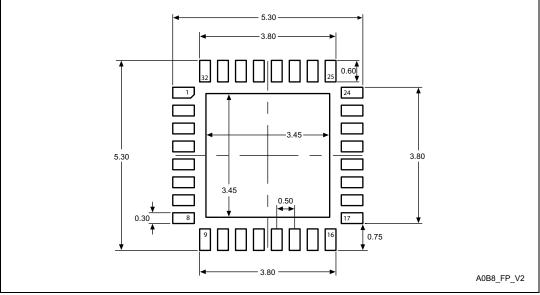


Figure 66. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat


- 1. Drawing is not to scale.
- There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this backside pad to PCB ground. 2.



	package mechanical data							
Cumula al		millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Max		
А	0.500	0.550	0.600	0.0197	0.0217	0.0236		
A1	-	-	0.050	-	-	0.0020		
A3	-	0.152	-	-	0.0060	-		
b	0.180	0.230	0.280	0.0071	0.0091	0.0110		
D	4.900	5.000	5.100	0.1929	0.1969	0.2008		
D1	3.400	3.500	3.600	0.1339	0.1378	0.1417		
D2	3.400	3.500	3.600	0.1339	0.1378	0.1417		
E	4.900	5.000	5.100	0.1929	0.1969	0.2008		
E1	3.400	3.500	3.600	0.1339	0.1378	0.1417		
E2	3.400	3.500	3.600	0.1339	0.1378	0.1417		
е	-	0.500	-	-	0.0197	-		
L	0.300	0.400	0.500	0.0118	0.0157	0.0197		
ddd	-	-	0.080	-	-	0.0031		

Table 101. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flatpackage mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

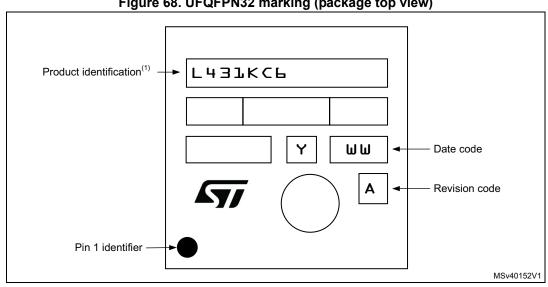


Figure 68. UFQFPN32 marking (package top view)

Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. 1.

194/200

7.10 Thermal characteristics

The maximum chip junction temperature (T_Jmax) must never exceed the values given in *Table 21: General operating conditions*.

The maximum chip-junction temperature, T_J max, in degrees Celsius, may be calculated using the following equation:

$$T_J max = T_A max + (P_D max x \Theta_{JA})$$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

P_{I/O} max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma \; ((\mathsf{V}_{\mathsf{DDIOx}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit			
	Thermal resistance junction-ambient UFQFPN48 - 7 × 7 mm / 0.5 mm pitch	33				
	Thermal resistance junction-ambient LQFP48 - 7 × 7 mm / 0.5 mm pitch	57				
	Thermal resistance junction-ambient WLCSP49 3.141 x 3.127 / 0.4 mm pitch	48				
Θ	Thermal resistance junction-ambient LQFP64 - 10 × 10 mm / 0.5 mm pitch	46	°C/W			
Θ_{JA}	Thermal resistance junction-ambient UFBGA64 - 5 × 5 mm / 0.5 mm pitch	65	0/11			
	Thermal resistance junction-ambient WLCSP64 3.141 x 3.127 / 0.35 mm pitch	46				
	Thermal resistance junction-ambient LQFP100 - 14 × 14 mm / 0.5 mm pitch	42				
	Thermal resistance junction-ambient UFBGA100 - 7 × 7 mm / 0.5 mm pitch	57				

Table 102. Package thermal characteristics

7.10.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org

7.10.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Section 8: Part numbering*.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

As applications do not commonly use the STM32L431xx at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application.

The following examples show how to calculate the temperature range needed for a given application.

