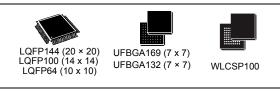
STM32L496xx

Ultra-low-power Arm[®] Cortex[®]-M4 32-bit MCU+FPU, 100DMIPS, up to 1MB Flash, 320KB SRAM, USB OTG FS, audio, ext. SMPS


Datasheet - production data

Features

- Ultra-low-power with FlexPowerControl
 - 1.71 V to 3.6 V power supply
 - -40 °C to 85/125 °C temperature range
 - 320 nA in V_{BAT} mode: supply for RTC and 32x32-bit backup registers
 - 25 nA Shutdown mode (5 wakeup pins)
 - 108 nA Standby mode (5 wakeup pins)
 - 426 nA Standby mode with RTC
 - 2.57 μA Stop 2 mode, 2.86 μA Stop 2 with RTC
 - 91 μA/MHz run mode (LDO Mode)
 - 37 μA/MHz run mode (@3.3 V SMPS Mode)
 - Batch acquisition mode (BAM)
 - 5 µs wakeup from Stop mode
 - Brown out reset (BOR) in all modes except shutdown
 - Interconnect matrix
- Core: Arm[®] 32-bit Cortex[®]-M4 CPU with FPU, Adaptive real-time accelerator (ART Accelerator[™]) allowing 0-wait-state execution from Flash memory, frequency up to 80 MHz, MPU, 100 DMIPS and DSP instructions
- Performance benchmark
 - 1.25 DMIPS/MHz (Drystone 2.1)
 - 273.55 Coremark[®] (3.42 Coremark/MHz @ 80 MHz)
- Energy benchmark
 - 279 ULPMark™ CP score
 - 80.2 ULPMark™ PP score

This is information on a product in full production.

- 16 x timers: 2 x 16-bit advanced motor-control, 2 x 32-bit and 5 x 16-bit general purpose, 2 x 16-bit basic, 2 x low-power 16-bit timers (available in Stop mode), 2 x watchdogs, SysTick timer
- · RTC with HW calendar, alarms and calibration

- Up to 136 fast I/Os, most 5 V-tolerant, up to 14 I/Os with independent supply down to 1.08 V
- Dedicated Chrom-ART Accelerator™ for enhanced graphic content creation (DMA2D)
- 8- to 14-bit camera interface up to 32 MHz (black&white) or 10 MHz (color)
- Memories
 - Up to 1 MB Flash, 2 banks read-whilewrite, proprietary code readout protection
 - 320 KB of SRAM including 64 KB with hardware parity check
 - External memory interface for static memories supporting SRAM, PSRAM, NOR and NAND memories
 - Dual-flash Quad SPI memory interface
- Clock Sources
 - 4 to 48 MHz crystal oscillator
 - 32 kHz crystal oscillator for RTC (LSE)
 - Internal 16 MHz factory-trimmed RC (±1%)
 - Internal low-power 32 kHz RC (±5%)
 - Internal multispeed 100 kHz to 48 MHz oscillator, auto-trimmed by LSE (better than ±0.25% accuracy)
 - Internal 48 MHz with clock recovery
 - 3 PLLs for system clock, USB, audio, ADC
- LCD 8 × 40 or 4 × 44 with step-up converter
- Up to 24 capacitive sensing channels: support touchkey, linear and rotary touch sensors
- 4 x digital filters for sigma delta modulator
- Rich analog peripherals (independent supply)
 - 3 × 12-bit ADC 5 Msps, up to 16-bit with hardware oversampling, 200 μA/Msps

July 2018 DS11585 Rev 9 1/272

Downloaded from Arrow.com.

- 2 x 12-bit DAC output channels, low-power sample and hold
- 2 x operational amplifiers with built-in PGA
- 2 x ultra-low-power comparators
- 20 x communication interfaces
 - USB OTG 2.0 full-speed, LPM and BCD
 - 2 x SAIs (serial audio interface)
 - 4 x I2C FM+(1 Mbit/s), SMBus/PMBus
 - 5 x U(S)ARTs (ISO 7816, LIN, IrDA, modem)

- 1 x LPUART
- 3 x SPIs (4 x SPIs with the Quad SPI)
- 2 x CAN (2.0B Active) and SDMMC
- SWPMI single wire protocol master I/F
- IRTIM (Infrared interface)
- 14-channel DMA controller
- True random number generator
- CRC calculation unit, 96-bit unique ID
- Development support: serial wire debug (SWD), JTAG, Embedded Trace Macrocell™

Table 1. Device summary

Reference	Part numbers
STM32L496xx	STM32L496AG, STM32L496QG, STM32L496RG, STM32L496VG, STM32L496ZG, STM32L496AE, STM32L496QE, STM32L496RE, STM32L496VE, STM32L496ZE

STM32L496xx Contents

Contents

1	Intro	luction
2	Desc	ription
3	Func	ional overview
	3.1	Arm® Cortex®-M4 core with FPU
	3.2	Adaptive real-time memory accelerator (ART Accelerator™) 18
	3.3	Memory protection unit
	3.4	Embedded Flash memory
	3.5	Embedded SRAM
	3.6	Multi-AHB bus matrix
	3.7	Firewall
	3.8	Boot modes
	3.9	Cyclic redundancy check calculation unit (CRC)
	3.10	Power supply management
		3.10.1 Power supply schemes
		3.10.2 Power supply supervisor
		3.10.3 Voltage regulator
		3.10.4 Low-power modes
		3.10.5 Reset mode
		3.10.6 VBAT operation
	3.11	Interconnect matrix
	3.12	Clocks and startup 37
	3.13	General-purpose inputs/outputs (GPIOs)
	3.14	Direct memory access controller (DMA)
	3.15	Chrom-ART Accelerator™ (DMA2D)
	3.16	Interrupts and events
		3.16.1 Nested vectored interrupt controller (NVIC)
		3.16.2 Extended interrupt/event controller (EXTI)
	3.17	Analog to digital converter (ADC)
		3.17.1 Temperature sensor
		3.17.2 Internal voltage reference (VREFINT)

	3.17.3	VBAT battery voltage monitoring	43
3.18	Digital t	o analog converter (DAC)	. 43
3.19	Voltage	reference buffer (VREFBUF)	. 44
3.20	Compa	rators (COMP)	. 45
3.21	Operati	onal amplifier (OPAMP)	. 45
3.22	Touch s	sensing controller (TSC)	. 45
3.23	Liquid o	crystal display controller (LCD)	. 46
3.24	Digital f	ilter for Sigma-Delta Modulators (DFSDM)	. 46
3.25	Randor	m number generator (RNG)	. 48
3.26	Digital o	camera interface (DCMI)	. 48
3.27	Timers	and watchdogs	. 48
	3.27.1	Advanced-control timer (TIM1, TIM8)	49
	3.27.2	General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM15, TIM16, TIM17)	50
	3.27.3	Basic timers (TIM6 and TIM7)	50
	3.27.4	Low-power timer (LPTIM1 and LPTIM2)	50
	3.27.5	Infrared interface (IRTIM)	51
	3.27.6	Independent watchdog (IWDG)	51
	3.27.7	System window watchdog (WWDG)	51
	3.27.8	SysTick timer	51
3.28	Real-tin	ne clock (RTC) and backup registers	. 52
3.29	Inter-int	tegrated circuit interface (l ² C)	. 53
3.30	Univers	al synchronous/asynchronous receiver transmitter (USART)	. 54
3.31	Low-po	wer universal asynchronous receiver transmitter (LPUART)	. 55
3.32	Serial p	peripheral interface (SPI)	. 56
3.33	Serial a	udio interfaces (SAI)	. 56
3.34	Single	wire protocol master interface (SWPMI)	. 57
3.35	Control	ler area network (CAN)	. 57
3.36	Secure	$\label{limit} \mbox{digital input/output and MultiMediaCards Interface (SDMMC)} \ . \ .$. 58
3.37	Univers	al serial bus on-the-go full-speed (OTG_FS)	. 58
3.38	Clock re	ecovery system (CRS)	. 59
3.39	Flexible	e static memory controller (FSMC)	. 59
3.40	Dual-fla	ash Quad SPI memory interface (QUADSPI)	. 60
3.41	Develo	pment support	. 61

		3.41.1 3.41.2	Serial wire JTAG debug port (SWJ-DP)						
4	Pino	uts and	pin description	. 62					
5	Mem	ory ma	oping	109					
6	Elect	trical ch	aracteristics	114					
	6.1	Parame	eter conditions	.114					
		6.1.1	Minimum and maximum values	. 114					
		6.1.2	Typical values	. 114					
		6.1.3	Typical curves	. 114					
		6.1.4	Loading capacitor	. 114					
		6.1.5	Pin input voltage	. 114					
		6.1.6	Power supply scheme	. 115					
		6.1.7	Current consumption measurement	. 116					
	6.2	Absolu	te maximum ratings	.116					
	6.3	Operating conditions							
		6.3.1	General operating conditions						
		6.3.2	Operating conditions at power-up / power-down						
		6.3.3	Embedded reset and power control block characteristics						
		6.3.4	Embedded voltage reference	. 122					
		6.3.5	Supply current characteristics	. 124					
		6.3.6	Wakeup time from low-power modes and voltage scaling transition times						
		6.3.7	External clock source characteristics	. 153					
		6.3.8	Internal clock source characteristics	. 158					
		6.3.9	PLL characteristics	. 164					
		6.3.10	Flash memory characteristics	. 165					
		6.3.11	EMC characteristics	. 167					
		6.3.12	Electrical sensitivity characteristics	. 168					
		6.3.13	I/O current injection characteristics	. 169					
		6.3.14	I/O port characteristics	. 170					
		6.3.15	NRST pin characteristics	. 176					
		6.3.16	Extended interrupt and event controller input (EXTI) characteristics .	. 177					
		6.3.17	Analog switches booster	. 177					
		6.3.18	Analog-to-Digital converter characteristics	. 178					

		7.7.2		
			Reference document	
	7.7	7.7.1	al characteristics	
			4 package information	
	7.5 7.6		P100 package information	
	7. 4 7.5			
	7.4		00 package information	
	7.3		A132 package information	
	7.2		44 package information	
	7.1	•	A169 package information	
7	Pack	cage info	ormation	244
		6.3.32	SD/SDIO MMC card host interface (SDIO) characteristics	241
		6.3.31	SWPMI characteristics	
		6.3.30	Camera interface (DCMI) timing specifications	240
		6.3.29	FSMC characteristics	223
		6.3.28	Communication interfaces characteristics	209
		6.3.27	Timer characteristics	207
		6.3.26	DFSDM characteristics	205
		6.3.25	LCD controller characteristics	
		6.3.24	V _{BAT} monitoring characteristics	
		6.3.23	Temperature sensor characteristics	
		6.3.22	Operational amplifiers characteristics	
		6.3.21	Comparator characteristics	
		6.3.20	Voltage reference buffer characteristics	106
		6.3.19	Digital-to-Analog converter characteristics	191

STM32L496xx List of tables

List of tables

Table 1.	Device summary	2
Table 2.	STM32L496xx family device features and peripheral counts	
Table 3.	Access status versus readout protection level and execution modes	
Table 4.	STM32L496xx modes overview	. 27
Table 5.	Functionalities depending on the working mode	. 32
Table 6.	STM32L496xx peripherals interconnect matrix	. 35
Table 7.	DMA implementation	. 40
Table 8.	Temperature sensor calibration values	. 43
Table 9.	Internal voltage reference calibration values	. 43
Table 10.	Timer feature comparison	. 48
Table 11.	I2C implementation	
Table 12.	STM32L496xx USART/UART/LPUART features	. 54
Table 13.	SAI implementation	. 57
Table 14.	Legend/abbreviations used in the pinout table	. 69
Table 15.	STM32L496xx pin definitions	. 70
Table 16.	Alternate function AF0 to AF7	. 91
Table 17.	Alternate function AF8 to AF15	100
Table 18.	STM32L496xx memory map and peripheral register boundary addresses	110
Table 19.	Voltage characteristics	117
Table 20.	Current characteristics	117
Table 21.	Thermal characteristics	118
Table 22.	General operating conditions	
Table 23.	Operating conditions at power-up / power-down	120
Table 24.	Embedded reset and power control block characteristics	
Table 25.	Embedded internal voltage reference	122
Table 26.	Current consumption in Run and Low-power run modes, code with data processing running from Flash, ART enable (Cache ON Prefetch OFF)	125
Table 27.	Current consumption in Run modes, code with data processing running from Flash, (ART enable Cache ON Prefetch OFF) and power supplied	
		126
Table 28.	Current consumption in Run and Low-power run modes, code with data processing running from Flash, ART disable	127
Table 29.	Current consumption in Run modes, code with data processing running from Flash, ART disable and power supplied by external SMPS (VDD12 = 1.10 V)	128
Table 30.	Current consumption in Run and Low-power run modes, code with data processing running from SRAM1	
Table 31.	Current consumption in Run, code with data processing running from SRAM1 and power supplied by external SMPS (VDD12 = 1.10 V)	
Table 32.	Typical current consumption in Run and Low-power run modes, with different codes running from Flash, ART enable (Cache ON Prefetch OFF)	
Table 33.	Typical current consumption in Run, with different codes running from Flash, ART enable (Cache ON Prefetch OFF) and power supplied	
Table 34.	(by external SMPS (VDD12 = 1.10 V)	
	(by external SMPS (VDD12 = 1.05 V)	132
Table 35.	Typical current consumption in Run and Low-power run modes, with different codes running from Flash, ART disable	132

DS11585 Rev 9 7/272

List of tables STM32L496xx

Table 36.	Typical current consumption in Run modes, with different codesrunning from Flash, ART disable and power supplied by external SMPS (VDD12 = 1.10 V)133
Table 37.	Typical current consumption in Run modes, with different codesrunning from Flash, ART disable and power supplied by external SMPS (VDD12 = 1.05 V)133
Table 38.	Typical current consumption in Run and Low-power run modes, with different codes running from SRAM1
Table 39.	Typical current consumption in Run, with different codesrunning from SRAM1 and power supplied by external SMPS (VDD12 = 1.10 V)
Table 40.	Typical current consumption in Run, with different codesrunning from SRAM1 and power supplied by external SMPS (VDD12 = 1.05 V)
Table 41.	Current consumption in Sleep and Low-power sleep modes, Flash ON
Table 42.	Current consumption in Sleep, Flash ON and power supplied
Table 42	by external SMPS (VDD12 = 1.10 V)
Table 43.	Current consumption in Low-power sleep modes, Flash in power-down
Table 44.	Current consumption in Stop 2 mode
Table 45.	Current consumption in Stop 1 mode
Table 46.	Current consumption in Stop 0 mode
Table 47.	Current consumption in Standby mode
Table 48.	Current consumption in Shutdown mode
Table 49.	Current consumption in VBAT mode
Table 50.	Peripheral current consumption
Table 51.	Low-power mode wakeup timings
Table 52.	Regulator modes transition times
Table 53.	Wakeup time using USART/LPUART
Table 54.	High-speed external user clock characteristics
Table 55.	Low-speed external user clock characteristics
Table 56.	HSE oscillator characteristics
Table 57.	LSE oscillator characteristics (f _{LSE} = 32.768 kHz)
Table 58.	HSI16 oscillator characteristics
Table 59.	MSI oscillator characteristics
Table 60.	HSI48 oscillator characteristics
Table 61.	LSI oscillator characteristics
Table 62.	PLL, PLLSAI1, PLLSAI2 characteristics
Table 63.	Flash memory characteristics
Table 64.	Flash memory endurance and data retention
Table 65.	EMS characteristics
Table 66.	ESD absolute maximum ratings
Table 67. Table 68.	Electrical sensitivities
Table 69.	I/O current injection susceptibility
Table 70.	I/O static characteristics
Table 70.	Output voltage characteristics
Table 71.	I/O AC characteristics
Table 72.	NRST pin characteristics
Table 73.	EXTI Input Characteristics
Table 75.	Analog switches booster characteristics
Table 75.	ADC characteristics
Table 70.	Maximum ADC RAIN
Table 77.	ADC accuracy - limited test conditions 1
Table 79.	ADC accuracy - limited test conditions 2
Table 79.	ADC accuracy - limited test conditions 2
Table 81.	ADC accuracy - limited test conditions 4
. 45.0 01.	The desirable minimum tool contained to the contained to

STM32L496xx List of tables

Table 82.	DAC characteristics	. 191
Table 83.	DAC accuracy	
Table 84.	VREFBUF characteristics	
Table 85.	COMP characteristics	. 198
Table 86.	OPAMP characteristics	. 199
Table 87.	TS characteristics	. 203
Table 88.	V _{BAT} monitoring characteristics	. 203
Table 89.	V _{BAT} charging characteristics	. 203
Table 90.	LCD controller characteristics	
Table 91.	DFSDM characteristics	. 205
Table 92.	TIMx characteristics	. 208
Table 93.	IWDG min/max timeout period at 32 kHz (LSI)	. 208
Table 94.	WWDG min/max timeout value at 80 MHz (PCLK)	. 208
Table 95.	I2C analog filter characteristics	
Table 96.	SPI characteristics	. 210
Table 97.	Quad SPI characteristics in SDR mode	. 213
Table 98.	QUADSPI characteristics in DDR mode	. 214
Table 99.	SAI characteristics	
Table 100.	SD / MMC dynamic characteristics, VDD=2.7 V to 3.6 V	. 218
Table 101.	eMMC dynamic characteristics, VDD = 1.71 V to 1.9 V	. 219
Table 102.	USB OTG DC electrical characteristics	. 220
Table 103.	USB OTG electrical characteristics	. 221
Table 104.	USB BCD DC electrical characteristics	. 221
Table 105.	Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings	. 225
Table 106.	Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings	
Table 107.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings	
Table 108.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings	
Table 109.	Asynchronous multiplexed PSRAM/NOR read timings	
Table 110.	Asynchronous multiplexed PSRAM/NOR read-NWAIT timings	
Table 111.	Asynchronous multiplexed PSRAM/NOR write timings	
Table 112.	Asynchronous multiplexed PSRAM/NOR write-NWAIT timings	
Table 113.	Synchronous multiplexed NOR/PSRAM read timings	
Table 114.	Synchronous multiplexed PSRAM write timings	
Table 115.	Synchronous non-multiplexed NOR/PSRAM read timings	
Table 116.	Synchronous non-multiplexed PSRAM write timings	
Table 117.	Switching characteristics for NAND Flash read cycles	
Table 118.	Switching characteristics for NAND Flash write cycles	. 239
Table 119.	DCMI characteristics	. 240
Table 120.	SWPMI electrical characteristics	. 241
Table 121.	SD / MMC dynamic characteristics, VDD=2.7 V to 3.6 V	. 242
Table 122.	SD / MMC dynamic characteristics, VDD=1.71 V to 1.9 V	
Table 123.	UFBGA169 - 169-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid	
	array package mechanical data	. 244
Table 124.	UFBGA169 recommended PCB design rules (0.5 mm pitch BGA)	. 245
Table 125.	LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package	
	mechanical data	. 249
Table 126.	UFBGA132 - 132-ball, 7 x 7 mm ultra thin fine pitch ball grid array	
	package mechanical data	. 253
Table 127.	UFBGA132 recommended PCB design rules (0.5 mm pitch BGA)	. 254
Table 128.	LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package	
	mechanical data	. 256
Table 129.	WLCSP – 100 ball, 4.618 x 4.142 mm, 0.4 mm pitch wafer level chip scale	

DS11585 Rev 9 9/272

List of tables STM32L496xx

	package mechanical data	260
Table 130.	WLCSP100 recommended PCB design rules (0.4 mm pitch)	261
	LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat	
	package mechanical data	263
Table 132.	Package thermal characteristics	266
Table 133.	STM32L496xx ordering information scheme	269
Table 134.	Document revision history	270

STM32L496xx List of figures

List of figures

T:	CTM221 40Cox blook dispress	47
Figure 1.	STM32L496xx block diagram	
Figure 2.	Multi-AHB bus matrix	
Figure 3.	Power supply overview	
Figure 4.	Power-up/down sequence	
Figure 5.	Clock tree	
Figure 6.	Voltage reference buffer	
Figure 7.	STM32L496Ax UFBGA169 pinout ⁽¹⁾	
Figure 8.	STM32L496Ax, external SMPS device, UFBGA169 pinout ⁽¹⁾	
Figure 9.	STM32L496Zx LQFP144 pinout ⁽¹⁾	63
Figure 10.	STM32L496Zx, external SMPS device, LQFP144 pinout ⁽¹⁾	64
Figure 11.	STM32L496Qx UFBGA132 ballout ⁽¹⁾	
Figure 12.	STM32L496Qx, external SMPS device, UFBGA132 ballout	
Figure 13.	STM32L496Vx LQFP100 pinout ⁽¹⁾	66
Figure 14.	STM32L496Vx WLCSP100 pinout ⁽¹⁾	67
Figure 15.	STM32L496Vx, external SMPS device, WLCSP100 pinout ⁽¹⁾	67
Figure 16.	STM32L496Rx LQFP64 pinout ⁽¹⁾	
Figure 17.	STM32L496xx memory map	
Figure 18.	Pin loading conditions	
Figure 19.	Pin input voltage	
Figure 20.	Power supply scheme	115
Figure 21.	Current consumption measurement scheme with and without external	
	SMPS power supply	
Figure 22.	VREFINT versus temperature	
Figure 23.	High-speed external clock source AC timing diagram	
Figure 24.	Low-speed external clock source AC timing diagram	
Figure 25.	Typical application with an 8 MHz crystal	
Figure 26.	Typical application with a 32.768 kHz crystal	
Figure 27.	HSI16 frequency versus temperature	
Figure 28.	Typical current consumption versus MSI frequency	
Figure 29.	HSI48 frequency versus temperature	
Figure 30.	I/O input characteristics	172
Figure 31.	I/O AC characteristics definition ⁽¹⁾	
Figure 32.	Recommended NRST pin protection	
Figure 33.	ADC accuracy characteristics	
Figure 34.	Typical connection diagram using the ADC	
Figure 35.	12-bit buffered / non-buffered DAC	
Figure 36.	SPI timing diagram - slave mode and CPHA = 0	
Figure 37.	SPI timing diagram - slave mode and CPHA = 1	
Figure 38.	SPI timing diagram - master mode	
Figure 39.	Quad SPI timing diagram - SDR mode	
Figure 40.	Quad SPI timing diagram - DDR mode	
Figure 41.	SAI master timing waveforms	
Figure 42.	SAI slave timing waveforms	
Figure 43.	SDIO high-speed mode	
Figure 44.	SD default mode	
Figure 45.	USB OTG timings – definition of data signal rise and fall time	
Figure 46.	Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms	
Figure 47.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms	226

DS11585 Rev 9 11/272

List of figures STM32L496xx

Figure 48.	Asynchronous multiplexed PSRAM/NOR read waveforms	. 227
Figure 49.	Asynchronous multiplexed PSRAM/NOR write waveforms	
Figure 50.	Synchronous multiplexed NOR/PSRAM read timings	. 231
Figure 51.	Synchronous multiplexed PSRAM write timings	. 233
Figure 52.	Synchronous non-multiplexed NOR/PSRAM read timings	. 235
Figure 53.	Synchronous non-multiplexed PSRAM write timings	
Figure 54.	NAND controller waveforms for read access	
Figure 55.	NAND controller waveforms for write access	
Figure 56.	NAND controller waveforms for common memory read access	. 238
Figure 57.	NAND controller waveforms for common memory write access	
Figure 58.	DCMI timing diagram	
Figure 59.	SDIO high-speed mode	
Figure 60.	SD default mode	
Figure 61.	UFBGA169 - 169-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid	
Ü	array package outline	. 244
Figure 62.	UFBGA169 - 169-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid	
Ü	array recommended footprint	. 245
Figure 63.	UFBGA169 marking (package top view)	
Figure 64.	UFBGA169, external SMPS device, marking (package top view)	
Figure 65.	LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline	
Figure 66.	LQFP144 - 144-pin,20 x 20 mm low-profile quad flat package	
Ü	recommended footprint	. 250
Figure 67.	LQFP144 marking (package top view)	
Figure 68.	LQFP144, external SMPS device, marking (package top view)	
Figure 69.	UFBGA132 - 132-ball, 7 x 7 mm ultra thin fine pitch ball grid array	
Ü	package outline	. 253
Figure 70.	UFBGA132 - 132-ball, 7 x 7 mm ultra thin fine pitch ball grid array	
Ü	package recommended footprint	. 254
Figure 71.	UFBGA132 marking (package top view)	
Figure 72.	UFBGA132, external SMPS device, marking (package top view)	
Figure 73.	LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline	
Figure 74.	LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat	
Ü	recommended footprint	. 257
Figure 75.	LQFP100 marking (package top view)	
Figure 76.	WLCSP – 100 ball, 4.618 x 4.142 mm, 0.4 mm pitch wafer level chip scale	
J	package outline	. 259
Figure 77.	WLCSP – 100 ball, 4.166 x 4.628 mm 0.4 mm pitch wafer level chip scale	
J	package recommended footprint	. 260
Figure 78.	WLCSP100 marking (package top view)	
Figure 79.	WLCSP100, external SMPS device, marking (package top view)	
Figure 80.	LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline	
Figure 81.	LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package	
J: : .	recommended footprint	. 264
Figure 82.	LQFP64 marking (package top view)	265
_		_

STM32L496xx Introduction

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32L496xx microcontrollers.

This document should be read in conjunction with the STM32L4x6 reference manual (RM0351). The reference manual is available from the STMicroelectronics website www.st.com.

For information on the Arm^{®(a)} Cortex[®]-M4 core, please refer to the Cortex[®]-M4 Technical Reference Manual, available from the www.arm.com website.

5/

DS11585 Rev 9 13/272

Downloaded from Arrow.com.

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Description STM32L496xx

2 Description

The STM32L496xx devices are the ultra-low-power microcontrollers based on the high-performance Arm[®] Cortex[®]-M4 32-bit RISC core operating at a frequency of up to 80 MHz. The Cortex-M4 core features a Floating point unit (FPU) single precision which supports all Arm[®] single-precision data-processing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security.

The STM32L496xx devices embed high-speed memories (up to 1 Mbyte of Flash memory, 320 Kbyte of SRAM), a flexible external memory controller (FSMC) for static memories (for devices with packages of 100 pins and more), a Quad SPI flash memories interface (available on all packages) and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.

The STM32L496xx devices embed several protection mechanisms for embedded Flash memory and SRAM: readout protection, write protection, proprietary code readout protection and Firewall.

The devices offer up to three fast 12-bit ADCs (5 Msps), two comparators, two operational amplifiers, two DAC channels, an internal voltage reference buffer, a low-power RTC, two general-purpose 32-bit timer, two 16-bit PWM timers dedicated to motor control, seven general-purpose 16-bit timers, and two 16-bit low-power timers. The devices support four digital filters for external sigma delta modulators (DFSDM).

In addition, up to 24 capacitive sensing channels are available. The devices also embed an integrated LCD driver 8x40 or 4x44, with internal step-up converter.

They also feature standard and advanced communication interfaces.

- Four I2Cs
- Three SPIs
- Three USARTs, two UARTs and one Low-Power UART.
- Two SAIs (Serial Audio Interfaces)
- One SDMMC
- Two CAN
- One USB OTG full-speed
- One SWPMI (Single Wire Protocol Master Interface)
- Camera interface
- DMA2D controller

The STM32L496xx operates in the -40 to +85 °C (+105 °C junction), -40 to +125 °C (+130 °C junction) temperature ranges from a 1.71 to 3.6 V V_{DD} power supply when using internal LDO regulator and a 1.05 to 1.32V V_{DD12} power supply when using external SMPS supply. A comprehensive set of power-saving modes allows the design of low-power applications.

Some independent power supplies are supported: analog independent supply input for ADC, DAC, OPAMPs and comparators, 3.3 V dedicated supply input for USB and up to 14 I/Os can be supplied independently down to 1.08V. A VBAT input allows to backup the RTC and backup registers. Dedicated V_{DD12} power supplies can be used to bypass the internal LDO regulator when connected to an external SMPS.

STM32L496xx Description

The STM32L496xx family offers six packages from 64-pin to 169-pin packages.

Table 2. STM32L496xx family device features and peripheral counts

Peripheral		STM32L496Ax STM32L496Zx		STM32L496Qx		STM32L496Vx		STM32L496Rx			
Flash memory		512KB	1MB	512KB	1MB	512KB	1MB	512KB	1MB	512KB	1MB
SRAM			320 KB						'		
External memory controller for static memories		Yes		Yes		Yes		Yes ⁽¹⁾		No	
Quad SPI						Y	es				
	Advanced control		2 (16-bit)								
	General purpose		5 (16-bit) 2 (32-bit)								
	Basic					2 (10	6-bit)				
Timers	Low power		2 (16-bit)								
	SysTick timer						1				
	Watchdog timers (independent window)		2								
	SPI		3								
	I ² C	4									
	USART UART LPUART	3 2									
Comm. interfaces	SAI	2									
Interfaces	CAN	2									
	USB OTG FS	Yes									
	SDMMC	Yes									
	SWPMI	Yes									
Digital filte delta modu	rs for sigma- ulators	Yes (4 filters)									
Number of	channels	8									
RTC		Yes									
Tamper pir	ıs	3									
Camera in	terface				Y	es				Yes	(2)
Chrom-AR Accelerato		Yes									
LCD COM x SEG		Yes 8x40 or 4x44									

DS11585 Rev 9 15/272

Description STM32L496xx

Table 2. STM32L496xx family device features and peripheral counts (continued)

Peripheral	STM32L496Ax	STM32L496Zx	STM32L496Qx	STM32L496Vx	STM32L496Rx					
Random generator		<u> </u>	Yes							
GPIOs ⁽³⁾	136	115	110	83	52					
Wakeup pins	5	5	5	5	4					
Nb of I/Os down to 1.08 V	14	14	14	0	0					
Capacitive sensing Number of channels	24	24	24	21	21					
12-bit ADCs	3	3	3	3	3					
Number of channels	24	24	19	16	16					
12-bit DAC channels			2							
Internal voltage reference buffer			Yes							
Analog comparator	2									
Operational amplifiers	2									
Max. CPU frequency			80 MHz							
Operating voltage (V _{DD})			1.71 to 3.6 V							
Operating voltage (V _{DD12})			1.05 to 1.32 V							
Operating temperature	Am	. •	emperature: -40 to ature: -40 to 105 °		°C					
Packages	UFBGA169	LQFP144	UFBGA132	LQFP100 WLCSP100	LQFP64					

For the LQFP100 and WLCSP100 packages, only FMC Bank1 is available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select.

47/

^{2.} Only up to 13 data bits.

^{3.} In case external SMPS package type is used, 2 GPIO's are replaced by VDD12 pins to connect the SMPS power supplies hence reducing the number of available GPIO's by 2.

STM32L496xx Description

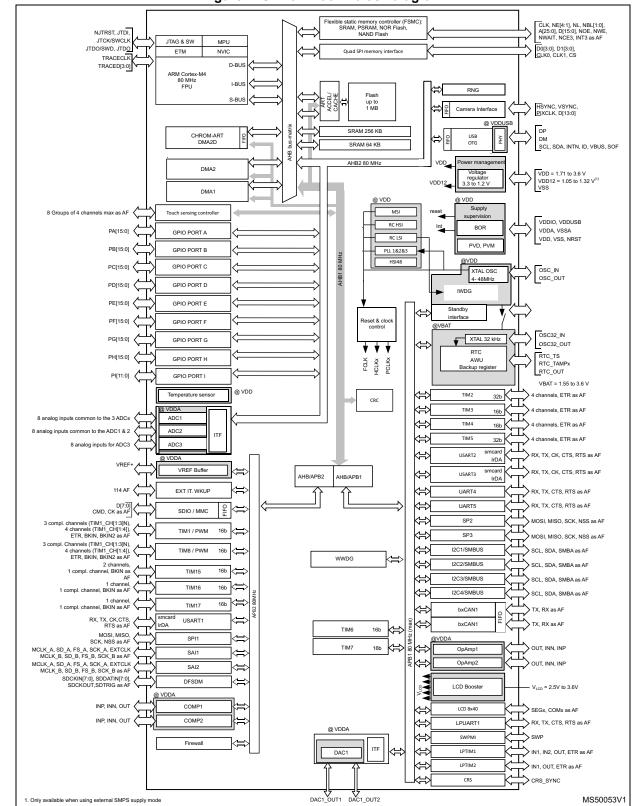


Figure 1. STM32L496xx block diagram

Note: AF: alternate function on I/O pins.

DS11585 Rev 9 17/272

3 Functional overview

3.1 Arm[®] Cortex[®]-M4 core with FPU

The Arm[®] Cortex[®]-M4 with FPU processor is the latest generation of Arm[®] processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.

The Arm[®] Cortex[®]-M4 with FPU 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an Arm[®] core in the memory size usually associated with 8- and 16-bit devices.

The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution.

Its single precision FPU speeds up software development by using metalanguage development tools, while avoiding saturation.

With its embedded Arm[®] core, the STM32L496xx family is compatible with all Arm[®] tools and software.

Figure 1 shows the general block diagram of the STM32L496xx family devices.

3.2 Adaptive real-time memory accelerator (ART Accelerator™)

The ART Accelerator $^{\rm TM}$ is a memory accelerator which is optimized for STM32 industry-standard Arm $^{\rm R}$ Cortex $^{\rm R}$ -M4 processors. It balances the inherent performance advantage of the Arm $^{\rm R}$ Cortex $^{\rm R}$ -M4 over Flash memory technologies, which normally requires the processor to wait for the Flash memory at higher frequencies.

To release the processor near 100 DMIPS performance at 80MHz, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 64-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 80 MHz.

3.3 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.

The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

3.4 Embedded Flash memory

STM32L496xx devices feature up to 1 Mbyte of embedded Flash memory available for storing programs and data. The Flash memory is divided into two banks allowing read-while-write operations. This feature allows to perform a read operation from one bank while an erase or program operation is performed to the other bank. The dual bank boot is also supported. Each bank contains 256 pages of 2 Kbyte.

Flexible protections can be configured thanks to option bytes:

- Readout protection (RDP) to protect the whole memory. Three levels are available:
 - Level 0: no readout protection
 - Level 1: memory readout protection: the Flash memory cannot be read from or written to if either debug features are connected, boot in RAM or bootloader is selected
 - Level 2: chip readout protection: debug features (Cortex-M4 JTAG and serial wire), boot in RAM and bootloader selection are disabled (JTAG fuse). This selection is irreversible.

Table 3. Access status ve	ersus readout protection	level and execution modes

Area	Protection	U	ser execution	on	•	oot from RA tem memor		
	level	Read	Write	Erase	Read	Write	Erase	
Main	1	Yes	Yes	Yes	No	No	No	
memory	2	Yes	Yes	Yes	N/A	N/A	N/A	
System	1	Yes	No	No	Yes	No	No	
memory	2	Yes	No	No	N/A	N/A	N/A	
Option	1	Yes	Yes	Yes	Yes	Yes	Yes	
bytes	2	Yes	No	No	N/A	N/A	N/A	
Backup	1	Yes	Yes	N/A ⁽¹⁾	No	No	N/A ⁽¹⁾	
registers	2	Yes	Yes	N/A	N/A	N/A	N/A	
CDAMO	1	Yes	Yes	Yes ⁽¹⁾	No	No	No ⁽¹⁾	
SRAM2	2	Yes	Yes	Yes	N/A	N/A	N/A	

^{1.} Erased when RDP change from Level 1 to Level 0.

- Write protection (WRP): the protected area is protected against erasing and programming. Two areas per bank can be selected, with 2-Kbyte granularity.
- Proprietary code readout protection (PCROP): a part of the flash memory can be protected against read and write from third parties. The protected area is execute-only: it can only be reached by the STM32 CPU, as an instruction code, while all other accesses (DMA, debug and CPU data read, write and erase) are strictly prohibited. One area per bank can be selected, with 64-bit granularity. An additional option bit (PCROP_RDP) allows to select if the PCROP area is erased or not when the RDP protection is changed from Level 1 to Level 0.

DS11585 Rev 9 19/272

The whole non-volatile memory embeds the error correction code (ECC) feature supporting:

- single error detection and correction
- double error detection.
- The address of the ECC fail can be read in the ECC register

3.5 Embedded SRAM

STM32L496xx devices feature 320 Kbyte of embedded SRAM. This SRAM is split into two blocks:

- 256 Kbyte mapped at address 0x2000 0000 (SRAM1)
- 64 Kbyte located at address 0x1000 0000 with hardware parity check (SRAM2).

This memory is also mapped at address 0x2004 0000, offering a contiguous address space with the SRAM1.

This block is accessed through the ICode/DCode buses for maximum performance.

These 64 Kbyte SRAM can also be retained in Standby mode.

The SRAM2 can be write-protected with 1 Kbyte granularity.

The memory can be accessed in read/write at CPU clock speed with 0 wait states.

3.6 Multi-AHB bus matrix

The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs and the DMA2D) and the slaves (Flash memory, RAM, FMC, QUADSPI, AHB and APB peripherals) and ensures a seamless and efficient operation even when several high speed peripherals work simultaneously.

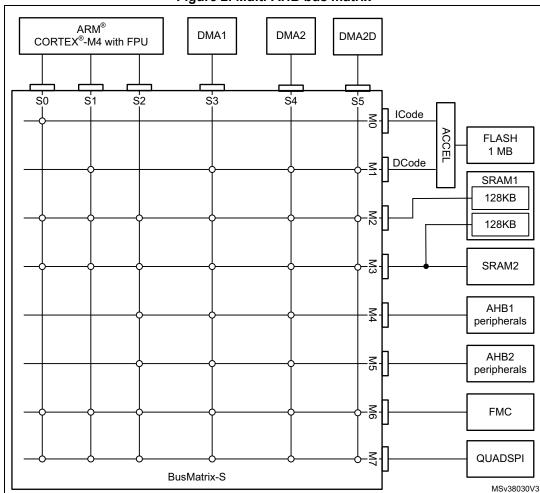


Figure 2. Multi-AHB bus matrix

3.7 Firewall

The device embeds a Firewall which protects code sensitive and secure data from any access performed by a code executed outside of the protected areas.

Each illegal access generates a reset which kills immediately the detected intrusion.

DS11585 Rev 9 21/272

The Firewall main features are the following:

Three segments can be protected and defined thanks to the Firewall registers:

- Code segment (located in Flash or SRAM1 if defined as executable protected area)
- Non-volatile data segment (located in Flash)
- Volatile data segment (located in SRAM1)
- The start address and the length of each segments are configurable:
 - Code segment: up to 1024 Kbyte with granularity of 256 bytes
 - Non-volatile data segment: up to 1024 Kbyte with granularity of 256 bytes
 - Volatile data segment: up to 256 Kbyte of SRAM1 with a granularity of 64 bytes
- Specific mechanism implemented to open the Firewall to get access to the protected areas (call gate entry sequence)
- Volatile data segment can be shared or not with the non-protected code
- Volatile data segment can be executed or not depending on the Firewall configuration

The Flash readout protection must be set to level 2 in order to reach the expected level of protection.

3.8 Boot modes

At startup, BOOT0 pin and nBOOT1 option bit are used to select one of three boot options:

- Boot from user Flash
- Boot from system memory
- Boot from embedded SRAM

BOOT0 value may come from the PH3-BOOT0 pin or from an option bit depending on the value of a user option bit to free the GPIO pad if needed.

A Flash empty check mechanism is implemented to force the boot from system flash if the first flash memory location is not programmed and if the boot selection is configured to boot from main flash.

The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART, I2C, SPI, CAN or USB OTG FS in Device mode through DFU (device firmware upgrade).

3.9 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

3.10 Power supply management

3.10.1 Power supply schemes

 V_{DD} = 1.71 to 3.6 V: external power supply for I/Os (V_{DDIO1}), the internal regulator and the system analog such as reset, power management and internal clocks. It is provided externally through VDD pins.

- V_{DD12} = 1.05 to 1.32 V: external power supply bypassing internal regulator when connected to an external SMPS. It is provided externally through VDD12 pins and only available on packages with the external SMPS supply option. VDD12 does not require any external decoupling capacitance and cannot support any external load.
- V_{DDA} = 1.62 V (ADCs/COMPs) / 1.8 (DAC/OPAMPs) to 3.6 V: external analog power supply for ADCs, DAC, OPAMPs, Comparators and Voltage reference buffer. The V_{DDA} voltage level is independent from the V_{DD} voltage.
- V_{DDUSB} = 3.0 to 3.6 V: external independent power supply for USB transceivers. The V_{DDUSB} voltage level is independent from the V_{DD} voltage.
- V_{DDIO2} = 1.08 to 3.6 V: external power supply for 14 I/Os (PG[15:2]). The V_{DDIO2} voltage level is independent from the V_{DD} voltage.
- V_{LCD} = 2.5 to 3.6 V: the LCD controller can be powered either externally through VLCD pin, or internally from an internal voltage generated by the embedded step-up converter
- V_{BAT} = 1.55 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

Note: When the functions supplied by V_{DDA} , V_{DDUSB} or V_{DDIO2} are not used, these supplies should preferably be shorted to V_{DD} .

Note: If these supplies are tied to ground, the I/Os supplied by these power supplies are not 5 V tolerant (refer to Table 19: Voltage characteristics).

Note: V_{DDIOx} is the I/Os general purpose digital functions supply. V_{DDIOx} represents V_{DDIO1} or V_{DDIO2} , with $V_{DDIO1} = V_{DD}$. V_{DDIO2} supply voltage level is independent from V_{DDIO1} .

DS11585 Rev 9 23/272

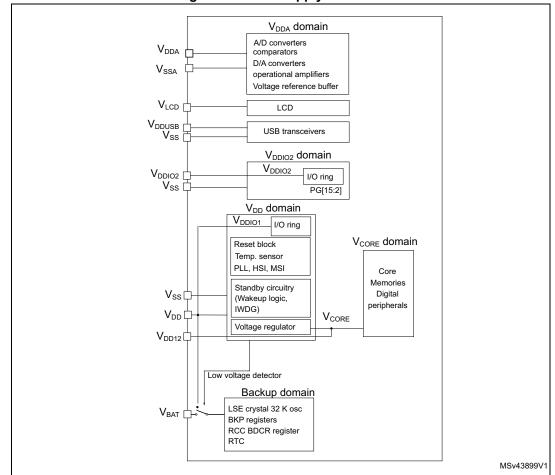


Figure 3. Power supply overview

During power-up and power-down phases, the following power sequence requirements must be respected:

- When V_{DD} is below 1 V, other power supplies (V_{DDA}, V_{DDUSB}, V_{DDIO2}, V_{LCD} must remain below V_{DD} + 300 mV.
- When V_{DD} is above 1 V, all power supplies are independent.

During the power-down phase, V_{DD} can temporarily become lower than other supplies only if the energy provided to the MCU remains below 1 mJ; this allows external decoupling capacitors to be discharged with different time constants during the power-down transient phase.

T

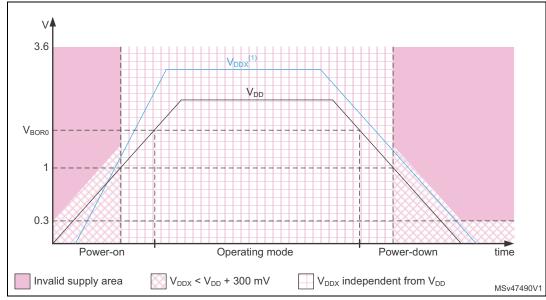


Figure 4. Power-up/down sequence

1. V_{DDX} refers to any power supply among V_{DDA} , V_{DDUSB} , V_{DDIO2} , V_{LCD} .

3.10.2 Power supply supervisor

The device has an integrated ultra-low-power brown-out reset (BOR) active in all modes except Shutdown and ensuring proper operation after power-on and during power down. The device remains in reset mode when the monitored supply voltage V_{DD} is below a specified threshold, without the need for an external reset circuit.

The lowest BOR level is 1.71V at power on, and other higher thresholds can be selected through option bytes. The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD} power supply and compares it to the VPVD threshold. An interrupt can be generated when V_{DD} drops below the VPVD threshold and/or when V_{DD} is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

In addition, the device embeds a Peripheral Voltage Monitor which compares the independent supply voltages V_{DDA} , V_{DDUSB} , V_{DDIO2} with a fixed threshold in order to ensure that the peripheral is in its functional supply range.

DS11585 Rev 9 25/272

3.10.3 Voltage regulator

Two embedded linear voltage regulators supply most of the digital circuitries: the main regulator (MR) and the low-power regulator (LPR).