Example 1: High-performance application

Assuming the following application conditions:

Maximum ambient temperature $T_{Amax} = 82$ °C (measured according to JESD51-2), I_{DDmax} = 50 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL}= 0.4 V and maximum 8 I/Os used at the same time in output at low level with I_{OL} = 20 mA, V_{OL}= 1.3 V

P_{INTmax} = 50 mA × 3.5 V= 175 mW

P_{IOmax} = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW

This gives: P_{INTmax} = 175 mW and P_{IOmax} = 272 mW:

P_{Dmax} = 175 + 272 = 447 mW

Using the values obtained in *Table 102* T_{Jmax} is calculated as follows:

For LQFP64, 46 °C/W

T_{Jmax} = 82 °C + (46 °C/W × 447 mW) = 82 °C + 20.562 °C = 102.562 °C

This is within the range of the suffix 6 version parts ($-40 < T_J < 105 \text{ °C}$) see Section 8: Part numbering.

In this case, parts must be ordered at least with the temperature range suffix 6 (see Part numbering).

Note: With this given P_{Dmax} we can find the T_{Amax} allowed for a given device temperature range (order code suffix 6 or 7).

Suffix 6: $T_{Amax} = T_{Jmax} - (46^{\circ}C/W \times 447 \text{ mW}) = 105-20.562 = 84.438^{\circ}C$ Suffix 7: $T_{Amax} = T_{Jmax} - (46^{\circ}C/W \times 447 \text{ mW}) = 125-20.562 = 104.438^{\circ}C$

Example 2: High-temperature application

Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature T_J remains within the specified range.

Assuming the following application conditions:

Maximum ambient temperature $T_{Amax} = 100 \text{ °C}$ (measured according to JESD51-2), $I_{DDmax} = 20 \text{ mA}$, $V_{DD} = 3.5 \text{ V}$, maximum 20 I/Os used at the same time in output at low level with $I_{OL} = 8 \text{ mA}$, $V_{OL} = 0.4 \text{ V}$

P_{INTmax} = 20 mA × 3.5 V= 70 mW

 $P_{IOmax} = 20 \times 8 \text{ mA} \times 0.4 \text{ V} = 64 \text{ mW}$

This gives: P_{INTmax} = 70 mW and P_{IOmax} = 64 mW:

 $P_{Dmax} = 70 + 64 = 134 \text{ mW}$

Thus: P_{Dmax} = 134 mW

Using the values obtained in Table 102 T_{Jmax} is calculated as follows:

- For LQFP64, 46 °C/W
- T_{Jmax} = 100 °C + (46 °C/W × 134 mW) = 100 °C + 6.164 °C = 106.164 °C

This is above the range of the suffix 6 version parts ($-40 < T_J < 105 \text{ °C}$).

In this case, parts must be ordered at least with the temperature range suffix 7 (see *Section 8: Part numbering*) unless we reduce the power dissipation in order to be able to use suffix 6 parts.

Refer to *Figure 69* to select the required temperature range (suffix 6 or 7) according to your ambient temperature or power requirements.

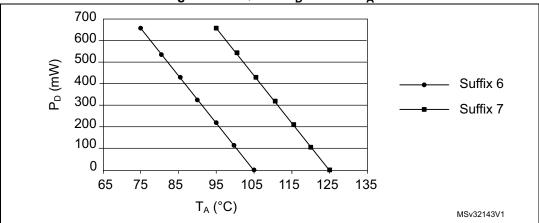


Figure 69. LQFP64 P_D max vs. T_A

8 Part numbering

Table 103. STM32L431xx or	dering info	orma	tion s	chem	ne			
Example:	STM32	L	431	С	С	Т	6	TR
Device family								
STM32 = ARM [®] based 32-bit microcontroller								
Product type								
L = ultra-low-power								
Device subfamily								
431: STM32L431xx								
Pin count								
K = 32 pins								
C = 48 pins								
R = 64 pins								
V = 100 pins								
Flash memory size								
B = 128 kB of Flash memory								
C = 256 KB of Flash memory								
P. J. J.								
Package								
T = LQFP ECOPACK®2								
U = QFN ECOPACK®2								
I = UFBGA ECOPACK [®] 2								
Y = CSP ECOPACK [®] 2								
Temperature range								
6 = Industrial temperature range, -40 to 85 °C (105	5 °C junction)						
7 = Industrial temperature range, -40 to 105 °C (12	-	-						
3 = Industrial temperature range, -40 to 125 °C (13	-							
		,						
Packing								

TR = tape and reel

xxx = programmed parts

9 Revision history

Table 104	. Document	revision	history
-----------	------------	----------	---------

Date	Revision	Changes
31-May-2016	1	Initial release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