- The MR is used in the Run and Sleep modes and in the Stop 0 mode.
- The LPR is used in Low-Power Run, Low-Power Sleep, Stop 1 and Stop 2 modes. It is also used to supply the 64 Kbyte SRAM2 in Standby with SRAM2 retention.
- Both regulators are in power-down in Standby and Shutdown modes: the regulator output is in high impedance, and the kernel circuitry is powered down thus inducing zero consumption.

The ultralow-power STM32L496xx supports dynamic voltage scaling to optimize its power consumption in run mode. The voltage from the Main Regulator that supplies the logic (V_{CORE}) can be adjusted according to the system's maximum operating frequency.

There are two power consumption ranges:

- Range 1 with the CPU running at up to 80 MHz.
- Range 2 with a maximum CPU frequency of 26 MHz. All peripheral clocks are also limited to 26 MHz.

The V_{CORE} can be supplied by the low-power regulator, the main regulator being switched off. The system is then in Low-power run mode.

 Low-power run mode with the CPU running at up to 2 MHz. Peripherals with independent clock can be clocked by HSI16.

When the MR is in use, the STM32L496xx with the external SMPS option allows to force an external V_{CORE} supply on the VDD12 supply pins.

When V_{DD12} is forced by an external source and is higher than the output of the internal LDO, the current is taken from this external supply and the overall power efficiency is significantly improved if using an external step down DC/DC converter.

3.10.4 Low-power modes

The ultra-low-power STM32L496xx supports seven low-power modes to achieve the best compromise between low-power consumption, short startup time, available peripherals and available wakeup sources.

Table 4. STM32L496xx modes overview

Mode	Regulator ⁽¹⁾	CPU	Flash	SRAI	Clocks	I Clocks DMA & Peripherals ⁽²⁾ W	Wakeup source	Consumption ⁽³⁾	Wakeup time
	MR range 1							108 µA/MHz	
						Ψ			
Rig	SMPS range 2 High	Yes	ON ⁽⁴⁾	Z	Anv		Ψ/N	40 µA/MHz(3)	A/N
2	MR range2	3	5		(iii)	SING SE STO tragge IIV		93 µA/MHz	
	SMPS range 2 Low					All except of G_1 S, Nivo		39 µA/MHz ⁽⁶⁾	
LPRun	LPR	Yes	ON ⁽⁴⁾	N O	Any except PLL	All except OTG_FS, RNG	N/A	129 µA/MHz	to Range 1: 4 µs to Range 2: 64 µs
	MR range 1					= <		32 µA/MHz	
Social	SMPS range 2 High	2	ON(4)	(Z)N(Z)	Š	Ī	Any interrupt or	11.5 µA/MHz ⁽⁵⁾	90000
ם ס	MR range2	2			À	SNG SE STO tracks IIV	event	30 µA/MHz	60000
	SMPS range 2 Low					All except 0.10_1.5, NNO		13 µA/MHz ⁽⁶⁾	
LPSleep	LPR	o N	ON ⁽⁴⁾	ON(7)	Any except PLL	All except OTG_FS, RNG	Any interrupt or event	51 µA/MHz	6 cycles
C	MR Range 1 ⁽⁸⁾	2	Ĺ	Ž	LSE	BOR, PVD, PVM RTC,LCD, IWDG COMPx (x=1,2) DAC1 OPAMPx (x=1,2) USARTx (x=1,2)	Reset pin, all I/Os BOR, PVD, PVM RTC, LCD, IWDG COMPx (x=12) USARTx (x=15) ⁽⁹⁾	TBD	2.7 µs in SRAM
	MR Range 2 ⁽⁸⁾	2	5	5	LSI	LPUART1 ⁽⁹⁾ I2Cx (x=14) ⁽¹⁰⁾ LPTIMx (x=1,2) *** All other peripherals are frozen.	LPUART1 ⁽⁹⁾ I2Cx (x=14) ⁽¹⁰⁾ LPTIMx (x=1,2) OTG_FS ⁽¹¹⁾ SWPMI1 ⁽¹²⁾	127 µА	6.2 µs in Flash

DS11585 Rev 9 27/272

6.8 µs in SRAM 6.6 µs in SRAM 7.8 µs in Flash 8.2 µs in Flash Wakeup time 2.57 µA w/o RTC 11.2 µA w/o RTC Consumption⁽³⁾ 11.8 µA w RTC 2.86 µA w/RTC USARTx (x=1...5)⁽⁹⁾ Reset pin, all I/Os RTC, LCD, IWDG Reset pin, all I/Os RTC, LCD, IWDG BOR, PVD, PVM I2Cx (x=1...4)⁽¹⁰⁾ BOR, PVD, PVM Wakeup source COMPx (x=1..2) COMPx (x=1..2) LPTIMx (x=1,2) LPUART1⁽⁹⁾ OTG_FS⁽¹¹⁾ LPUART1⁽⁹⁾ **SWPMI1**⁽¹²⁾ I2C3⁽¹⁰⁾ LPTIM1 Table 4. STM32L496xx modes overview (continued) All other peripherals are All other peripherals are DMA & Peripherals⁽²⁾ JSARTx (x=1...5)⁽⁹⁾ RTC, LCD, IWDG I2Cx (x=1...4)⁽¹⁰⁾ RTC, LCD, IWDG BOR, PVD, PVM OPAMPx (x=1,2) BOR, PVD, PVM COMPx (x=1..2) COMPx (x=1,2) LPTIMx (x=1,2) LPUART1⁽⁹⁾ LPUART1⁽⁹⁾ I2C3⁽¹⁰⁾ LPTIM1 DAC1 frozen. frozen. Clocks LSE LSI LSE LSI SRAM 8 8 Flash ₩ **₩** CPU 2 ဍ Regulator⁽¹⁾ LPR LPR Stop 2 Stop 1 Mode

Table 4. STM32L496xx modes overview (continued)

Mode	Regulator ⁽¹⁾	CPU	Flash	SRAM	SRAM Clocks	DMA & Peripherals ⁽²⁾	Wakeup source	Consumption ⁽³⁾	Wakeup time
	RPA			SRAM 2 ON		BOR, RTC, IWDG ***		0.48 µA w/o RTC 0.78 µA w/ RTC	
Standby	44O	Power ed Off	#O	Power	LSE	All other peripherals are powered off. ***	Keset pin 5 I/Os (WKUPx) ⁽¹³⁾ BOR, RTC, IWDG	0.11 µA w/o RTC	15.3 µs
				JJO		I/O configuration can be floating, pull-up or pull-down		0.42 µA w/ RTC	
						RTC ***			
Shutdown	OFF	Power ed Off	JO #	Power ed	LSE	All other peripherals are powered off.	Reset pin 5 I/Os (WKUPx) ⁽¹⁴⁾	0.03 µA w/o RTC 0.23 µA w/ RTC	306 µs
				5		I/O configuration can be floating, pull-up or pull-down ⁽¹⁴⁾	RTC	-	

1. LPR means Main regulator is OFF and Low-power regulator is ON.

2. All peripherals can be active or clock gated to save power consumption.

Typical current at V_{DD} = 1.8 V, 25°C. Consumptions values provided running from SRAM, Flash memory Off, 80 MHz in Range 1, 26 MHz in Range 2, 2 MHz in LPRun/LPSleep.

4. The Flash memory can be put in power-down and its clock can be gated off when executing from SRAM.

Theoretical value based on V_{DD} = 3.3 V, DC/DC Efficiency of 85%, V_{CORE} = 1.10 V

Theoretical value based on V_{DD} = 3.3 V, DC/DC Efficiency of 85%, V_{CORE} = 1.05 V

The SRAM1 and SRAM2 clocks can be gated on or off independently.

SMPS mode can be used in STOP0 Mode, but no significant power gain can be expected

U(S)ART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event.

. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.

. OTG_FS wakeup by resume from suspend and attach detection protocol event.

2. SWPMI1 wakeup by resume from suspend.

13. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5.

14. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode.

DS11585 Rev 9

29/272

By default, the microcontroller is in Run mode after a system or a power Reset. It is up to the user to select one of the low-power modes described below:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Low-power run mode

This mode is achieved with V_{CORE} supplied by the low-power regulator to minimize the regulator's operating current. The code can be executed from SRAM or from Flash, and the CPU frequency is limited to 2 MHz. The peripherals with independent clock can be clocked by HSI16.

Low-power sleep mode

This mode is entered from the low-power run mode. Only the CPU clock is stopped. When wakeup is triggered by an event or an interrupt, the system reverts to the low-power run mode.

Stop 0, Stop 1 and Stop 2 modes

Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the V_{CORE} domain are stopped, the PLL, the MSI RC, the HSI16 RC and the HSE crystal oscillators are disabled. The LSE or LSI is still running.

The RTC can remain active (Stop mode with RTC, Stop mode without RTC).

Some peripherals with wakeup capability can enable the HSI16 RC during Stop mode to detect their wakeup condition.

Three Stop modes are available: Stop 0, Stop 1 and Stop 2 modes. In Stop 2 mode, most of the V_{CORE} domain is put in a lower leakage mode.

Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller wakeup time but a higher consumption than Stop 2. In Stop 0 mode, the main regulator remains ON, allowing a very fast wakeup time but with much higher consumption.

The system clock when exiting from Stop 0, Stop 1 or Stop 2 modes can be either MSI up to 48 MHz or HSI16, depending on software configuration.

Standby mode

The Standby mode is used to achieve the lowest power consumption with BOR. The internal regulator is switched off so that the V_{CORE} domain is powered off. The PLL, the MSI RC, the HSI16 RC and the HSE crystal oscillators are also switched off.

The RTC can remain active (Standby mode with RTC, Standby mode without RTC).

The brown-out reset (BOR) always remains active in Standby mode.

The state of each I/O during standby mode can be selected by software: I/O with internal pull-up, internal pull-down or floating.

After entering Standby mode, SRAM1 and register contents are lost except for registers in the Backup domain and Standby circuitry. Optionally, SRAM2 can be retained in Standby mode, supplied by the low-power Regulator (Standby with SRAM2 retention mode).

The device exits Standby mode when an external reset (NRST pin), an IWDG reset, WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wakeup, timestamp, tamper) or a failure is detected on LSE (CSS on LSE). The system clock after wakeup is MSI up to 8 MHz.

Shutdown mode

The Shutdown mode allows to achieve the lowest power consumption. The internal regulator is switched off so that the V_{CORE} domain is powered off. The PLL, the HSI16, the MSI, the LSI and the HSE oscillators are also switched off.

The ROB is not available in Shutdown mode with RTC, Shutdown mode without RTC).

The BOR is not available in Shutdown mode. No power voltage monitoring is possible in this mode, therefore the switch to Backup domain is not supported.

SRAM1, SRAM2 and register contents are lost except for registers in the Backup domain.

The device exits Shutdown mode when an external reset (NRST pin), a WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wakeup, timestamp, tamper).

The system clock after wakeup is MSI at 4 MHz.

DS11585 Rev 9 31/272

Downloaded from **Arrow.com**.

Table 5. Functionalities depending on the working $\mathsf{mode}^{(1)}$

			ionantie			0/1		p 2		dby	Shute	down	
Peripheral	Run	Sleep	Low- power run	Low- power sleep	,	Wakeup capability	,	Wakeup capability	-	Wakeup capability	-	Wakeup capability	VBAT
CPU	Υ	-	Y	-	-	-	-	-	-	-	-	-	-
Flash memory (up to 1 MB)	O ⁽²⁾	O ⁽²⁾	O ⁽²⁾	O ⁽²⁾	-	-	-	-	-	-	-	-	-
SRAM1 (256 KB)	Υ	Y ⁽³⁾	Υ	Y ⁽³⁾	Υ	-	Υ	-	-	-	-	-	-
SRAM2 (64 KB)	Υ	Y ⁽³⁾	Υ	Y ⁽³⁾	Υ	-	Υ	-	O ⁽⁴⁾	-	-	-	-
FSMC	0	0	0	0	-	-	-	-	-	-	-	-	-
Quad SPI	0	0	0	0	-	-	-	-	-	-	-	-	-
Backup Registers	Υ	Υ	Υ	Υ	Υ	-	Υ	-	Υ	-	Υ	-	Υ
Brown-out reset (BOR)	Y	Y	Y	Y	Y	Y	Y	Υ	Υ	Υ	-	-	-
Programmable Voltage Detector (PVD)	0	0	0	0	0	0	0	0	-	-	-	-	-
Peripheral Voltage Monitor (PVMx; x=1,2,3,4)	0	0	0	0	0	0	0	0	-	-	-	-	-
DMA	0	0	0	0	-	-	-	-	-	-	-	-	-
DMA2D	0	0	0	0	-	-	-	-	-	-	-	-	-
High Speed Internal (HSI16)	0	0	0	0	(5)	-	(5)	-	-	-	-	-	-
Oscillator HSI48	0	0	-	-	1	-	-	-	-	-	-	-	-
High Speed External (HSE)	0	0	0	0	ı	-	ı	-	-	-	-	-	-
Low Speed Internal (LSI)	0	0	0	0	0	-	0	-	0	-	-	-	-
Low Speed External (LSE)	0	0	0	0	0	-	0	-	0	-	0	-	0
Multi-Speed Internal (MSI)	0	0	0	0	-	-	-	-	-	-	-	-	-
Clock Security System (CSS)	0	0	0	0	-	-	-	-	-	-	-	-	-
Clock Security System on LSE	0	0	0	0	0	0	0	0	0	0	-	-	-
RTC / Auto wakeup	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 5. Functionalities depending on the working mode⁽¹⁾ (continued)

					Stop	0/1	Sto	p 2	Star	ndby	Shute	down	
Peripheral	Run	Sleep	Low- power run	Low- power sleep	1	Wakeup capability	1	Wakeup capability	-	Wakeup capability	-	Wakeup capability	VBAT
Number of RTC Tamper pins	3	3	3	3	3	0	3	0	3	0	3	0	3
Camera interface	0	0	0	0	-	-	1		-	-	-	1	-
LCD	0	0	0	0	0	0	0	0	-	-	-	-	-
USB OTG FS	O ⁽⁸⁾	O ⁽⁸⁾	-	-	-	0	-	-	-	-	-	-	-
USARTx (x=1,2,3,4,5)	0	0	0	0	O ⁽⁶⁾	O ⁽⁶⁾	ï	-	-	-	-	·	-
Low-power UART (LPUART)	0	0	0	0	O ⁽⁶⁾	O ⁽⁶⁾	O ⁽⁶⁾	O ⁽⁶⁾	-	-	-	-	-
I2Cx (x=1,2,4)	0	0	0	0	O ⁽⁷⁾	O ⁽⁷⁾	1	-	-	-	-	-	-
I2C3	0	0	0	0	O ⁽⁷⁾	O ⁽⁷⁾	O ⁽⁷⁾	O ⁽⁷⁾	-	-	-	-	-
SPIx (x=1,2,3)	0	0	0	0	-	-	-	-	-	-	-	-	-
CAN(x=1,2)	0	0	0	0	-	-	1	-	-	-	-	-	-
SDMMC1	0	0	0	0	-	-	-	-	-	-	-	-	-
SWPMI1	0	0	0	0	-	0	1	-	-	-	-	-	-
SAIx (x=1,2)	0	0	0	0	-	-	-	-	-	-	-	-	-
DFSDM1	0	0	0	0	-	-	-	-	-	-	-	-	-
ADCx (x=1,2,3)	0	0	0	0	-	-	-	-	-	-	-	-	-
DAC1	0	0	0	0	0	-	-	-	-	-	-	-	-
VREFBUF	0	0	0	0	0	-	-	-	-	-	-	-	-
OPAMPx (x=1,2)	0	0	0	0	0	-	-	-	-	-	-	-	-
COMPx (x=1,2)	0	0	0	0	0	0	0	0	-	-	-	-	-
Temperature sensor	0	0	0	0	-	-	-	-	-	-	-	-	-
Timers (TIMx)	0	0	0	0	-	-	-	-	-	-	-	-	-
Low-power timer 1 (LPTIM1)	0	0	0	0	0	0	0	0	-	-	-	,	-
Low-power timer 2 (LPTIM2)	0	0	0	0	0	0	ı	-	-	-	-	-	-
Independent watchdog (IWDG)	0	0	0	0	0	0	0	0	0	0	-	-	-
Window watchdog (WWDG)	0	0	0	0	-	-	-	-	-	-	-	-	-

DS11585 Rev 9 33/272

Stop 0/1 Stop 2 Standby **Shutdown** capability capability capability capability Low-Low-**VBAT Peripheral** Run Sleep power power run sleep Wakeup Wakeup Wakeup Wakeup SysTick timer O 0 0 0 Touch sensing 0 0 0 O controller (TSC) Random number $O^{(8)}$ $O^{(8)}$ generator (RNG) CRC calculation unit 0 0 0 0 5 5 (11)(9)**GPIOs** 0 \cap 0 0 0 0 0 0 pins pins (10)(10)

Table 5. Functionalities depending on the working mode⁽¹⁾ (continued)

- 1. Legend: Y = Yes (Enable). O = Optional (Disable by default. Can be enabled by software). = Not available.
- 2. The Flash can be configured in power-down mode. By default, it is not in power-down mode.
- 3. The SRAM clock can be gated on or off.
- 4. SRAM2 content is preserved when the bit RRS is set in PWR CR3 register.
- Some peripherals with wakeup from Stop capability can request HSI16 to be enabled. In this case, HSI16 is woken up by the peripheral, and only feeds the peripheral which requested it. HSI16 is automatically put off when the peripheral does not need it anymore.
- UART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event.
- 7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
- 8. Voltage scaling Range 1 only.
- 9. I/Os can be configured with internal pull-up, pull-down or floating in Standby mode.
- 10. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5.
- 11. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode.

3.10.5 Reset mode

In order to improve the consumption under reset, the I/Os state under and after reset is "analog state" (the I/O schmitt trigger is disable). In addition, the internal reset pull-up is deactivated when the reset source is internal.

3.10.6 VBAT operation

The VBAT pin allows to power the device VBAT domain from an external battery, an external supercapacitor, or from V_{DD} when no external battery and an external supercapacitor are present. The VBAT pin supplies the RTC with LSE and the backup registers. Three antitamper detection pins are available in VBAT mode.

VBAT operation is automatically activated when V_{DD} is not present.

An internal VBAT battery charging circuit is embedded and can be activated when V_{DD} is present.

Note:

When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events do not exit it from VBAT operation.

3.11 Interconnect matrix

Several peripherals have direct connections between them. This allows autonomous communication between peripherals, saving CPU resources thus power supply consumption. In addition, these hardware connections allow fast and predictable latency.

Depending on peripherals, these interconnections can operate in Run, Sleep, low-power run and sleep, Stop 0, Stop 1 and Stop 2 modes.

Table 6. STM32L496xx peripherals interconnect matrix

Interconnect source	Interconnect destination	Interconnect action	Run	Sleep	Low-power run	Low-power sleep	Stop 0 / Stop 1	Stop 2
	TIMx	Timers synchronization or chaining	Υ	Υ	Υ	Υ	-	-
TIMx	ADCx DAC1 DFSDM1	Conversion triggers	Y	Y	Υ	Υ	1	-
	DMA	Memory to memory transfer trigger	Υ	Υ	Υ	Υ	1	-
	COMPx	Comparator output blanking	Υ	Υ	Υ	Υ	-	-
TIM16/TIM17	IRTIM	Infrared interface output generation	Υ	Υ	Υ	Υ	-	-
COMPx	TIM1, 8 TIM2, 3	Timer input channel, trigger, break from analog signals comparison	Υ	Υ	Υ	Υ	1	-
COMPX	LPTIMERx	Low-power timer triggered by analog signals comparison	Υ	Υ	Υ	Υ	Υ	Y (1)
ADCx	TIM1, 8	Timer triggered by analog watchdog	Υ	Υ	Υ	Υ	ı	-
	TIM16	Timer input channel from RTC events	Υ	Υ	Υ	Υ	ı	-
RTC	LPTIMERx	Low-power timer triggered by RTC alarms or tampers	Υ	Υ	Υ	Υ	Υ	Y (1)
All clocks sources (internal and external)	TIM2 TIM15, 16, 17	Clock source used as input channel for RC measurement and trimming	Y	Υ	Υ	Υ	1	-
USB	TIM2	Timer triggered by USB SOF	Υ	Υ	-	-	-	-

Table 6. STM32L496xx peripherals interconnect matrix (continued)

Interconnect source	Interconnect destination	Interconnect action	Run	Sleep	Low-power run	Low-power sleep	Stop 0 / Stop 1	Stop 2
CSS CPU (hard fault) RAM (parity error) Flash memory (ECC error) COMPx PVD DFSDM1 (analog watchdog, short circuit detection)	TIM1,8 TIM15,16,17	Timer break	Y	Y	Y	Y	1	-
	TIMx	External trigger	Υ	Υ	Υ	Υ	-	-
GPIO	LPTIMERx	External trigger	Υ	Y	Υ	Υ	Υ	Y (1)
	ADCx DAC1 DFSDM1	Conversion external trigger	Υ	Υ	Υ	Υ	-	-

^{1.} LPTIM1 only.

47/

3.12 Clocks and startup

The clock controller (see *Figure 5*) distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features:

- Clock prescaler: to get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler
- **Safe clock switching:** clock sources can be changed safely on the fly in run mode through a configuration register.
- **Clock management:** to reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
- System clock source: four different clock sources can be used to drive the master clock SYSCLK:
 - 4-48 MHz high-speed external crystal or ceramic resonator (HSE), that can supply a PLL. The HSE can also be configured in bypass mode for an external clock.
 - 16 MHz high-speed internal RC oscillator (HSI16), trimmable by software, that can supply a PLL
 - Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 12 frequencies from 100 kHz to 48 MHz. When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be automatically trimmed by hardware to reach better than ±0.25% accuracy. In this mode the MSI can feed the USB device, saving the need of an external high-speed crystal (HSE). The MSI can supply a PLL.
 - System PLL which can be fed by HSE, HSI16 or MSI, with a maximum frequency at 80 MHz.
- RC48 with clock recovery system (HSI48): internal 48 MHz clock source (HSI48)can be used to drive the USB, the SDMMC or the RNG peripherals. This clock can be output on the MCO.
- **Auxiliary clock source:** two ultralow-power clock sources that can be used to drive the LCD controller and the real-time clock:
 - 32.768 kHz low-speed external crystal (LSE), supporting four drive capability modes. The LSE can also be configured in bypass mode for an external clock.
 - 32 kHz low-speed internal RC (LSI), also used to drive the independent watchdog.
 The LSI clock accuracy is ±5% accuracy.
- Peripheral clock sources: Several peripherals (USB, SDMMC, RNG, SAI, USARTs, I2Cs, LPTimers, ADC, SWPMI) have their own independent clock whatever the system clock. Three PLLs, each having three independent outputs allowing the highest flexibility, can generate independent clocks for the ADC, the USB/SDMMC/RNG and the two SAIs.
- **Startup clock:** after reset, the microcontroller restarts by default with an internal 4 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
- Clock security system (CSS): this feature can be enabled by software. If a HSE clock failure occurs, the master clock is automatically switched to HSI16 and a software

DS11585 Rev 9 37/272

interrupt is generated if enabled. LSE failure can also be detected and generated an interrupt.

- Clock-out capability:
 - MCO: microcontroller clock output: it outputs one of the internal clocks for external use by the application. Low frequency clocks (LSI, LSE) are available down to Stop 1 low power state.
 - LSCO: low speed clock output: it outputs LSI or LSE in all low-power modes down to Standby mode. LSE can also be output on LSCO in Shutdown mode. LSCO is not available in VBAT mode.

Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the APB domains is 80 MHz.

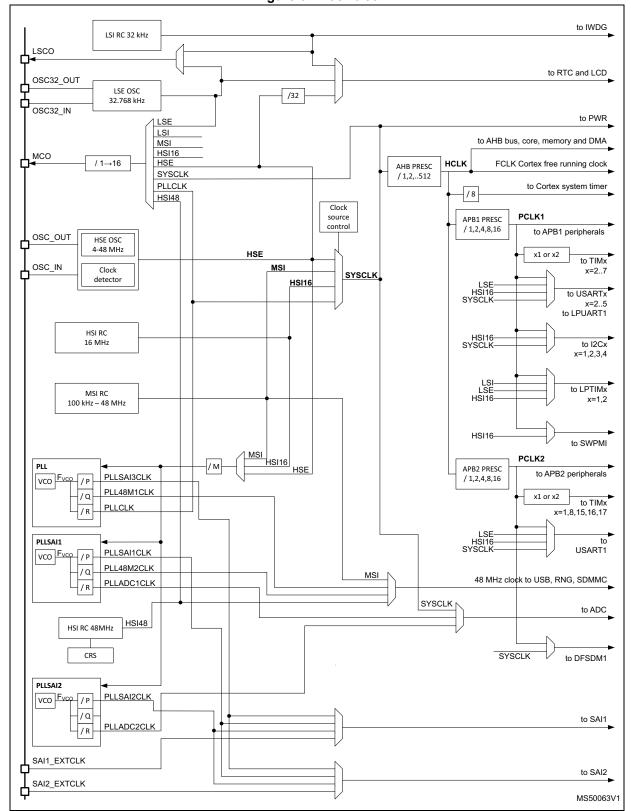


Figure 5. Clock tree

DS11585 Rev 9 39/272

3.13 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. Fast I/O toggling can be achieved thanks to their mapping on the AHB2 bus.

The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

3.14 Direct memory access controller (DMA)

The device embeds 2 DMAs. Refer to *Table 7: DMA implementation* for the features implementation.

Direct memory access (DMA) is used in order to provide high-speed data transfer between peripherals and memory as well as memory to memory. Data can be quickly moved by DMA without any CPU actions. This keeps CPU resources free for other operations.

The two DMA controllers have 14 channels in total, each dedicated to managing memory access requests from one or more peripherals. Each has an arbiter for handling the priority between DMA requests.

The DMA supports:

- 14 independently configurable channels (requests)
- Each channel is connected to dedicated hardware DMA requests, software trigger is also supported on each channel. This configuration is done by software.
- Priorities between requests from channels of one DMA are software programmable (4 levels consisting of very high, high, medium, low) or hardware in case of equality (request 1 has priority over request 2, etc.)
- Independent source and destination transfer size (byte, half word, word), emulating packing and unpacking. Source/destination addresses must be aligned on the data size.
- Support for circular buffer management
- 3 event flags (DMA Half Transfer, DMA Transfer complete and DMA Transfer Error) logically ORed together in a single interrupt request for each channel
- Memory-to-memory transfer
- Peripheral-to-memory and memory-to-peripheral, and peripheral-to-peripheral transfers
- Access to Flash, SRAM, APB and AHB peripherals as source and destination
- Programmable number of data to be transferred: up to 65536.

Table 7. DMA implementation

DMA features	DMA1	DMA2
Number of regular channels	7	7

3.15 Chrom-ART Accelerator™ (DMA2D)

The Chrom-Art Accelerator™ (DMA2D) is a graphic accelerator which offers advanced bit blitting, row data copy and pixel format conversion. It supports the following functions:

- Rectangle filling with a fixed color
- Rectangle copy
- Rectangle copy with pixel format conversion
- Rectangle composition with blending and pixel format conversion.

Various image format coding are supported, from indirect 4bpp color mode up to 32bpp direct color. It embeds dedicated memory to store color lookup tables.

An interrupt can be generated when an operation is complete or at a programmed watermark.

All the operations are fully automatized and are running independently from the CPU or the DMAs.

3.16 Interrupts and events

3.16.1 Nested vectored interrupt controller (NVIC)

The devices embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 90 maskable interrupt channels plus the 16 interrupt lines of the Cortex[®]-M4.

The NVIC benefits are the following:

- Closely coupled NVIC gives low latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Allows early processing of interrupts
- Processing of late arriving higher priority interrupts
- Support for tail chaining
- Processor state automatically saved on interrupt entry, and restored on interrupt exit, with no instruction overhead

The NVIC hardware block provides flexible interrupt management features with minimal interrupt latency.

3.16.2 Extended interrupt/event controller (EXTI)

The extended interrupt/event controller consists of 41 edge detector lines used to generate interrupt/event requests and wake-up the system from Stop mode. Each external line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The internal lines are connected to peripherals with wakeup from Stop mode capability. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 136 GPIOs can be connected to the 16 external interrupt lines.

DS11585 Rev 9 41/272

3.17 Analog to digital converter (ADC)

The device embeds 3 successive approximation analog-to-digital converters with the following features:

- 12-bit native resolution, with built-in calibration
- 5.33 Msps maximum conversion rate with full resolution
 - Down to 18.75 ns sampling time
 - Increased conversion rate for lower resolution (up to 8.88 Msps for 6-bit resolution)
- Up to 24 external channels, some of them shared between ADC1 and ADC2, or ADC1, ADC2 and ADC3.
- 5 internal channels: internal reference voltage, temperature sensor, VBAT/3, DAC1_OUT1 and DAC1_OUT2.
- One external reference pin is available on some package, allowing the input voltage range to be independent from the power supply
- · Single-ended and differential mode inputs
- Low-power design
 - Capable of low-current operation at low conversion rate (consumption decreases linearly with speed)
 - Dual clock domain architecture: ADC speed independent from CPU frequency
- Highly versatile digital interface
 - Single-shot or continuous/discontinuous sequencer-based scan mode: 2 groups of analog signals conversions can be programmed to differentiate background and high-priority real-time conversions
 - Handles two ADC converters for dual mode operation (simultaneous or interleaved sampling modes)
 - Each ADC support multiple trigger inputs for synchronization with on-chip timers and external signals
 - Results stored into 3 data register or in RAM with DMA controller support
 - Data pre-processing: left/right alignment and per channel offset compensation
 - Built-in oversampling unit for enhanced SNR
 - Channel-wise programmable sampling time
 - Three analog watchdog for automatic voltage monitoring, generating interrupts and trigger for selected timers
 - Hardware assistant to prepare the context of the injected channels to allow fast context switching

3.17.1 Temperature sensor

The temperature sensor (TS) generates a voltage V_{TS} that varies linearly with temperature.

The temperature sensor is internally connected to the ADC1_IN17 and ADC3_IN17 input channels which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.

Calibration value nameDescriptionMemory addressTS_CAL1TS_ADC raw data acquired at a temperature of 30 °C (\pm 5 °C), $V_{DDA} = V_{REF+} = 3.0 \text{ V} (\pm 10 \text{ mV})$ 0x1FFF 75A8 - 0x1FFF 75A9TS_CAL2TS_ADC raw data acquired at a temperature of 130 °C (\pm 5 °C), $V_{DDA} = V_{REF+} = 3.0 \text{ V} (\pm 10 \text{ mV})$ 0x1FFF 75CA - 0x1FFF 75CB

Table 8. Temperature sensor calibration values

3.17.2 Internal voltage reference (V_{REFINT})

The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC and Comparators. VREFINT is internally connected to the ADC1_IN0 input channel. The precise voltage of VREFINT is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode.

						
Calibration value name	Description	Memory address				
VREFINT	Raw data acquired at a temperature of 30 °C (± 5 °C),	0x1FFF 75AA - 0x1FFF 75AB				

Table 9. Internal voltage reference calibration values

3.17.3 V_{BAT} battery voltage monitoring

This embedded hardware feature allows the application to measure the V_{BAT} battery voltage using the internal ADC channel ADC1_IN18 or ADC3_IN18. As the V_{BAT} voltage may be higher than V_{DDA} , and thus outside the ADC input range, the VBAT pin is internally connected to a bridge divider by 3. As a consequence, the converted digital value is one third the V_{BAT} voltage.

3.18 Digital to analog converter (DAC)

Two 12-bit buffered DAC channels can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration.

DS11585 Rev 9 43/272

This digital interface supports the following features:

- Up to two DAC output channels
- 8-bit or 12-bit output mode
- Buffer offset calibration (factory and user trimming)
- Left or right data alignment in 12-bit mode
- Synchronized update capability
- Noise-wave generation
- Triangular-wave generation
- Dual DAC channel independent or simultaneous conversions
- DMA capability for each channel
- External triggers for conversion
- Sample and hold low-power mode, with internal or external capacitor

The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels.

3.19 Voltage reference buffer (VREFBUF)

The STM32L496xx devices embed an voltage reference buffer which can be used as voltage reference for ADCs, DAC and also as voltage reference for external components through the VREF+ pin.

The internal voltage reference buffer supports two voltages:

- 2.048 V
- 2.5 V

An external voltage reference can be provided through the VREF+ pin when the internal voltage reference buffer is off.

The VREF+ pin is double-bonded with VDDA on some packages. In these packages the internal voltage reference buffer is not available.

VREFBUF
VDDA DAC, ADC
Bandgap
Low frequency
cut-off capacitor

MSv40197V1

Figure 6. Voltage reference buffer

3.20 Comparators (COMP)

The STM32L496xx devices embed two rail-to-rail comparators with programmable reference voltage (internal or external), hysteresis and speed (low speed for low-power) and with selectable output polarity.

The reference voltage can be one of the following:

- External I/O
- DAC output channels
- Internal reference voltage or submultiple (1/4, 1/2, 3/4).

All comparators can wake up from Stop mode, generate interrupts and breaks for the timers and can be also combined into a window comparator.

3.21 Operational amplifier (OPAMP)

The STM32L496xx embeds two operational amplifiers with external or internal follower routing and PGA capability.

The operational amplifier features:

- Low input bias current
- Low offset voltage
- Low-power mode
- Rail-to-rail input

3.22 Touch sensing controller (TSC)

The touch sensing controller provides a simple solution for adding capacitive sensing functionality to any application. Capacitive sensing technology is able to detect finger presence near an electrode which is protected from direct touch by a dielectric (glass, plastic, ...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle.

The touch sensing controller is fully supported by the STMTouch touch sensing firmware library which is free to use and allows touch sensing functionality to be implemented reliably in the end application.

DS11585 Rev 9 45/272

The main features of the touch sensing controller are the following:

- Proven and robust surface charge transfer acquisition principle
- Supports up to 24 capacitive sensing channels
- Up to 3 capacitive sensing channels can be acquired in parallel offering a very good response time
- Spread spectrum feature to improve system robustness in noisy environments
- Full hardware management of the charge transfer acquisition sequence
- Programmable charge transfer frequency
- Programmable sampling capacitor I/O pin
- Programmable channel I/O pin
- Programmable max count value to avoid long acquisition when a channel is faulty
- Dedicated end of acquisition and max count error flags with interrupt capability
- One sampling capacitor for up to 3 capacitive sensing channels to reduce the system components
- Compatible with proximity, touchkey, linear and rotary touch sensor implementation
- Designed to operate with STMTouch touch sensing firmware library

Note:

The number of capacitive sensing channels is dependent on the size of the packages and subject to I/O availability.

3.23 Liquid crystal display controller (LCD)

The LCD drives up to 8 common terminals and 44 segment terminals to drive up to 320 pixels.

- Internal step-up converter to guarantee functionality and contrast control irrespective of V_{DD}. This converter can be deactivated, in which case the VLCD pin is used to provide the voltage to the LCD
- Supports static, 1/2, 1/3, 1/4 and 1/8 duty
- Supports static, 1/2, 1/3 and 1/4 bias
- Phase inversion to reduce power consumption and EMI
- Integrated voltage output buffers for higher LCD driving capability
- Up to 8 pixels can be programmed to blink
- Unneeded segments and common pins can be used as general I/O pins
- LCD RAM can be updated at any time owing to a double-buffer
- The LCD controller can operate in Stop mode

3.24 Digital filter for Sigma-Delta Modulators (DFSDM)

The device embeds one DFSDM with 4 digital filters modules and 8 external input serial channels (transceivers) or alternately 8 internal parallel inputs support.

The DFSDM peripheral is dedicated to interface the external $\Sigma\Delta$ modulators to microcontroller and then to perform digital filtering of the received data streams (which represent analog value on $\Sigma\Delta$ modulators inputs). DFSDM can also interface PDM (Pulse Density Modulation) microphones and perform PDM to PCM conversion and filtering in

hardware. DFSDM features optional parallel data stream inputs from microcontrollers memory (through DMA/CPU transfers into DFSDM or from internal ADCs).

DFSDM transceivers support several serial interface formats (to support various $\Sigma\Delta$ modulators). DFSDM digital filter modules perform digital processing according user selected filter parameters with up to 24-bit final ADC resolution.

The DFSDM peripheral supports:

- 8 multiplexed input digital serial channels:
 - configurable SPI interface to connect various SD modulator(s)
 - configurable Manchester coded 1 wire interface support
 - PDM (Pulse Density Modulation) microphone input support
 - maximum input clock frequency up to 20 MHz (10 MHz for Manchester coding)
 - clock output for SD modulator(s): 0..20 MHz
- alternative inputs from 8 internal digital parallel channels (up to 16 bit input resolution):
 - internal sources: ADCs data or device memory data streams (DMA)
- 4 digital filter modules with adjustable digital signal processing:
 - Sinc^x filter: filter order/type (1..5), oversampling ratio (up to 1..1024)
 - integrator: oversampling ratio (1..256)
- up to 24-bit output data resolution, signed output data format
- automatic data offset correction (offset stored in register by user)
- continuous or single conversion
- start-of-conversion triggered by:
 - software trigger
 - internal timers
 - external events
 - start-of-conversion synchronously with first digital filter module (DFSDM1_FLT0)
- analog watchdog feature:
 - low value and high value data threshold registers
 - dedicated configurable Sincx digital filter (order = 1..3, oversampling ratio = 1..32)
 - input from final output data or from selected input digital serial channels
 - continuous monitoring independently from standard conversion
- short circuit detector to detect saturated analog input values (bottom and top range):
 - up to 8-bit counter to detect 1..256 consecutive 0's or 1's on serial data stream
 - monitoring continuously each input serial channel
- break signal generation on analog watchdog event or on short circuit detector event
- extremes detector:
 - storage of minimum and maximum values of final conversion data
 - refreshed by software
- DMA capability to read the final conversion data
- interrupts: end of conversion, overrun, analog watchdog, short circuit, input serial channel clock absence
- "regular" or "injected" conversions:
 - "regular" conversions can be requested at any time or even in continuous mode

DS11585 Rev 9 47/272

without having any impact on the timing of "injected" conversions

- "injected" conversions for precise timing and with high conversion priority

3.25 Random number generator (RNG)

All devices embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit.

3.26 Digital camera interface (DCMI)

The devices embed a camera interface that can connect with camera modules and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera interface can sustain a data transfer rate up to 54 Mbyte/s at 54 MHz. It features:

- Programmable polarity for the input pixel clock and synchronization signals
- Parallel data communication can be 8-, 10-, 12- or 14-bit
- Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2 progressive video, RGB 565 progressive video or compressed data (like JPEG)
- Supports continuous mode or snapshot (a single frame) mode
- Capability to automatically crop the image

3.27 Timers and watchdogs

The STM32L496xx includes two advanced control timers, up to nine general-purpose timers, two basic timers, two low-power timers, two watchdog timers and a SysTick timer. The table below compares the features of the advanced control, general purpose and basic timers.

Table 10. Timer feature comparison

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complementary outputs
Advanced control	TIM1, TIM8	16-bit	Up, down, Up/down	Any integer between 1 and 65536	Yes	4	3
General- purpose	TIM2, TIM5	32-bit	Up, down, Up/down	Any integer between 1 and 65536	Yes	4	No
General- purpose	TIM3, TIM4	16-bit	Up, down, Up/down	Any integer between 1 and 65536	Yes	4	No
General- purpose	TIM15	16-bit	Up	Any integer between 1 and 65536	Yes	2	1

Table 10. Timer feature comparison (continued)

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complementary outputs
General- purpose	TIM16, TIM17	16-bit	Up	Any integer between 1 and 65536	Yes	1	1
Basic	TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No

3.27.1 Advanced-control timer (TIM1, TIM8)

The advanced-control timer can each be seen as a three-phase PWM multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead-times. They can also be seen as complete general-purpose timers. The 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge or center-aligned modes) with full modulation capability (0-100%)
- One-pulse mode output

In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switches driven by these outputs.

Many features are shared with those of the general-purpose TIMx timers (described in Section 3.27.2) using the same architecture, so the advanced-control timers can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining.

3.27.2 General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM15, TIM16, TIM17)

There are up to seven synchronizable general-purpose timers embedded in the STM32L496xx (see *Table 10* for differences). Each general-purpose timer can be used to generate PWM outputs, or act as a simple time base.

TIM2, TIM3, TIM4 and TIM5

They are full-featured general-purpose timers:

- TIM2 and TIM5 have a 32-bit auto-reload up/downcounter and 32-bit prescaler
- TIM3 and TIM4 have 16-bit auto-reload up/downcounter and 16-bit prescaler.

These timers feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. They can work together, or with the other general-purpose timers via the Timer Link feature for synchronization or event chaining.

The counters can be frozen in debug mode.

All have independent DMA request generation and support quadrature encoders.

• TIM15, 16 and 17

They are general-purpose timers with mid-range features:

They have 16-bit auto-reload upcounters and 16-bit prescalers.

- TIM15 has 2 channels and 1 complementary channel
- TIM16 and TIM17 have 1 channel and 1 complementary channel

All channels can be used for input capture/output compare, PWM or one-pulse mode output.

The timers can work together via the Timer Link feature for synchronization or event chaining. The timers have independent DMA request generation.

The counters can be frozen in debug mode.

3.27.3 Basic timers (TIM6 and TIM7)

The basic timers are mainly used for DAC trigger generation. They can also be used as generic 16-bit timebases.

3.27.4 Low-power timer (LPTIM1 and LPTIM2)

The devices embed two low-power timers. These timers have an independent clock and are running in Stop mode if they are clocked by LSE, LSI or an external clock. They are able to wakeup the system from Stop mode.

LPTIM1 is active in Stop 0, Stop 1 and Stop 2 modes.

LPTIM2 is active in Stop 0 and Stop 1 mode.

This low-power timer supports the following features:

- 16-bit up counter with 16-bit autoreload register
- 16-bit compare register
- Configurable output: pulse, PWM
- Continuous/ one shot mode
- Selectable software/hardware input trigger
- Selectable clock source
 - Internal clock sources: LSE, LSI, HSI16 or APB clock
 - External clock source over LPTIM input (working even with no internal clock source running, used by pulse counter application).
- Programmable digital glitch filter
- Encoder mode (LPTIM1 only)

3.27.5 Infrared interface (IRTIM)

The STM32L496xx includes one infrared interface (IRTIM). It can be used with an infrared LED to perform remote control functions. It uses TIM16 and TIM17 output channels to generate output signal waveforms on IR OUT pin.

3.27.6 Independent watchdog (IWDG)

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC (LSI) and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

3.27.7 System window watchdog (WWDG)

The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.27.8 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:

- A 24-bit down counter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0.
- Programmable clock source

DS11585 Rev 9 51/272

3.28 Real-time clock (RTC) and backup registers

The RTC is an independent BCD timer/counter. It supports the following features:

- Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format.
- Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
- Two programmable alarms.
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock.
- Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.
- Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal inaccuracy.
- Three anti-tamper detection pins with programmable filter.
- Timestamp feature which can be used to save the calendar content. This function can
 be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to
 VBAT mode.
- 17-bit auto-reload wakeup timer (WUT) for periodic events with programmable resolution and period.

The RTC and the 32 backup registers are supplied through a switch that takes power either from the V_{DD} supply when present or from the VBAT pin.

The backup registers are 32-bit registers used to store 128 bytes of user application data when V_{DD} power is not present. They are not reset by a system or power reset, or when the device wakes up from Standby or Shutdown mode.

The RTC clock sources can be:

- A 32.768 kHz external crystal (LSE)
- An external resonator or oscillator (LSE)
- The internal low power RC oscillator (LSI, with typical frequency of 32 kHz)
- The high-speed external clock (HSE) divided by 32.

The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the LSE. When clocked by the LSI, the RTC is not functional in VBAT mode, but is functional in all low-power modes except Shutdown mode.

All RTC events (Alarm, WakeUp Timer, Timestamp or Tamper) can generate an interrupt and wakeup the device from the low-power modes.

477

3.29 Inter-integrated circuit interface (I²C)

The device embeds four I2C. Refer to *Table 11: I2C implementation* for the features implementation.

The I²C bus interface handles communications between the microcontroller and the serial I²C bus. It controls all I²C bus-specific sequencing, protocol, arbitration and timing.

The I2C peripheral supports:

- I²C-bus specification and user manual rev. 5 compatibility:
 - Slave and master modes, multimaster capability
 - Standard-mode (Sm), with a bitrate up to 100 kbit/s
 - Fast-mode (Fm), with a bitrate up to 400 kbit/s
 - Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os
 - 7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
 - Programmable setup and hold times
 - Optional clock stretching
- System Management Bus (SMBus) specification rev 2.0 compatibility:
 - Hardware PEC (Packet Error Checking) generation and verification with ACK control
 - Address resolution protocol (ARP) support
 - SMBus alert
- Power System Management Protocol (PMBusTM) specification rev 1.1 compatibility
- Independent clock: a choice of independent clock sources allowing the I2C communication speed to be independent from the PCLK reprogramming. Refer to Figure 5: Clock tree.
- Wakeup from Stop mode on address match
- Programmable analog and digital noise filters
- 1-byte buffer with DMA capability

Table 11. I2C implementation

I2C features ⁽¹⁾	I2C1	I2C2	I2C3	I2C4
Standard-mode (up to 100 kbit/s)	Х	Х	Х	Х
Fast-mode (up to 400 kbit/s)	Х	Х	Х	Х
Fast-mode Plus with 20mA output drive I/Os (up to 1 Mbit/s)	Х	Х	Х	Х
Programmable analog and digital noise filters	Х	Х	Х	Х
SMBus/PMBus hardware support	Х	Х	Х	Х
Independent clock	Х	Х	Х	Х
Wakeup from Stop0, Stop 1 mode on address match	Х	Х	Х	Х
Wakeup from Stop 2 mode on address match	-	-	Х	-

1. X: supported

DS11585 Rev 9 53/272

3.30 Universal synchronous/asynchronous receiver transmitter (USART)

The STM32L496xx devices have three embedded universal synchronous receiver transmitters (USART1, USART2 and USART3) and two universal asynchronous receiver transmitters (UART4, UART5).

These interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. They provide hardware management of the CTS and RTS signals, and RS485 Driver Enable. They are able to communicate at speeds of up to 10Mbit/s.

USART1, USART2 and USART3 also provide Smart Card mode (ISO 7816 compliant) and SPI-like communication capability.

All USART have a clock domain independent from the CPU clock, allowing the USARTx (x=1,2,3,4,5) to wake up the MCU from Stop mode using baudrates up to 204 Kbaud. The wake up events from Stop mode are programmable and can be:

- Start bit detection
- Any received data frame
- A specific programmed data frame

All USART interfaces can be served by the DMA controller.

USART modes/features⁽¹⁾ USART1 USART2 USART3 **UART4 UART5** LPUART1 Hardware flow control for modem Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Continuous communication using DMA Multiprocessor communication Χ Χ Χ Χ Χ Χ Synchronous mode Χ Χ Х Smartcard mode Χ Χ Χ Χ Χ Х Χ Single-wire half-duplex communication Х Χ IrDA SIR ENDEC block Χ Χ Х Χ Χ LIN mode Χ Χ Χ Χ Χ Dual clock domain Х Χ Х Х Х Х Wakeup from Stop 0 / Stop 1 modes Х Х Х Х Χ Х Wakeup from Stop 2 mode Χ Receiver timeout interrupt Х Χ Χ Χ Х Х Χ Х Χ Χ Modbus communication Auto baud rate detection X (4 modes) **Driver Enable** Χ Х Х Х Х Χ LPUART/USART data length 7, 8 and 9 bits

Table 12. STM32L496xx USART/UART/LPUART features

^{1.} X = supported.

3.31 Low-power universal asynchronous receiver transmitter (LPUART)

The device embeds one Low-Power UART. The LPUART supports asynchronous serial communication with minimum power consumption. It supports half duplex single wire communication and modem operations (CTS/RTS). It allows multiprocessor communication.

The LPUART has a clock domain independent from the CPU clock, and can wakeup the system from Stop mode using baudrates up to 220 Kbaud. The wake up events from Stop mode are programmable and can be:

- Start bit detection
- Any received data frame
- A specific programmed data frame

Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher speed clock can be used to reach higher baudrates.

LPUART interface can be served by the DMA controller.

DS11585 Rev 9 55/272

3.32 Serial peripheral interface (SPI)

Three SPI interfaces allow communication up to 40 Mbits/s in master and up to 24 Mbits/s slave modes, in half-duplex, full-duplex and simplex modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits. The SPI interfaces support NSS pulse mode, TI mode and Hardware CRC calculation.

All SPI interfaces can be served by the DMA controller.

3.33 Serial audio interfaces (SAI)

The device embeds 2 SAI. Refer to *Table 13: SAI implementation* for the features implementation. The SAI bus interface handles communications between the microcontroller and the serial audio protocol.

The SAI peripheral supports:

- Two independent audio sub-blocks which can be transmitters or receivers with their respective FIFO.
- 8-word integrated FIFOs for each audio sub-block.
- Synchronous or asynchronous mode between the audio sub-blocks.
- Master or slave configuration independent for both audio sub-blocks.
- Clock generator for each audio block to target independent audio frequency sampling when both audio sub-blocks are configured in master mode.
- Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit.
- Peripheral with large configurability and flexibility allowing to target as example the following audio protocol: I2S, LSB or MSB-justified, PCM/DSP, TDM, AC'97 and SPDIF out
- Up to 16 slots available with configurable size and with the possibility to select which
 ones are active in the audio frame.
- Number of bits by frame may be configurable.
- Frame synchronization active level configurable (offset, bit length, level).
- First active bit position in the slot is configurable.
- LSB first or MSB first for data transfer.
- Mute mode.
- Stereo/Mono audio frame capability.
- Communication clock strobing edge configurable (SCK).
- Error flags with associated interrupts if enabled respectively.
 - Overrun and underrun detection.
 - Anticipated frame synchronization signal detection in slave mode.
 - Late frame synchronization signal detection in slave mode.
 - Codec not ready for the AC'97 mode in reception.
- Interruption sources when enabled:
 - Errors.
 - FIFO requests.
- DMA interface with 2 dedicated channels to handle access to the dedicated integrated FIFO of each SAI audio sub-block.

SAI features⁽¹⁾ SAI1 SAI2 I2S, LSB or MSB-justified, PCM/DSP, TDM, AC'97 Χ Х Χ Χ Mute mode Stereo/Mono audio frame capability. Χ Χ 16 slots Χ Χ Χ Χ Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit FIFO Size X (8 Word) X (8 Word) **SPDIF** Χ Χ

Table 13. SAI implementation

3.34 Single wire protocol master interface (SWPMI)

The Single wire protocol master interface (SWPMI) is the master interface corresponding to the Contactless Frontend (CLF) defined in the ETSI TS 102 613 technical specification. The main features are:

- full-duplex communication mode
- automatic SWP bus state management (active, suspend, resume)
- configurable bitrate up to 2 Mbit/s
- automatic SOF, EOF and CRC handling

SWPMI can be served by the DMA controller.

3.35 Controller area network (CAN)

The two CANs are compliant with the 2.0A and B (active) specifications with a bit rate up to 1Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one CAN is used). 256 bytes of SRAM are allocated for each CAN.

DS11585 Rev 9 57/272

^{1.} X: supported

Dual CAN peripheral configuration is available. The CAN peripheral supports:

- Supports CAN protocol version 2.0 A, B Active
- Bit rates up to 1 Mbit/s
- Transmission
 - Three transmit mailboxes
 - Configurable transmit priority
- Reception
 - Two receive FIFOs with three stages
 - Scalable filter banks: 28 filter banks shared between CAN1 and CAN2
 - Identifier list feature
 - Configurable FIFO overrun
- Time-triggered communication option
 - Disable automatic retransmission mode
 - 16-bit free running timer
 - Time Stamp sent in last two data bytes
- Management
 - Maskable interrupts
 - Software-efficient mailbox mapping at a unique address space

3.36 Secure digital input/output and MultiMediaCards Interface (SDMMC)

The card host interface (SDMMC) provides an interface between the APB peripheral bus and MultiMediaCards (MMCs), SD memory cards and SDIO cards.

The SDMMC features include the following:

- Full compliance with MultiMediaCard System Specification Version 4.2. Card support for three different databus modes: 1-bit (default), 4-bit and 8-bit
- Full compatibility with previous versions of MultiMediaCards (forward compatibility)
- Full compliance with SD Memory Card Specifications Version 2.0
- Full compliance with SD I/O Card Specification Version 2.0: card support for two different databus modes: 1-bit (default) and 4-bit
- Data transfer up to 48 MHz for the 8 bit mode
- Data write and read with DMA capability

3.37 Universal serial bus on-the-go full-speed (OTG_FS)

The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and with the OTG 2.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG controller requires a dedicated 48 MHz clock that can be provided by the internal multispeed oscillator (MSI) automatically trimmed by 32.768 kHz external oscillator (LSE). This allows to use the USB device without external high speed crystal (HSE).

The synchronization for this oscillator can also be taken from the USB data stream itself (SOF signalization) which allows crystal less operation.

The major features are:

- Combined Rx and Tx FIFO size of 1.25 KB with dynamic FIFO sizing
- Supports the session request protocol (SRP) and host negotiation protocol (HNP)
- 1 bidirectional control endpoint + 5 IN endpoints + 5 OUT endpoints
- 12 host channels with periodic OUT support
- HNP/SNP/IP inside (no need for any external resistor)
- USB 2.0 LPM (Link Power Management) support
- Battery Charging Specification Revision 1.2 support
- Internal FS OTG PHY support

For OTG/Host modes, a power switch is needed in case bus-powered devices are connected.

3.38 Clock recovery system (CRS)

The STM32L496xx devices embed a special block which allows automatic trimming of the internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device operational range. This automatic trimming is based on the external synchronization signal, which could be either derived from USB SOF signalization, from LSE oscillator, from an external signal on CRS_SYNC pin or generated by user software. For faster lock-in during startup it is also possible to combine automatic trimming with manual trimming action.

3.39 Flexible static memory controller (FSMC)

The Flexible static memory controller (FSMC) includes two memory controllers:

- The NOR/PSRAM memory controller
- The NAND/memory controller

This memory controller is also named Flexible memory controller (FMC).

The main features of the FMC controller are the following:

- Interface with static-memory mapped devices including:
 - Static random access memory (SRAM)
 - NOR Flash memory/OneNAND Flash memory
 - PSRAM (4 memory banks)
 - NAND Flash memory with ECC hardware to check up to 8 Kbyte of data
- 8-.16- bit data bus width
- Independent Chip Select control for each memory bank
- Independent configuration for each memory bank
- Write FIFO
- The Maximum FMC_CLK frequency for synchronous accesses is HCLK/2.

LCD parallel interface

The FMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost effective graphic applications using LCD modules with embedded controllers or high performance solutions using external controllers with dedicated acceleration.

3.40 Dual-flash Quad SPI memory interface (QUADSPI)

The Dual-flash Quad SPI is a specialized communication interface targeting single, dual or quad SPI flash memories. It can operate in any of the three following modes:

- Indirect mode: all the operations are performed using the QUADSPI registers
- Status polling mode: the external flash status register is periodically read and an interrupt can be generated in case of flag setting
- Memory-mapped mode: the external Flash is memory mapped and is seen by the system as if it were an internal memory

Both throughput and capacity can be increased two-fold using dual-flash mode, where two Quad SPI flash memories are accessed simultaneously.

The Dual-flash Quad SPI interface supports:

- Three functional modes: indirect, status-polling, and memory-mapped
- Dual-flash mode, where 8 bits can be sent/received simultaneously by accessing two flash memories in parallel.
- SDR and DDR support
- Fully programmable opcode for both indirect and memory mapped mode
- Fully programmable frame format for both indirect and memory mapped mode
- Each of the 5 following phases can be configured independently (enable, length, single/dual/quad communication)
 - Instruction phase
 - Address phase
 - Alternate bytes phase
 - Dummy cycles phase
 - Data phase
- Integrated FIFO for reception and transmission
- 8, 16, and 32-bit data accesses are allowed
- DMA channel for indirect mode operations
- Programmable masking for external flash flag management
- Timeout management
- Interrupt generation on FIFO threshold, timeout, status match, operation complete, and access error

DS11585 Rev 9

60/272

3.41 Development support

3.41.1 Serial wire JTAG debug port (SWJ-DP)

The Arm[®] SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

3.41.2 Embedded Trace Macrocell™

The Arm[®] Embedded Trace Macrocell™ provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32L496xx through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. Real-time instruction and data flow activity be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors.

The Embedded Trace Macrocell™ operates with third party debugger software tools.

DS11585 Rev 9 61/272

4 Pinouts and pin description

Figure 7. STM32L496Ax UFBGA169 pinout⁽¹⁾

	3 Jane 1														
	1	2	3	4	5	6	7	8	9	10	11	12	13		
A	PI10	PH2	VDD	PE0	PB4	PB3	vss	VDD	PA15	PA14	PA13	PI0	PH14		
В	PI9	PI7	vss	PE1	PB5	VDDIO2	PG9	PD0	PI6	PI2	Pl1	PH15	PH12		
C VDD VSS PI11 PB8 PB6 PG15 PD4 PD1 PH13 PI3 PI8													VDD		
D	D PE4 PE3 PE2 PB9 PB7 PG10 PD5 PD2 PC10 PI4 PH9 PH7 P.														
E	PC13	VBAT	PE6	PE5	РН3-ВООТ0	PG11	PD6	PD3	PC11	PI5	PH6	VDDUSB	PA11		
F	PC14- OSC32_IN	vss	PF2	PF1	PF0	PG12	PD7	PC12	PA10	PA9	PC6	VDDIO2	vss		
G	PC15- OSC32_OUT	VDD	PF3	PF4	PF5	PG14	PG13	PA8	PC9	PC8	PG6	PC7	VDD		
н	PH0-OSC_IN	vss	NRST	PF10	PC4	PG1	PE10	PB11	PG8	PG7	PD15	vss	VDD		
J	PH1- OSC_OUT	PC0	PC1	PC2	PC5	PG0	PE9	PE15	PG5	PG4	PG3	PG2	PD10		
к	PC3	VSSA/VREF-	PA0	PA5	PB0	PF15	PE8	PE14	PH4	PD14	PD12	PD11	PD13		
L	VREF+	VDDA	PA4	PA7	PB1	PF14	PE7	PE13	PH5	PD9	PD8	VDD	vss		
м	OPAMP1_VI NM	PA3	vss	PA6	PF11	PF13	vss	PE12	PH10	PH11	vss	PB15	PB14		
N	N PA2 PA1 VDD OPAMP2_VI PB2 PF12 VDD PE11 PB10 PH8 VDD PB12 PB13														
	MSv38036\													6V4	

1. The above figure shows the package top view.

Figure 8. STM32L496Ax, external SMPS device, UFBGA169 pinout⁽¹⁾

	1	2	3	4	5	6	7	8	9	10	11	12	13
A	PI10	PH2	VDD	PE0	PB4	PB3	vss	VDD	PA15	PA14	PA13	PI0	PH14
В	PI9	PI7	vss	PE1	PB5	VDDIO2	PG9	PD0	PI6	PI2	PI1	PH15	PH12
С	VDD	vss	PI11	PB8	PB6	VDD12	PD4	PD1	PH13	PI3	PI8	vss	VDD
D	PE4	PE3	PE2	PB9	PB7	PG10	PD5	PD2	PC10	PI4	PH9	PH7	PA12
E	PC13	VBAT	PE6	PE5	РН3-ВООТ0	PG11	PD6	PD3	PC11	PI5	PH6	VDDUSB	PA11
F	PC14- OSC32_IN	vss	PF2	PF1	PF0	PG12	PD7	PC12	PA10	PA9	PC6	VDDIO2	vss
G	PC15- OSC32_OUT	VDD	PF3	PF4	PF5	PG14	PG13	PA8	PC9	PC8	PG6	PC7	VDD
н	PH0-OSC_IN	vss	NRST	PF10	PC4	PG1	PE10	PB11	PG8	PG7	PD15	vss	VDD
J	PH1- OSC_OUT	PC0	PC1	PC2	PC5	PG0	PE9	PE15	PG5	PG4	PG3	PG2	PD10
к	PC3	VSSA/VREF-	PA0	PA5	PB0	PF15	PE8	PE14	PH4	PD14	PD12	PD11	PD13
L	VREF+	VDDA	PA4	PA7	PB1	PF14	PE7	PE13	PH5	PD9	PD8	VDD	vss
м	OPAMP1_VI NM	PA3	vss	PA6	PF11	PF13	vss	PE12	PH10	VDD12	vss	PB15	PB14
N	PA2	PA1	VDD	OPAMP2_VI NM	PB2	PF12	VDD	PE11	PB10	PH8	VDD	PB12	PB13

1. The above figure shows the package top view.

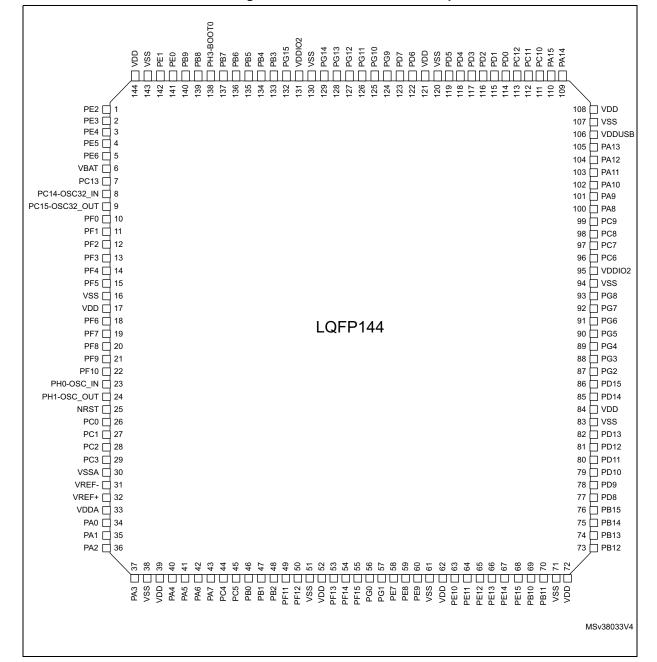


Figure 9. STM32L496Zx LQFP144 pinout⁽¹⁾

5//

DS11585 Rev 9 63/272

108 🔲 VDD PE2 🔲 1 PE3 🗌 2 107 🔲 VSS 106 VDDUSB 105 PA13 PF4 □ 3 PE5 🛚 4 PE6 🗖 5 104 🗖 PA12 VBAT ☐ 6 103 PA11 102 PA10 PC13 🔲 7 PC14-OSC32_IN 8 101 🗖 PA9 PC15-OSC32_OUT 🔲 9 100 PA8 99 PC9 PF0 🗖 10 PF1 🗖 11 98 🗖 PC8 PF2 🗖 12 97 🗖 PC7 PF3 🗖 13 96 PC6 95 🗖 VDDIO2 PF4 🗖 14 PF5 🗖 15 94 🗆 vss VSS | 16 93 PG8 VDD 🔲 17 92 🗖 PG7 PF6 🗖 18 91 🗖 PG6 LQFP144 PF7 🗖 19 90 🗖 PG5 PF8 🗖 20 89 🗖 PG4 88 PG3 87 PG2 PF9 🗖 21 PF10 🔲 22 PH0-OSC_IN 23 86 🗖 PD15 85 PD14 84 VDD PH1-OSC OUT 24 NRST 🗌 25 PC0 🗖 26 83 🗆 VSS 82 PD13 81 PD12 PC1 🗖 27 PC2 🗖 28 PC3 🗆 29 80 D PD11 VSSA ☐ 30 79 🏻 PD10 VREF- 🖂 31 78 🗖 PD9 VREF+ ☐ 32 77 🗆 PD8 76 PB15 VDDA 🖂 33 PA0 🖂 34 75 🗖 PB14 74 PB13 PA1 🖂 35 PA2 🛚 36 73 D PB12 MSv42236V1

Figure 10. STM32L496Zx, external SMPS device, LQFP144 pinout⁽¹⁾

57/

MSv38035V3

2 11 12 1 PE3 PE1 PB8 РН3-ВООТ0 PD7 PD5 PB4 PB3 PA15 PA14 PA13 PA12 PE2 PB7 PD1 PC12 PC10 PE4 PB9 PB6 PD6 PD4 PD3 PA11 PC13 PE5 PE0 VDD PB5 PG14 PG13 PD2 PD0 PC11 VDDUSB PA10 PC14-OSC32_IN PE6 vss PF2 PF0 PG12 PG10 PG9 PA9 PA8 PC9 PC15-OSC32_OUT VBAT PC7 VSS PF3 PG5 PC8 PC6 PH0-OSC_IN vss PF4 PF5 vss vss vss PG3 PG4 PH1-OSC_OUT PG6 VDD PG11 VDDIO2 PG1 PG2 VDD VDD PG7 NRST VDD PD15 PD14 PD13 VSSA/VREF PG15 PA5 PF11 PF13 PB14 PB13 VREF+ PE10

Figure 11. STM32L496Qx UFBGA132 ballout⁽¹⁾

1. The above figure shows the package top view.

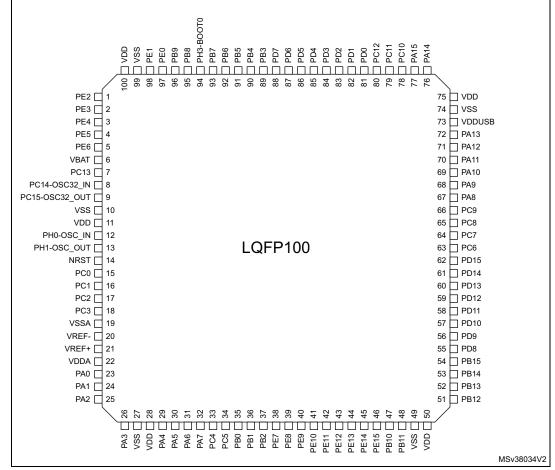
Figure 12. STM32L496Qx, external SMPS device, UFBGA132 ballout

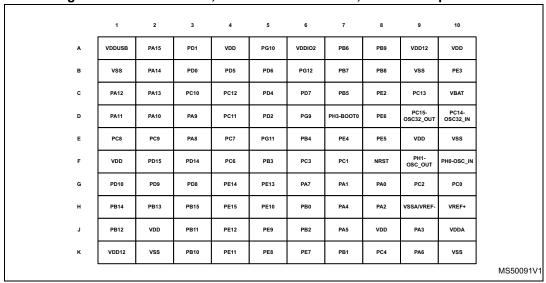
1 2 3 4 5 6 7 8 9 10 11 12 A PE3 PE1 PB8 PH3-BOOT0 PD7 PD5 PB4 PB3 PA15 PA14 PA13 PA12 B PE4 PE2 PB9 PB7 PB6 PD6 PD4 PD3 PD1 PC12 PC10 PA11 C PC13 PE5 PE0 VDD PB5 VDD12 PG13 PD2 PD0 PC11 VDDUSB PA10 D PC14-OSC32,IN PE6 VSS PF2 PF1 PF0 PG12 PG10 PG9 PA9 PA8 PC9 E OSC32,OUT VBAT VSS PF3 VSS VSS VSS VSS PG2 VDD VDD VDD02 PG1 PG1 PG2 VDD VDD H PC0 NRST VDD PG1 PG6 VDD VDD02 PG0 PD15 PD14 PD13 J VSSAVREF- PC1 PC2 PA4 PA7 PG8 PF12 PF14 PF15 PD12 PD10 PD10 K PG15 PC3 PA2 PA5 PC4 PF11 PF13 PD9 PD8 PB15 PB14 PB13 L VREF+ PA0 PA3 PA6 PC5 PB2 PE8 PE10 PE12 PB10 VDD12 PB12 M VDDA PA1 OPAMP1_VI OPAMP1_VI OPAMP1_VI PB0 PB1 PE7 PE9 PE11 PE13 PE14 PE15		9			,	,,, 0,,,,				,, 				
PE4		1	2	3	4	5	6	7	8	9	10	11	12	
C PC13 PE5 PE0 VDD PB5 VDD12 PG13 PD2 PD0 PC11 VDDUSB PA10 D PC14- OSC32_N PE6 VSS PF2 PF1 PF0 PG12 PG10 PG9 PA9 PA8 PC9 E PC15- OSC32_OUT VBAT VSS PF3 PC8 PC7 PC6 F PH0-OSC_IN VSS PF4 PF5 VSS VSS PG1 PG1 PG1 PG2 PG1 PG1 PG2 PG1	A	PE3	PE1	PB8	РН3-ВООТ0	PD7	PD5	PB4	PB3	PA15	PA14	PA13	PA12	
D PC14- OSC32_IN PE6 VSS PF2 PF1 PF0 PG12 PG10 PG9 PA9 PA8 PC9 E DC15- OSC32_OUT VBAT VSS PF3 PG5 PC8 PC7 PC6 F PH0-OSC_IN VSS PF4 PF5 VSS VSS PG3 PG4 VSS VSS G DH1- OSC_OUT VDD PG11 PG6 VDD VDDO2 PG1 PG2 VDD VDD H PC0 NRST VDD PG7 PG8 PF12 PF14 PF15 PD12 PD11 PD10 K PG15 PC3 PA2 PA5 PC4 PF11 PF13 PD9 PD8 PB15 PB14 PB13 L VREF+ PA0 PA3 PA6 PC5 PB2 PE8 PE10 PE12 PB10 VDD12 PB12 M VDDA PA1 OPAMP1_VI OPAMP1_VI NMI PB0 PB1 PE7 PE9 PE11 PE13 PE14 PE15 PG5 PC8 PC7 PC6 PC6 PC6 PC7 P	В	PE4	PE2	PB9	PB7	PB6	PD6	PD4	PD3	PD1	PC12	PC10	PA11	
D	С	PC13	PE5	PE0	VDD	PB5	VDD12	PG13	PD2	PD0	PC11	VDDUSB	PA10	
F PH0-OSC_IN VSS PF4 PF5 VSS VSS PG4 PG7 PC6 PC6 PC7 PC6	D	PC14- OSC32_IN	PE6	vss	PF2	PF1	PF0	PG12	PG10	PG9	PA9	PA8	PC9	
G PH1. DSC_OUT VDD PG11 PG6 VDD VDDO2 PG1 PG1 PG2 VDD VDD PG7 PG0 PD15 PD14 PD13 J VSSA/VREF- PC1 PC2 PA4 PA7 PG8 PF12 PF14 PF15 PD12 PD11 PD10 K PG15 PC3 PA2 PA5 PC4 PF11 PF13 PD9 PD8 PB15 PB14 PB13 L VREF+ PA0 PA3 PA6 PC5 PB2 PE8 PE10 PE12 PB10 VDD12 PB12 M VDDA PA1 OPAMP1_VI OPAMP1_VI NM PB0 PB1 PE7 PE9 PE11 PE13 PE14 PE15	E		VBAT	vss	PF3					PG5	PC8	PC7	PC6	
OSC_OUT VID PG11 PG6 VID VID VID PG1 PG2 VID VID VID VID PG3 PG3 VID VID VID VID PG4 PG5 PG6 PD15 PD14 PD13 J VSSAIVREF- PC1 PC2 PA4 PA7 PG8 PF12 PF14 PF15 PD12 PD11 PD10 K PG15 PC3 PA2 PA5 PC4 PF11 PF13 PD9 PD8 PB15 PB14 PB13 L VREF+ PA0 PA3 PA6 PC5 PB2 PE8 PE10 PE12 PB10 VDD12 PB12 M VDDA PA1 OPAMP1_VI OPAMP1_VI NM PB0 PB1 PE7 PE9 PE11 PE13 PE14 PE15	F	PH0-OSC_IN	vss	PF4	PF5		vss	vss		PG3	PG4	vss	vss	
J VSSA/VREF- PC1 PC2 PA4 PA7 PG8 PF12 PF14 PF15 PD12 PD11 PD10 K PG15 PC3 PA2 PA5 PC4 PF11 PF13 PD9 PD8 PB15 PB14 PB13 L VREF+ PA0 PA3 PA6 PC5 PB2 PE8 PE10 PE12 PB10 VDD12 PB12 M VDDA PA1 OPAMP1_VI NM OPAMP1_VI NM PB0 PB1 PE7 PE9 PE11 PE13 PE14 PE15	G	PH1- OSC_OUT	VDD	PG11	PG6		VDD	VDDIO2		PG1	PG2	VDD	VDD	
K PG15 PC3 PA2 PA5 PC4 PF11 PF13 PD9 PD8 PB15 PB14 PB13 L VREF+ PA0 PA3 PA6 PC5 PB2 PE8 PE10 PE12 PB10 VDD12 PB12 M VDDA PA1 OPAMP1_VI OPAMP2_VI NM PB0 PB1 PE7 PE9 PE11 PE13 PE14 PE15	н	PC0	NRST	VDD	PG7					PG0	PD15	PD14	PD13	
L VREF+ PA0 PA3 PA6 PC5 PB2 PE8 PE10 PE12 PB10 VDD12 PB12 M VDDA PA1 OPAMP1_VI OPAMP2_VI NM PB0 PB1 PE7 PE9 PE11 PE13 PE14 PE15	J	VSSA/VREF-	PC1	PC2	PA4	PA7	PG8	PF12	PF14	PF15	PD12	PD11	PD10	
M VDDA PA1 OPAMP1_VI OPAMP2_VI PB0 PB1 PE7 PE9 PE11 PE13 PE14 PE15	к	PG15	PC3	PA2	PA5	PC4	PF11	PF13	PD9	PD8	PB15	PB14	PB13	
M VOOR PAI NM NM PBU PBI PEI PEB PEB PEB PEB		VREF+	PA0	PA3	PA6	PC5	PB2	PE8	PE10	PE12	PB10	VDD12	PB12	
	м	VDDA	PA1	OPAMP1_VI NM	OPAMP2_VI NM	PB0	PB1	PE7	PE9	PE11	PE13	PE14	PE15	
MS4690														

1. The above figure shows the package top view.

577

DS11585 Rev 9 65/272




Figure 13. STM32L496Vx LQFP100 pinout⁽¹⁾

577

Figure 14. STM32L496Vx WLCSP100 pinout⁽¹⁾

	i igaio i ii o i iii o i zi i i o o i i i o o piii o at											
	1	2	3	4	5	6	7	8	9	10		
Α	VDDUSB	PA15	PD1	VDD	PG10	VDDIO2	PB6	PB9	vss	VDD		
В	vss	PA14	PD0	PD4	PG9	PG12	PB5	PB8	PE2	PE3		
С	PA12	PA13	PC11	PC12	PD7	PB3	PB4	PE4	PC13	VBAT		
D	PA11	PA10	PA9	PC10	PD6	PG11	PB7	PE5	vss	PC14- OSC32_IN		
E	PC8	PC9	PA8	PD2	PD5	РН3-ВООТ0	PE6	NRST	VDD	PC15- OSC32_OUT		
F	VDD	PC6	PC7	PD15	PB2	PA4	PC3	PC1	PC0	PH0-OSC_IN		
G	PD10	PD9	PD14	PE13	PE12	PA5	VREF+	VREF-	PA0	PH1- OSC_OUT		
н	PB15	PB14	PD8	PE15	PE10	PC4	PA2	PA1	VSSA/VREF-	PC2		
J	PB12	PB13	PB11	PE14	PE9	PB0	PA7	VDD	PA3	VDDA		
к	VDD	vss	PB10	PE11	PE8	PE7	PB1	PC5	PA6	vss		

Figure 15. STM32L496Vx, external SMPS device, WLCSP100 pinout⁽¹⁾

1. The above figure shows the package top view.

577

DS11585 Rev 9 67/272

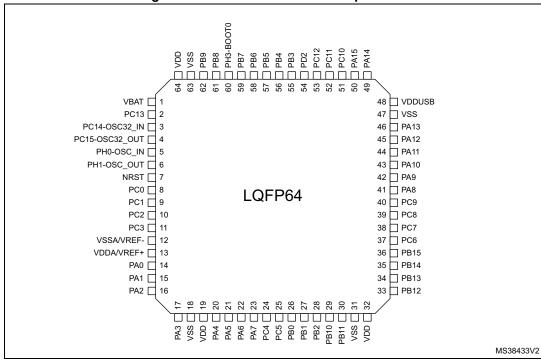


Figure 16. STM32L496Rx LQFP64 pinout⁽¹⁾

577

Table 14. Legend/abbreviations used in the pinout table

Na	me	Abbreviation	Definition						
Pin r	name	Unless otherwise specified in reset is the same as the actu-	brackets below the pin name, the pin function during and after al pin name						
		S	Supply pin						
Pin	type	I	Input only pin						
		I/O	Input / output pin						
		FT	5 V tolerant I/O						
		TT	3.6 V tolerant I/O						
		RST	Bidirectional reset pin with embedded weak pull-up resistor						
	-		Option for TT or FT I/Os						
I/O str	ructure	_f ⁽¹⁾	I/O, Fm+ capable						
		_l ⁽²⁾	I/O, with LCD function supplied by V _{LCD}						
		_u ⁽³⁾	I/O, with USB function supplied by V _{DDUSB}						
		_a ⁽⁴⁾	I/O, with Analog switch function supplied by V _{DDA}						
		_s ⁽⁵⁾	I/O supplied only by V _{DDIO2}						
No	ites	Unless otherwise specified by	/ a note, all I/Os are set as analog inputs during and after reset.						
Pin	Alternate functions	Functions selected through G	SPIOx_AFR registers						
functions	Additional functions	Functions directly selected/enabled through peripheral registers							

- 1. The related I/O structures in *Table 15* are: FT_f, FT_fa, FT_fl, FT_fla.
- 2. The related I/O structures in ${\it Table~15}$ are: FT_I, FT_fI, FT_lu.
- 3. The related I/O structures in *Table 15* are: FT_u, FT_lu.
- 4. The related I/O structures in *Table 15* are: FT_a, FT_la, FT_fa, FT_fla, TT_a, TT_la.
- 5. The related I/O structures in *Table 15* are: FT_s, FT_fs.

577

DS11585 Rev 9

	ons	Additional functions	ı	ı	ı		ı	RTC_TAMP3/WKUP3	1	RTC_TAMP1/RTC_TS/RT C_OUT/WKUP2	OSC32_IN
ns	Pin functions	Alternate functions	EVENTOUT	TRACECK, TIM3_ETR, TSC_G7_IO1, LCD_SEG38, FMC_A23, SAI1_MCLK_A, EVENTOUT	TRACED0, TIM3_CH1, TSC_G7_IO2, LCD_SEG39, FMC_A19, SAI1_SD_B, EVENTOUT	TRACED1, TIM3_CH2, DFSDM1_DATIN3, TSC_G7_103, DCM1_D4, FMC_A20, SA11_FS_A, EVENTOUT	TRACED2, TIM3_CH3, DFSDM1_CKIN3, TSC_G7_IO4, DCMI_D6, FMC_A21, SAI1_SCK_A, EVENTOUT	TRACED3, TIM3_CH4, DCMI_D7, FMC_A22, SAI1_SD_A, EVENTOUT	-	EVENTOUT	EVENTOUT
itio		sətoN	ı	ı	1	1	1	1	-	(2)	(1)
n defin		I/O structure	O/I		ĹП	FT	Ħ	FT	-	Ħ	FT
3xx pi		Pin type	0/1	0/1	0/1	0/1	0/1	0/1	S	0/I	0/1
Table 15. STM32L496xx pin definitions		Pin name (function after reset)	P111	PE2	PE3	PE4	PE5	PE6	VBAT	PC13	PC14- OSC32_IN (PC14)
able 1		SAM2_691AD87U	ည	D3	D2	D1	E4	E3	E2	E1	F1
_		UFBGA169	C3	D3	D2	D1	E4	E3	E2	E1	F1
		LQFP144_SMPS	ı	~	7	3	4	2	9	7	∞
		ГОЕБІФФ	ı	-	7	3	4	2	9	2	ω
	Pin Number	S9MS_SE14587U	ı	B2	٨	B1	CZ	D2	E2	2	10
	Pin N	SE1ABBHU	ı	B2	A1	B1	C2	D2	E2	2	10
		ГФЕР100	ı	-	2	8	4	5	9	7	8
		WLCSP100_SMPS	ı	80	B10	E7	E8	D8	C10	60	D10
		MLCSP100	ı	B9	B10	C8	D8	E7	C10	60	D10
		ГОЕЬ64	ı	1	1	1	1	1	_	7	ဗ

Table 15. STM32L496xx pin definitions (continued)

_														
	suo	Additional functions	OSC32_OUT	ı	ı		ADC3_IN6	ADC3_IN7	ADC3_IN8	ſ	1	ADC3_IN9	ADC3_IN10	ADC3_IN11
nunuea)	Pin functions	Alternate functions	EVENTOUT	12C2_SDA, FMC_A0, EVENTOUT	I2C2_SCL, FMC_A1, EVENTOUT	I2C2_SMBA, FMC_A2, EVENTOUT	FMC_A3, EVENTOUT	FMC_A4, EVENTOUT	FMC_A5, EVENTOUT		1	TIM5_ETR, TIM5_CH1, QUADSPI_BK1_IO3, SAI1_SD_B, EVENTOUT	TIM5_CH2, QUADSPI_BK1_IO2, SAI1_MCLK_B, EVENTOUT	TIM5_CH3, QUADSPI_BK1_IO0, SAI1_SCK_B, EVENTOUT
3		sətoM	(1)		1	- 1	1		1		1	1	1	
SHOULE		I/O structure	FT	ΕŢ	FT_f	FT	FT_a	FT_a	FT_a	1	1	FT_a	FT_a	FT_a
li delli		Pin type	0/1	<u>Q</u>	0/1	0/I	0/I	0/I	0/I	S	S	0/1	0/1	0/1
lable 15. STM32L436XX pm delimitoris (continued)		Pin name (function after reset)	PC15- OSC32_OUT (PC15)	PF0	PF1	PF2	PF3	PF4	PF5	NSS	VDD	PF6	PF7	PF8
ე. ე		S9MS_631A5B3U	G1	F5	F4	F3	63	G4	G5	F2	G2	1	1	
ane		691A5BTU	G1	F5	F4	F3	63	G4	G5	F2	G2	ı	1	
-		LQFP144_SMPS	6	10	7	12	13	4	15	16	17	8	19	20
		ГОЕЬ144	6	10	7	12	13	4	15	16	17	18	19	20
	Pin Number	SAM2_SE1ABBAU	E1	90	DS	D4	E4	F3	F4	F2	G2	ı	ı	1
	Pin	2£1AÐ87U	E1	D6	9 0	D4	E4	F3	F4	F2	C 5	ı	1	-
		ГОЕР100	6	ı	ı		1	ı	1	10	11	ı	ı	1
		WLCSP100_SMPS	60	ı	1	-	1	ı	1	E10	E9	ı	1	
		MFC2b100	E10	ı	1		1	ı	1	60	E9	1	1	
		ГØFP64	4	1	1	-	1	1	1	1	1	1	1	

47/

DS11585 Rev 9 71/272

Table 15. STM32L496xx pin definitions (continued)

-		1	•					T			,
ontinued)	suc	Additional functions	ADC3_IN12	ADC3_IN13	OSC_IN	osc_our	_	ADC123_IN1	ADC123_IN2	ADC123_IN3	ADC123_IN4
	Pin functions	Alternate functions	TIM5_CH4, QUADSPI_BK1_IO1, SAI1_FS_B, TIM15_CH1, EVENTOUT	QUADSPI_CLK, DCMI_D11, TIM15_CH2, EVENTOUT	EVENTOUT	EVENTOUT	,	LPTIM1_IN1, I2C4_SCL, I2C3_SCL, DFSDM1_DATIN4, LPUART1_RX, LCD_SEG18, LPTIM2_IN1, EVENTOUT	TRACEDO, LPTIM1_OUT, I2C4_SDA, SPI2_MOSI, I2C3_SDA, DFSDM1_CKIN4, LPUART1_TX, QUADSPI_BK2_IO0, LCD_SEG19, SAI1_SD_A, EVENTOUT	LPTIM1_IN2, SPI2_MISO, DFSDM1_CKOUT, QUADSPI_BK2_IO1, LCD_SEG20, EVENTOUT	LPTIM1_ETR, SPI2_MOSI, QUADSPI_BK2_IO2, LCD_VLCD, SAI1_SD_A, LPTIM2_ETR, EVENTOUT
<u>၁</u>		sətoN	1	1	1	1	1	1	1	1	1
nitions		I/O structure	FT_a	FT_a	FT	FT	RST	FT_fla	FT_fla	FT_la	FT_la
п ает	Pin type		0/1	0/1	0/1	O/I	O/I	0/1	0/1	0/1	0/1
lable 15. S I M3ZL496XX pin definitions (continued)		Pin name (function after reset)	PF9	PF10	PH0-OSC_IN (PH0)	PH1-OSC_OUT (PH1)	NRST	PC0	PC1	PC2	PC3
၁. ၁		S9MS_631A5B3TU	1	4H	Į.	J1	НЗ	75	13	4r	<u>7</u>
able 1		691A5BTU	-	H4	H	J1	Н3	27	57	4f	7
		LQFP144_SMPS	21	22	23	24	25	26	27	28	29
	_	ГОЕБІФФ	21	22	23	24	25	26	27	28	29
	Pin Number	SAM2_SE1ABBAU	1	ı	E	G1	H2	Ξ	72	13	2
		2£1ABHTU	1	1	Ŧ	G1	Н2	Į.	72	13	23
		ГФЕЬ100	1	ı	12	13	41	15	16	17	8
		WLCSP100_SMPS	1	1	F10	F9	F8	G10	F7	69	F6
		MLCSP100	1	1	F10	G10	E8	F9	F8	H10	F7
		ГОЕР64	1	ı	2	9	2	ω	6	10	7

Table 15. STM32L496xx pin definitions (continued)

_											
	suc	Additional functions	-	-	VREFBUF_OUT	-	ı	OPAMP1_VINP, ADC12_IN5, RTC_TAMP2/WKUP1	-	OPAMP1_VINM, ADC12_IN6	ADC12_IN7, WKUP4/LSCO
	Pin functions	Alternate functions	-		-		ı	TIM2_CH1, TIM5_CH1, TIM8_ETR, USART2_CTS, UART4_TX, SAI1_EXTCLK, TIM2_ETR, EVENTOUT		TIMZ_CH2, TIM5_CH2, 12C1_SMBA, SP11_SCK, USART2_RTS_DE, UART4_RX, LCD_SEG0, TIM15_CH1N, EVENTOUT	TIMZ_CH3, TIM5_CH3, USART2_TX, LPUART1_TX, QUADSPI_BK1_NCS, LCD_SEG1, SAI2_EXTCLK, TIM15_CH1, EVENTOUT
3		sətoN	1	1	1	1	ı	1	1	<u>©</u>	1
		I/O structure	1	1	1	1	ı	FT_a	Ш	FT_la	FT_la
ב ס		Pin type	S	S	S	S	1	0/1	-	0/1	0/1
		Pin name (function after reset)	VSSA/VREF-	VREF-	VREF+	VDDA	VDDA/VREF+	PA0	OPAMP1_VINM	PA1	PA2
5		SqM2_681A5BqU	K2	1	11	12	1	53	M1	N2	7
2		UFBGA169	K2	1	L1	77	ı	K3	M1	N2	Z
		LQFP144_SMPS	30	31	32	33	ı	8	1	35	36
		ГФЕР144	30	31	32	33	ı	34	-	35	36
	Pin Number	SAM2_SE1ABBTU	11	-	Γ1	IM1	ı	12	EM3	M2	K3
	Pin	SE1A987U	۲	1	L	M	1	L2	M3	M2	83
		ГОЕЬ100	19	20	21	22	ı	23	1	24	25
		WLCSP100_SMPS	6Н	1	H10	J10	1	G8	1	G7	Н8
		MLCSP100	6Н	68	G7	J10	1	69	1	P8	H7
		ГФЕР64	12	1	1	1	13	4	1	5	16

47/

DS11585 Rev 9

73/272

Table 15. STM32L496xx pin definitions (continued)

	ıns	Additional functions	OPAMP1_VOUT, ADC12_IN8	-		ADC12_IN9, DAC1_OUT1	ADC12_IN10, DAC1_OUT2	OPAMP2_VINP, ADC12_IN11	-
	Pin functions	Alternate functions	TIMZ_CH4, TIM5_CH4, USART2_RX, LPUART1_RX, QUADSPI_CLK, LCD_SEG2, SAI1_MCLK_A, TIM15_CH2, EVENTOUT	-	1	SPI1_NSS, SPI3_NSS, USART2_CK, DCMI_HSYNC, SAI1_FS_B, LPTIM2_OUT, EVENTOUT	TIM2_CH1, TIM2_ETR, TIM8_CH1N, SPI1_SCK, LPTIM2_ETR, EVENTOUT	TIM1_BKIN, TIM3_CH1, TIM8_BKIN, DCMI_PIXCLK, SP11_MISO, USART3_CTS, LPUART1_CTS, QUADSPI_BK1_IO3, LCD_SEG3, TIM1_BKIN_COMP2, TIM8_BKIN_COMP2, EVENTOUT	-
8		sətoN	1		1	1	1	1	
SHOULS		I/O structure	TT_la	1	1	Т_а	П_а	FT_la	П
паеш		Pin type	0/1	S	S	0/1	0/1	0/1	
Table 15. S I M3zL496xx pin definitions (continued)		Pin name (function after reset)	PA3	NSS	VDD	PA4	PA5	PA6	OPAMP2_VINM
ი ი		SAMS_691AD87U	M2	H2	G13	F3	, А	Μ	Ş 4
and		UFBGA169	M2	Н2	G13	F3	, А	M4	4 4
=		LQFP144_SMPS	37	38	39	40	14	42	_
		ГОЕБІФФ	37	38	39	40	4	42	1
	Pin Number	SAM2_SE1ABBAU	F3	E3	H3	4	\$	L4	M
	Pin N	UFBGA132	F7	E3	H3	4	<u>추</u>	L4	M
		ГФЕР100	26	27	28	59	30	31	-
		WLCSP100_SMPS	9r	K10	96	Н7	J7	У.	-
		MLCSP100	6F	K10	98	F6	99	9 9	ı
		ГОЕЬВФ	17	18	19	20	21	22	ı

Table 15. STM32L496xx pin definitions (continued)

ons	Additional functions	OPAMP2_VINM, ADC12_IN12	COMP1_INM, ADC12_IN13	COMP1_INP, ADC12_IN14, WKUP5	OPAMP2_VOUT, ADC12_IN15	COMP1_INM, ADC12_IN16	COMP1_INP	-	•
Pin function	Alternate functions	TIM1_CH1N, TIM3_CH2, TIM8_CH1N, I2C3_SCL, SP11_MOSI, QUADSPI_BK1_I02, LCD_SEG4, TIM17_CH1, EVENTOUT	USART3_TX,QUADSPI_BK2_IO3, LCD_SEG22, EVENTOUT	USART3_RX, LCD_SEG23, EVENTOUT	TIM1_CH2N, TIM3_CH3, TIM8_CH2N, SP11_NSS, USART3_CK, QUADSPI_BK1_IO1, LCD_SEG5, COMP1_OUT, SA11_EXTCLK, EVENTOUT	TIM1_CH3N, TIM3_CH4, TIM8_CH3N, DFSDM1_DATIN0, USART3_RTS_DE, LPUART1_RTS_DE, QUADSPI_BK1_IO0, LCD_SEG6, LPTIM2_IN1, EVENTOUT	RTC_OUT, LPTIM1_OUT, I2C3_SMBA, DFSDM1_CKIN0, LCD_VLCD, EVENTOUT	DCMI_D12, EVENTOUT	FMC_A6, EVENTOUT
	səĵoN	(3)	1	1					
	I/O structure	FT_fla	FT_la	FT_la	ТТ_Іа	FT_la	FT_la	FT	FT
	Pin type	0/1	0/I	0/1	0/1	0/1	0/1	0/I	0/I
	Pin name (function after reset)	PA7	PC4	PC5	PB0	PB1	PB2	PF11	PF12
	SAM2_691A9B7U	L4	9Н	J5	K5	72	SN	M5	9N
	691A5BTU	L4	H5	JS	K5	72	N5	M5	N6
	LQFP144_SMPS	43	4	45	46	47	48	49	20
_	ГОЕЬІФФ	43	44	45	46	47	48	49	20
nmbe	S4M2_SE1AĐ87U	JS	K5	L5	M5	M6	P 7	K6	J7
Pin N	2E1A9ATU	J.	K5	L5	M5	M6	Р	K6	J7
	ГФЕЬ100	32	33	34	35	36	37	-	-
	WLCSP100_SMPS	95	Х	ı	9Н	Υ <u></u>	96	1	ı
	MLCSP100	7ر	9H	Х 8	96	K7	F5	1	ı
	LQFP64	23	24	25	26	27	28		
	Pin Number Pin functions	WLCSP100 WLCSP100 WLCSP100 WLCSP100 UFBGA132 UFBGA132 UFBGA169 UFBGA169 UFBGA169 UFBGA169 UFBGA169 UFBGA169 SMPS UFBGA132 SMPS UFBGA169 SMPS U	Pin Number	Pin Number Pin Number Pin name Pin name Pin name Pin name Pin functions Pin name Pin name	Number Pin Number Pin name Pin name	Pin Number	Pin Number	Pin Number	Pin Number

DS11585 Rev 9 75/272

Table 15. STM32L496xx pin definitions (continued)

ſ		(0												
	ons	Additional functions	•	1	1	ı		ı	1	ı	ı	•	•	-
ntinuea)	Pin functions	Alternate functions		ı	I2C4_SMBA, DFSDM1_DATIN6, FMC_A7, EVENTOUT	I2C4_SCL, DFSDM1_CKIN6, TSC_G8_I01, FMC_A8, EVENTOUT	12C4_SDA, TSC_G8_1O2, FMC_A9, EVENTOUT	TSC_G8_IO3, FMC_A10, EVENTOUT	TSC_G8_IO4, FMC_A11, EVENTOUT	TIM1_ETR, DFSDM1_DATIN2, FMC_D4, SAI1_SD_B, EVENTOUT	TIM1_CH1N, DFSDM1_CKIN2, FMC_D5, SAI1_SCK_B, EVENTOUT	TIM1_CH1, DFSDM1_CKOUT, FMC_D6, SAI1_FS_B, EVENTOUT	·	-
ည		SetoN	1		ı	ı	ı	ı	ı	ı	i	1	-	
nitions		I/O structure	-		FT	FT_fa	FT_fa	FT	FT	FT	FT	FT	-	-
п ает		Pin type	S	S	0/1	0/1	0/1	0/	0/1	0/1	0/1	0/1	S	S
lable 15. S I M3ZL496XX pin definitions (continued)		Pin name (function after reset)	SSA	ααΛ	PF13	PF14	PF15	PG0	PG1	PE7	PE8	PE9	SSA	ααΛ
o. o.		S9M2_631A5B7U	-	A8	M6	97	K6	96	H6	۲۷	K7	J7	M7	N7
able 1		691A5B7U	1	A8	M6	97	K6	90	9Н	۲٦	K7	7ſ	M7	/N
=		LQFP144_SMPS	51	52	53	72	55	26	22	28	29	09	61	62
		LQFP144	51	52	53	54	55	56	22	58	59	09	61	62
	Pin Number	SAM2_SE1ABBAU	-	ı	K7	96	6ſ	H9	69	ZW	۲٦	M8	9 <u>4</u>	99
	Pin	2£1AÐBHU	1	1	7	98	60	6Н	69	M7	۲۷	M8	F6	G6
		ГОЕЬ100	1	1	ı	1	ı	ı	1	38	39	40	-	1
		MLCSP100_SMPS	1	1	1	ı	ı	ı	1	, K6	X 52	J5	ı	1
		MLCSP100	1	1	ı	1	1	ı	1	К6	K5	J5	-	-
		ГОЕР64	1	1	ı	1	1	ı	1	1	1	1	ı	1

Table 15. STM32L496xx pin definitions (continued)

_									
	ons	Additional functions	-	-	ı	ı	ı	1	-
outilined)	Pin functions	Alternate functions	TIM1_CH2N, DFSDM1_DATIN4, TSC_G5_IO1, QUADSPI_CLK, FMC_D7, SAI1_MCLK_B, EVENTOUT	TIM1_CH2, DFSDM1_CKIN4, TSC_G5_IO2, QUADSPI_BK1_NCS, FMC_D8, EVENTOUT	TIM1_CH3N, SPI1_NSS, DFSDM1_DATIN5, TSC_G5_IO3, QUADSPI_BK1_IO0, FMC_D9, EVENTOUT	TIM1_CH3, SPI1_SCK, DFSDM1_CKIN5, TSC_G5_IO4, QUADSPI_BK1_IO1, FMC_D10, EVENTOUT	TIM1_CH4, TIM1_BKIN2, TIM1_BKIN2_COMP2, SPI1_MISO, QUADSPI_BK1_IO2, FMC_D11, EVENTOUT	TIM1_BKIN, TIM1_BKIN_COMP1, SPI1_MOSI, QUADSPI_BK1_IO3, FMC_D12, EVENTOUT	TIM2_CH3, I2C4_SCL, I2C2_SCL, SPI2_SCK, DFSDM1_DATIN7, USART3_TX, LPUART1_RX, TSC_SYNG, QUADSPI_CLK, LCD_SEG10, COMP1_OUT, SAI1_SCK_A, EVENTOUT
3		Notes	1	1	1	1	1	1	1
		I/O structure	FT	FT	FT	FT	FT	FT	FT_fl
u dell		Pin type	<u>Q</u>	0/1	<u>Q</u>	<u>Q</u>	<u>Q</u>	<u>Q</u>	O/I
Table 13. 3 IM32L430XX pin denimons (confined)		Pin name (function after reset)	PE10	PE11	PE12	PE13	PE14	PE15	PB10
ი ი		S9MS_631A5B3U	Н7	N8	M8	F8	K8	J8	N9
מטפ		691A5B3TU	Н7	N8	M8	F8	, X	97	6 N
		LQFP144_SMPS	63	64	65	99	29	89	69
	L	ГОЕБІФФ	63	64	65	99	29	89	69
	Pin Number	SAM2_SE1ABBAU	L8	M9	67	M10	M 11	M12	L10
	Pin	2£1ABBHU	L8	6W	67	M10	M 11	M12	L10
		ГОЕЬ100	41	42	43	44	45	46	47
		WLCSP100_SMPS	H5	Х	<u>م</u>	G5	9	¥	83
		MLCSP100	H5	Х	G5	G4	<u>ل</u> 4	¥	K3
		LQFP64	1	1	1	1	1	1	29

DS11585 Rev 9 77/272

Table 15. STM32L496xx bin definitions (continued)

ons	Additional functions		ſ	1	1		ı	ı	ī	ı	ı	ī	
Pin functi	Alternate functions	TIM2_CH4, I2C4_SDA, I2C2_SDA, DFSDM1_CKIN7, USART3_RX, LPUART1_TX, QUADSPI_BK1_NCS, LCD_SEG11, COMP2_OUT, EVENTOUT		I2C2_SCL, EVENTOUT	I2C2_SDA, DCMI_PIXCLK, EVENTOUT	I2C3_SDA, DCMI_HSYNC, EVENTOUT	TIM5_CH1, DCMI_D1, EVENTOUT	TIM5_CH2, DCMI_D2, EVENTOUT					
	sətoM		1		,	1	1	1	1	1	1	1	
	I/O structure	FT_fl	-	FT_f	FT_f	FT_f	FT	FT	-	1	-	-	1
	Pin type	0/I	S	0/1	<u>Q</u>	0/I	0/1	0/1	S	S	S	S	S
	Pin name (function after reset)	PB11	VDD12	PH4	PH5	PH8	PH10	PH11	SSA	VDD	SSA	SSA	VDD
	S9MS_691ABB3U	Н8	M10	K9	67	N10	6W	1	M3	N3	M11	L13	L12
	691ABBHU	Н8	1	К9	67	N10	6W	M10	M3	N3	M11	L13	L12
	LQFP144_SMPS	1	02	ı	,	1		1	-		-	7.1	72
L	ГОЕБІФФ	70	-	-	ı	1	-	1	-	ı	-	7.1	72
nmbe	SAM2_SE1ABBAU	1	L11	1	ı	1	1	ı	1	ı	1	F12	G12
Pin	2E1A5BHU	L11	-	-	-	-	-	1	-	1	-	F12	G12
	ГОЕБ100	48	1	ı	1	1	ı	ı	ı	ı	ı	49	50
	WLCSP100_SMPS	57	7	ı	ı	1	ı	1	ı	1	1	K2	J2
	MLCSP100	13	1	ı	1	1	1	1	1	1	1	K2	7
	LQFP64	30		-	-	-		1		1	-	31	32
	Pin Number	Pin Number Pin Number WLCSP100 SMPS UFBGA132 SMPS UFBGA169 SMPS I/O structure Notes Notes Afternate functions	Pin Number Pin Number Pin name Pin name Pin function Pin name P	Number	Pin Number Pin Number Pin name WLCSP100 SMPS CupPr144 CupPr	Pin Number Pin	Nulception Number Nulception Nulcept	Pin Number	Pin Number Pin Number	Pin Number	Pin Number Pin Number	Pin Number	Pin Number Pin Number

Table 15. STM32L496xx pin definitions (continued)

		<u> </u>	T			
suo	Additional functions		ı	ı	ı	-
Pin functi	Alternate functions	·	TIM1_BKIN, TIM1_BKIN_COMP2, I2C2_SMBA, SPI2_NSS, DFSDM1_DATIN1, USART3_CK, LPUART1_RTS_DE, TSC_G1_IO1, CAN2_RX, LCD_SEG12, SWPMI1_IO, SAI2_FS_A, TIM15_BKIN, EVENTOUT	TIM1_CH1N, I2C2_SCL, SPI2_SCK, DFSDM1_CKIN1, USART3_CTS, LPUART1_CTS, TSC_G1_IO2, CAN2_TX, LCD_SEG13, SWPM11_TX, SAI2_SCK_A, TIM15_CH1N, EVENTOUT	TIM1_CH2N, TIM8_CH2N, I2C2_SDA, SPI2_MISO, DFSDM1_DATIN2, USART3_RTS_DE, TSC_G1_I03, LCD_SEG14, SWPM11_RX, SAI2_MCLK_A, TIM15_CH1, EVENTOUT	RTC_REFIN, TIM1_CH3N, TIM8_CH3N, SPI2_MOSI, DFSDM1_CKIN2, TSC_G1_IO4, LCD_SEG15, SWPMI1_SUSPEND, SAI2_SD_A, TIM15_CH2, EVENTOUT
	Notes	-	1	1	1	1
	I/O structure	-	FT_I	FT_fl	FT_A	FT_J
	Pin type	S	O/I	0/1	O/I	0/1
	Pin name (function after reset)	VDD	PB12	PB13	PB14	PB15
	SAM2_691A987U	N11	N 12	N13	M13	M12
	691ABBHU	N11	Z12	N13	M13	M12
	LQFP144_SMPS	1	73	74	75	92
_	ГОЕЬІФФ	1	73	74	75	92
lumbe	SAM2_SE1ABBAU	1	L12	X 2	7	K10
Pin	2£1ABB3U	ı	L12	K12	7	K10
	ГФЕР100	-	51	52	53	54
	WLCSP100_SMPS	ı	7	H2	Ξ	H3
	MLCSP100	1	7	77	H2	Ξ
	ГОЕР64	1	33	34	35	36
	Pin Number	Pin Number Pin Number WLCSP100 WLCSP100 WLCSP100 WLCSP100 UFBGA132 UFBGA132 UFBGA169 UFBGA169 UFBGA169 UFBGA169 UFBGA169 IOPEGA169 IOPEGA169	Pin Number Multiple	Pin Number WLCSP100 SWPS SW	Pin Number	Pin Number Pin

\7/

DS11585 Rev 9 79/272

Table 15. STM32L496xx pin definitions (continued)

ons	Additional functions			1	,	ı		1	1	-
Pin functions	Alternate functions	USART3_TX, DCMI_HSYNC, LCD_SEG28, FMC_D13, EVENTOUT	USART3_RX, DCMI_PIXCLK, LCD_SEG29, FMC_D14, SAI2_MCLK_A, EVENTOUT	USART3_CK, TSC_G6_IO1, LCD_SEG30, FMC_D15, SAI2_SCK_A, EVENTOUT	I2C4_SMBA, USART3_CTS, TSC_G6_IO2, LCD_SEG31, FMC_A16, SAI2_SD_A, LPTIM2_ETR, EVENTOUT	TIM4_CH1, I2C4_SCL, USART3_RTS_DE, TSC_G6_I03, LCD_SEG32, FMC_A17, SAI2_FS_A, LPTIM2_IN1, EVENTOUT	TIM4_CH2, I2C4_SDA, TSC_G6_IO4, LCD_SEG33, FMC_A18, LPTIM2_OUT, EVENTOUT		-	TIM4_CH3, LCD_SEG34, FMC_D0, EVENTOUT
3	sətoN	1	1	1	1	1	1	-	1	1
	I/O structure	ĹШ	ĹΤΊ	ΕΤ_J	ŀΤ_I	FT_fl	FT_fl	-	-	FT_I
	Pin type	0/1	0/1	0/I	0/1	0/1	0/1	S	S	1/0
	Pin name (function after reset)	PD8	PD9	PD10	PD11	PD12	PD13	SSA	VDD	PD14
5	S4MS_691ABBHU	L11	L10	J13	K12	X 1	K13	H12	H13	K10
2	UFBGA169	L11	L10	J13	K12	7	K13	H12	H13	K10
	LQFP144_SMPS	22	82	62	80	81	82	83	84	85
	ГОЕЬІФФ	77	78	62	80	81	82	83	84	85
Pin Number	S9M2_S8MPS	К9	K8	J12	J11	J10	H12	1	1	H11
Pin N	UFBGA132	K9	К8	J12	J11	J10	H12	1	1	H11
	ГОЕБ100	22	99	25	28	69	09	-	1	61
	MCSP100_SMPS	63	G2	61	1	ı	ı	1	F1	F3
	MLCSP100	НЗ	62	G1	1	1	1	-	F1	63
	LQFP64	1	1	ı	1	ı	ı	ı	ı	ı

Table 15. STM32L496xx pin definitions (continued)

F		1	1						1			1	
	suo	Additional functions		1		1	-	1	1		•	ı	ı
outilined)	Pin functions	Alternate functions	TIM4_CH4, LCD_SEG35, FMC_D1, EVENTOUT	SPI1_SCK, FMC_A12, SAI2_SCK_B, EVENTOUT	SPI1_MISO, FMC_A13, SAI2_FS_B, EVENTOUT	SPI1_MOSI, FMC_A14, SAI2_MCLK_B, EVENTOUT	SPI1_NSS, LPUART1_CTS, FMC_A15, SAI2_SD_B, EVENTOUT	I2C3_SMBA, LPUART1_RTS_DE, EVENTOUT	IZC3_SCL, LPUART1_TX, FMC_INT, SA11_MCLK_A, EVENTOUT	I2C3_SDA, LPUART1_RX, EVENTOUT	ŕ	1	TIM3_CH1, TIM8_CH1, DFSDM1_CKIN3, TSC_G4_IO1, DCMI_D0, LCD_SEG24, SDMMC1_D6, SAI2_MCLK_A, EVENTOUT
٤		Notes	1	1	1	1	ı		ı	1	ı	ı	ı
		I/O structure	FT_I	FT_s	FT_s	FT_s	FT_s	FT_s	FT_fs	FT_fs	•		Η
ii ae ii		Pin type	O/I	0/1	O/I	0/1	0/1	0/1	0/1	O/I	S	S	0/1
lable 13. 3 I M32L436XX pin denniuons (conuned)		Pin name (function after reset)	PD15	PG2	PG3	PG4	PG5	PG6	PG7	PG8	NSS	VDDIO2	PC6
		SAMS_691ABBAU	H11	J12	J11	J10	66	G11	H10	6H	F13	F12	H 11
ממש		691AÐATU	H11	J12	111	J10	6ſ	G11	H10	6Н	F13	F12	T 1
-		LQFP144_SMPS	98	87	88	83	06	91	62	63	96	92	96
		ГФЕР144	98	87	88	88	06	91	92	63	94	92	96
	Pin Number	SAM2_SE1ABBAU	H10	G10	F9	F10	E9	G4	H4	96	ı	1	E12
	Pin N	2£1ABBHU	H10	G10	F9	F10	63	G4	H4	96	-	ı	E12
		ГОЕЬ100	62	ı	ı	ı	-	ı	ı	ı	ı	ı	63
		WLCSP100_SMPS	F2	ı	1	ı	1	1	1	1	-	1	F4
		MLCSP100	F4	ı	ı	ı	ı	ı	1	ı	ı	ı	F2
		LQFP64	1	1	1	1	1	ı	1	1	-	ı	37

47/

DS11585 Rev 9 81/272

Table 15. STM32L496xx pin definitions (continued)

	Suc	Additional functions					OTG_FS_VBUS	
ontinuea)	Pin functions	Alternate functions	TIM3_CH2, TIM8_CH2, DFSDM1_DATIN3, TSC_G4_IO2, DCM1_D1, LCD_SEG25, SDMMC1_D7, SAI2_MCLK_B, EVENTOUT	TIM3_CH3, TIM8_CH3, TSC_G4_IO3, DCMI_D2, LCD_SEG26, SDMMC1_D0, EVENTOUT	TIM8_BKIN2, TIM3_CH4, TIM8_CH4, DCMI_D3, I2C3_SDA, TSC_G4_IO4, OTG_FS_NOE, LCD_SEG27, SDMMC1_D1, SAI2_EXTCLK, TIM8_BKIN2_COMP1, EVENTOUT	MCO, TIM1_CH1, USART1_CK, OTG_FS_SOF, LCD_COM0, SWPMI1_IO, SAI1_SCK_A, LPTIM2_OUT, EVENTOUT	TIM1_CH2, SPI2_SCK, DCMI_D0, USART1_TX, LCD_COM1, SAI1_FS_A, TIM15_BKIN, EVENTOUT	TIM1_CH3, DCMI_D1, USART1_RX, OTG_FS_ID, LCD_COM2, SA11_SD_A, TIM17_BKIN, EVENTOUT
၁)		Notes	1	1	1	1	1	1
nitions		I/O structure	FT_J	FT_I	FT_fl	FT_I	FT_lu	FT_lu
п аеп		Pin type	0/1	0/1	0/1	0/1	0/1	0/1
Table 15. STM3ZL496XX pin definitions (continued)		Pin name (function after reset)	PC7	PC8	PC9	PA8	PA9	PA10
၁. ၁။		SAMS_691A5BAU	G12	G10	69	68	F10	F9
able		691A5B3TU	G12	G10	69	68	F10	F9
_		LQFP144_SMPS	97	86	66	100	101	102
		ГЙЕБІФФ	97	86	66	100	101	102
	Pin Number	SAM2_SE1ABBAU	E11	E10	D12	D11	D10	C12
	Pin	SE1A987U	E11	E10	D12	D11	D10	C12
		ГОЕБ100	64	65	99	29	89	69
		WLCSP100_SMPS	E4	E1	E2	E3	D3	D2
		MFC2b100	F3	E1	E2	E3	D3	D2
		ГОЕР64	38	39	40	4	42	43

Table 15. STM32L496xx pin definitions (continued)

suc	Additional functions	1	-	-		ı	1			-		
Pin function	Alternate functions	TIM1_CH4, TIM1_BKIN2, SP11_MISO, USART1_CTS, CAN1_RX, OTG_FS_DM, TIM1_BKIN2_COMP1, EVENTOUT	TIM1_ETR, SPI1_MOSI, USART1_RTS_DE, CAN1_TX, OTG_FS_DP, EVENTOUT	JTMS/SWDIO, IR_OUT, OTG_FS_NOE, SWPMI1_TX, SAI1_SD_B, EVENTOUT	•	1	1	1	I2C2_SMBA, DCMI_D8, EVENTOUT	12C3_SCL, DCMI_D9, EVENTOUT	I2C3_SMBA, DCMI_D0, EVENTOUT	TIM5_CH3, DCMI_D3, EVENTOUT
	sətoN	1	1	(4)	•	1	1	1	1			1
	I/O structure	FT_u	FT_u	FT	1	1	1	1	FT	FT_f	FT	FT
	Pin type	0/1	0/1	0/1	S	S	S	S	0/I	0/I	0/I	O/I
	Pin name (function after reset)	PA11	PA12	PA13 (JTMS/SWDIO)	NSS	VDDUSB	NSS	VDD	PH6	PH7	PH9	PH12
	S9M2_631A587U	E13	D13	A11	ı	E12	C12	C13	E11	D12	D11	B13
	691A5BTU	E13	D13	A11	-	E12	C12	C13	E11	D12	D11	B13
	LQFP144_SMPS	103	104	105	1	106	107	108	1	ı	ı	1
	ГОЕБ144	103	104	105	-	106	107	108		-	ı	-
umber	SAM2_SE1A587U	B12	A12	A11	-	C11	F11	G11	ı	-	-	-
Pin	2£1AÐB∃U	B12	A12	A11	1	C11	F11	G11	1	1	-	1
	ГОЕЬ100	70	1.2	72	ı	73	74	75	ı	ı	-	1
	WLCSP100_SMPS	D1	C1	C2	B1	A1	1	1	ı	-	1	-
	MFC2b100	D1	C1	C2	B1	A1	ı	1	ı	-	1	1
	ГОЕР64	4	45	46	47	48	1					
	Pin Number Pin functions	MLCSP100 WLCSP100 SMPS UFBGA132 SMPS UFBGA132 SMPS UFBGA169 SMPS UFBGA16	Pin Number	Pin Number Pin Number Pin name Pin n	Pin Number Pin	Pin Number Pin Number Pin Number Pin Name Pin	Pin function Pin	Pin Number Pin	Pin Number Pin	Pin Number Pin	Pin Number Pin Number Pin Number Pin Number Pin name P	Pin Number Pin

47/

DS11585 Rev 9 83/272

Table 15. STM32L496xx pin definitions (continued)

ſ														
	ons	Additional functions	,		1	1	ı	1	1	1	ı	-	1	·
ontinuea)	Pin functions	Alternate functions	TIM8_CH2N, DCMI_D4, EVENTOUT	TIM8_CH3N, DCMI_D11, EVENTOUT	TIM5_CH4, SPI2_NSS, DCMI_D13, EVENTOUT	DCMI_D12, EVENTOUT	SPI2_SCK, DCMI_D8, EVENTOUT	TIM8_CH4, SPI2_MISO, DCMI_D9, EVENTOUT	TIM8_ETR, SPI2_MOSI, DCMI_D10, EVENTOUT	TIM8_BKIN, DCMI_D5, EVENTOUT	TIM8_CH1, DCMI_VSYNC, EVENTOUT	TIM8_CH1N, CAN1_TX, EVENTOUT	TIM8_CH2, DCMI_D6, EVENTOUT	JTCK/SWCLK, LPTIM1_OUT, I2C1_SMBA, I2C4_SMBA, OTG_FS_SOF, SWPMI1_RX, SAI1_FS_B, EVENTOUT
2)		sətoN		ı	1	-	1	1	ı	ı	1	1	1	<u>4</u>
nitions		I/O structure	Ħ	Ħ	FT	FT	Ħ	Ħ	ե	Ħ	Ħ	FT	FI	F
п ает		Pin type	0/I	0/1	O/I	O/I	0/1	0/1	0/1	0/1	0/1	0/I	0/I	0/1
lable 15. STM3ZL496XX pin definitions (continued)		Pin name (function after reset)	PH14	PH15	PIO	P18	PI1	PI2	PI3	P14	PI5	PH13	91d	PA14 (JTCK/SWCLK)
၁. ၁		S9MS_691A5B3U	A13	B12	A12	C11	B11	B10	C10	D10	E10	63	B9	A10
able 1		691A5BTU	A13	B12	A12	C11	B11	B10	C10	D10	E10	60	B9	A10
-		LQFP144_SMPS	1	ı	1	-	1	ı	1	ı	ı	,	-	109
		ГЙЕБІФФ	1	1	ı	1	1	ı	ı	ı	ı	ı	1	109
	Pin Number	SAM2_SE1ABBAU	-	ı	-	-	ı	1	ı	ı	ı	1	-	A10
	Pin	2£1AÐBHU	1	1	-	1	1	1	1	1	1	-	1	A10
		ГОЕЬ100	-	ı	1	ı	ı	ı	ı	ı	ı	-	ı	92
		WLCSP100_SMPS	1	1	1	1	1	1	ı	1	1	1	1	B2
		MLCSP100	-	1	-	-	1	1	ı	ı	1	-	-	B2
		ГОЕР64	1	1	1	-	ı	1	ı	ı	1	ı	-	64

Table 15. STM32L496xx pin definitions (continued)

Additional functions		-	1		ı	1
Alternate functions	JTDI, TIM2_CH1, TIM2_ETR, USART2_RX, SPI1_NSS, SPI3_NSS, USART3_RTS_DE, UART4_RTS_DE, TSC_G3_IO1, LCD_SEG17, SWPMI1_SUSPEND, SAI2_FS_B, EVENTOUT	TRACED1, SPI3_SCK, USART3_TX, UART4_TX, TSC_G3_IO2, DCMI_D8, LCD_COM4/LCD_SEG28/LCD_SEG40, SDMMC1_D2, SAI2_SCK_B, EVENTOUT	QUADSPI_BK2_NCS, SPI3_MISO, USART3_RX, UART4_RX, TSC_G3_IO3, DCMI_D4, LCD_COM5/LCD_SEG29/LCD_SE G41, SDMMC1_D3, SAI2_MCLK_B, EVENTOUT	TRACED3, SPI3_MOSI, USART3_CK, UART5_TX, TSC_G3_IO4, DCMI_D9, LCD_COM6/LCD_SEG30/LCD_SE G42, SDMMC1_CK, SAI2_SD_B, EVENTOUT	SPI2_NSS, DFSDM1_DATIN7, CAN1_RX, FMC_D2, EVENTOUT	SPI2_SCK, DFSDM1_CKIN7, CAN1_TX, FMC_D3, EVENTOUT
Notes	(4)	1	1	1	ı	1
I/O structure	ΕΤ_I	FT_I	FT_I	FT_I	FT	FT
Pin type	0/1	0/1	<u>Q</u>	0/	0/1	0/I
Pin name (function after reset)	PA15 (JTDI)	PC10	PC11	PC12	PD0	PD1
S9MS_691A5B3U	A9	60	E9	F8	B8	C8
UFBGA169	A9	6G	E9	F8	B8	C8
LQFP144_SMPS	110	111	112	113	411	115
ГОЕБ144	110	111	112	113	411	115
SAM2_SE1ABBAU	A9	B11	C10	B10	60	B9
UFBGA132	A9	B11	C10	B10	60	B9
ГЙЕЬ100	77	78	79	80	81	82
WLCSP100_SMPS	A2	ငဒ	D4	22	B3	A3
MLCSP100	A2	D4	ပိ	2	B3	A3
LQFP64	50	51	52	53		
LQFP64	50	51	52	53	,	
	WLCSP100 WLCSP100 WLCSP100 UFBGA132 UFBGA132 UFBGA169 UFBGA169 UFBGA169 SMPS UFBGA132 SMPS UFBGA133	Main and Main and	MLCSP100 SMPS	MLCSP100 SMPS	WLCSP100 WLCSP1000 WLCSP1000	Main Main

DS11585 Rev 9 85/272

Table 15. STM32L496xx pin definitions (continued)

_										
	su	Additional functions				-	-	-		-
onundea)	Pin functions	Alternate functions	TRACED2, TIM3_ETR, USART3_RTS_DE, UART5_RX, TSC_SYNC, DCMI_D11, LCD_COM7/LCD_SEG31/LCD_SEG43, SDMMC1_CMD, EVENTOUT	SPI2_SCK, DCMI_D5, SPI2_MISO, DFSDM1_DATIN0, USART2_CTS, QUADSPI_BK2_NCS, FMC_CLK, EVENTOUT	SPI2_MOSI, DFSDM1_CKIN0, USART2_RTS_DE, QUADSPI_BK2_IO0, FMC_NOE, EVENTOUT	USART2_TX,QUADSPI_BK2_IO1, FMC_NWE, EVENTOUT	-	-	DCMI_D10, QUADSPI_BK2_IO1, DFSDM1_DATIN1, USART2_RX, QUADSPI_BK2_IO2, FMC_NWAIT, SAI1_SD_A, EVENTOUT	DFSDM1_CKIN1, USART2_CK, QUADSPI_BK2_IO3, FMC_NE1, EVENTOUT
3		səjoN	1	1	1		-	1	1	1
		I/O structure	ĒΤ_I	FT	FI	FT	-	-	Ħ	FT
i dell		Pin type	0/1	<u>Q</u>	0/	0/I	S	S	0/	0/1
Iable 13. 3 I M32L436XX pili dellillilolis (collillided)		Pin name (function after reset)	PD2	PD3	PD4	PD5	VSS	VDD	PD6	PD7
0		S9MS_691A5B3U	D8	E8	C7	20	-	-	E7	F7
ane		691A5BTU	D8	E8	C7	D7	-	ı	E7	F7
_		LQFP144_SMPS	116	117	118	119	120	121	122	123
	_	ГОЕБЛ44	116	117	118	119	120	121	122	123
	Pin Number	SAM2_SE1ABBAU	80	B8	B7	A6	-	ı	B6	A5
	Pin N	2E1A32	C8	B8	B7	A6	-	ı	B6	A5
		ГОЕБ100	83	84	85	86	-	1	87	88
		WLCSP100_SMPS	D5	1	C5	B4	-	A4	B5	90
		MLCSP100	E4	1	B4	E5	-	A4	DS	C5
		ГФЕР64	54	1	1	•	-		1	•

Table 15. STM32L496xx pin definitions (continued)

9	Additional functions									
Pin functions	Alternate functions	SPI3_SCK, USART1_TX, FMC_NCE/FMC_NE2, SAI2_SCK_A, TIM15_CH1N, EVENTOUT	LPTIM1_IN1, SPI3_MISO, USART1_RX, FMC_NE3, SAI2_FS_A, TIM15_CH1, EVENTOUT	LPTIM1_IN2, SPI3_MOSI, USART1_CTS, SAI2_MCLK_A, TIM15_CH2, EVENTOUT	LPTIM1_ETR, SPI3_NSS, USART1_RTS_DE, FMC_NE4, SAI2_SD_A, EVENTOUT	I2C1_SDA, USART1_CK, FMC_A24, EVENTOUT	I2C1_SCL, FMC_A25, EVENTOUT -	1		LPTIM1_OUT, I2C1_SMBA, DCMI_D13, EVENTOUT
<u> </u>	SejoN	ı	1	1	1	1	1	1	1	1
	I/O structure	FT_s	FT_s	FT_s	FT_s	FT_fs	FT_fs	,	1	FT_s
5	Pin type	0/1	0/1	0/1	0/1	0/I	O/I	S	S	0/1
	Pin name (function after reset)	PG9	PG10	PG11	PG12	PG13	PG14	SSA	VDDIO2	PG15
5	SGMS_631A3B3U	B7	9Q	E6	F6	G7	99	A7	B6	1
2	UFBGA169	B7	9Q	E6	F6	G7	99	A7	B6	90
	LQFP144_SMPS	124	125	126	127	128	129	130	131	
	LQFP144	124	125	126	127	128	129	130	131	132
Pin Number	STM2_SMPS	60	D8	63	7Q	23	-	F7	29	조
Pin	2E1AƏ81U	60	D8	63	D7	C7	90	F7	G7	조
	ГОЕР100	ı	ı	ı	ı	-	ı	1	ı	
	WLCSP100_SMPS	9Q	A5	E5	B6	1	1	1	A6	1
	MLCSP100	B5	A5	90	B6	-	-	-	9V	1
	ГОЕР64	ı	ı	1	1	-	-	-	-	

47/

DS11585 Rev 9 87/272

Table 15. STM32L496xx pin definitions (continued)

	Su	Additional functions	COMP2_INM	COMP2_INP		COMP2_INP
ntinued)	Pin functions	Alternate functions	JTDO/TRACESWO, TIM2_CH2, SPI1_SCK, SPI3_SCK, USART1_RTS_DE, OTG_FS_CRS_SYNC, LCD_SEG7, SAI1_SCK_B, EVENTOUT	NJTRST, TIM3_CH1, I2C3_SDA, SP11_MISO, SP13_MISO, USART1_CTS, UART5_RTS_DE, TSC_G2_IO1, DCMI_D12, LCD_SEG8, SA11_MCLK_B, TIM17_BKIN, EVENTOUT	LPTIM1_IN1, TIM3_CH2, CAN2_RX, I2C1_SMBA, SP11_MOSI, SP13_MOSI, USART1_CK, UART5_CTS, TSC_G2_IO2, DCMI_D10, LCD_SEG9, COMP2_OUT, SA11_SD_B, TIM16_BKIN, EVENTOUT	LPTIM1_ETR, TIM4_CH1, TIM8_BKIN2, I2C1_SCL, I2C4_SCL, DFSDM1_DATIN5, USART1_TX, CAN2_TX, TSC_G2_IO3, DCMI_D5, TIM8_BKIN2_COMP2, SAI1_FS_B, TIM16_CH1N, EVENTOUT
၀၁)		setoN	(4)	(4)	1	1
nitions		I/O structure	FT_la	FT_fla	FT_la	FT_fa
n detii		Pin type	0/1	O/I	0/1	O/I
lable 15. S I M32L496xx pin definitions (continued)		Pin name (function after reset)	PB3 (JTDO/TRACES WO)	PB4 (NJTRST)	PB5	PB6
5. 511		SGMS_681A5BFJ	A6	A5	B5	C5
able 1		691A5BTU	A6	A5	B5	C5
-		LQFP144_SMPS	132	133	134	135
		ГЙЕБІФФ	133	134	135	136
	Pin Number	SAM2_SE1ABBAU	A8	A7	C5	B5
	Pin N	SE1438	A8	A7	C5	B5
		ГФЕР100	88	06	16	92
		WLCSP100_SMPS	F5	E6	C7	A7
		MLCSP100	90	C7	B7	A7
		ГОЕР64	55	56	22	58

Table 15. STM32L496xx pin definitions (continued)

Г					1				
	ons	Additional functions	COMP2_INM, PVD_IN	ī	ı		1	ı	-
naminaeu)	Pin functions	Alternate functions	LPTIM1_IN2, TIM4_CH2, TIM8_BKIN, I2C1_SDA, I2C4_SDA, DFSDM1_CKIN5, USART1_RX, UART4_CTS, TSC_G2_IO4, DCMI_VSYNC, LCD_SEG21, FMC_NL, TIM8_BKIN_COMP1, TIM17_CH1N, EVENTOUT	EVENTOUT	TIM4_CH3, I2C1_SCL, DFSDM1_DATIN6, CAN1_RX, DCMI_D6, LCD_SEG16, SDMMC1_D4, SAI1_MCLK_A, TIM16_CH1, EVENTOUT	IR_OUT, TIM4_CH4, I2C1_SDA, SPI2_NSS, DFSDM1_CKIN6, CAN1_TX, DCMI_D7, LCD_COM3, SDMMC1_D5, SAI1_FS_A, TIM17_CH1, EVENTOUT	,	TIM4_ETR, DCMI_D2, LCD_SEG36, FMC_NBL0, TIM16_CH1, EVENTOUT	DCMI_D3, LCD_SEG37, FMC_NBL1, TIM17_CH1, EVENTOUT
3		Notes	1	-	ı	1	1	ı	1
		I/O structure	FT_fla	FT	FT_f	FT_fl		I_T	FT_I
		Pin type	0/1	O/I	0/1	0/1	S	0/1	0/1
		Pin name (function after reset)	PB7	PH3-BOOT0	PB8	PB9	VDD12	PE0	PE1
9.0		S9MS_691A5B3U	DS	E5	C4	D4	90	A4	B4
ממום		691A5BTU	DS	E5	C4	D4	1	A4	B4
-		LQFP144_SMPS	136	137	138	139	-	140	141
		ГЙЕБ144	137	138	139	140	1	141	142
	Pin Number	SAM2_SE1ABBAU	B4	A4	A3	B3	90	ຮ	A2
	Pin N	2£1ABHU	B4	A4	A3	B3	-	C3	A2
		ГОЕБ100	93	94	95	96	1	97	86
		WLCSP100_SMPS	B7	20	B8	A8	1	1	1
		WLCSP100	D7	E6	B8	A8	-	1	1
		ГОЕР64	59	09	61	62	-		

DS11585 Rev 9 89/272

Table 15. STM32L496xx pin definitions (continued)

suc	Additional functions	-	1	1		1	1	ı	ı	
Pin functions	Alternate functions	-	1	1	ı	ı	QUADSPI_BK2_IO0, EVENTOUT	TIM8_CH3, DCMI_D7, EVENTOUT	CAN1_RX, EVENTOUT	EVENTOUT
-	SetoN		ı	1	1	ı	ı	1	•	1
	I/O structure			1			F	ե	Ŀ	FT
	Pin type	S	S	S	S	S	0/	0/1	0/1	0/I
-	Pin name (function after reset)	VDD12	NSS	VDD	NSS	VDD	PH2	PI7	PI9	PI10
	S9MS_631A5B3U	1	B3	A3	C2	C3	A2	B2	B1	A1
	691A5BTU	-	B3	A3	C2	5	A2	B2	B1	P1
	LQFP144_SMPS	142	143	4	ı	1	ı	ı	ı	1
	LQFP144	1	143	144		1	ı	ı	ı	1
Pin Number	SAM2_SE1AÐ87U	-	D3	C4	ı	1	ı	ı	ı	1
Pin N	2E1AD87U	1	D3	C4	1	1	1	1	1	1
	ГФЕР100	1	66	100	ı	1	ı	1	1	1
	WLCSP100_SMPS	6V	B9	A10	1	1	1	ı	ı	1
	MLCSP100	-	A9	A10	ı	ı	ı	ı	ı	1
	ГОЕР64	-	63	64	1	1	1	1	1	-

PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current(3 mA), the use of GPIOs PC13 to PC15 in output mode is limited

The speed should not exceed 2 MHz with a maximum load of 30 pF.
 These GPIOs must not be used as current sources (e.g. to drive an LED)

After a Backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the Backup domain and RTC register descriptions in the RM0351 reference manual. ď

OPAMPx_VINM pins are not available as additional functions on pins PA1 and PA7 on UFBGA packages. On UFBGA packages, use the OPAMPx_VINM dedicated pins available on M3 and M4 balls. ω.

After reset, these pins are configured as JTAG/SW debug alternate functions, and the internal pull-up on PA15, PA13, PB4 pins and the internal pull-down on PA14 pin are activated. 4.

$\overline{}$
$\overline{}$
ĭ
Ā
5
0
٣
_
5
ij
ဥ
3
÷
¥
2
ē
ž
⋖
6
_
<u>e</u>
ğ

	AF7	USART1/2/3	USART2_CTS	USART2_RTS_ DE	USART2_TX	USART2_RX	USART2_CK	-	USART3_CTS	1	USART1_CK	USART1_TX	USART1_RX	USART1_CTS	USART1_RTS_ DE	-	-	USART3_RTS_ DE
	AF6	SPI3/I2C3/ DFSDM/ COMP1/ QUADSPI	1	ı	1	1	SPI3_NSS	1	ı	1	1	1	1	1	1	1	1	SPI3_NSS
	AF5	SPI1/2/DCMI/ QUADSPI	1	SPI1_SCK	ı	ı	SPI1_NSS	SPI1_SCK	SPI1_MISO	SPI1_MOSI	1	DCMI_D0	DCMI_D1	SPI1_MISO	SPI1_MOSI	ı	I2C4_SMBA	SPI1_NSS
AF0 to AF7 ⁽¹⁾	AF4	12C1/2/3/4/ DCMI	ı	I2C1_SMBA	ı	1	ı	1	DCMI_PIXCLK	I2C3_SCL	1	I2C1_SCL	I2C1_SDA		1	ı	I2C1_SMBA	1
Table 16. Alternate function AF0 to AF7 ⁽¹⁾	AF3	SPI2/USART2/ CAN2/TIM8/ QUADSPI	TIM8_ETR	ı	ı	ı	ı	TIM8_CH1N	TIM8_BKIN	TIM8_CH1N	1	SPI2_SCK	1	1	1	ı	1	USART2_RX
Table 16. Alte	AF2	TIM1/2/3/4/5	TIM5_CH1	TIM5_CH2	TIM5_CH3	TIM5_CH4	ı	TIM2_ETR	TIM3_CH1	TIM3_CH2	1	1	1	TIM1_BKIN2	1	ı	1	TIM2_ETR
	AF1	TIM1/2/5/8/ LPTIM1	TIM2_CH1	TIM2_CH2	TIM2_CH3	TIM2_CH4	ı	TIM2_CH1	TIM1_BKIN	TIM1_CH1N	TIM1_CH1	TIM1_CH2	TIM1_CH3	TIM1_CH4	TIM1_ETR	IR_OUT	LPTIM1_OUT	TIM2_CH1
	AF0	SYS_AF	ı	ı	ı	ı	ı	1	ı	ı	MCO	1	1	1	1	JTMS/SWDIO	JTCK/SWCLK	JTDI
		Port	PA0	PA1	PA2	PA3	PA4	PA5	PA6	PA7	PA8	PA9	PA10	PA11	PA12	PA13	PA14	PA15
		a									Port A							

47/

DS11585 Rev 9 91/272

Table 16. Alternate function AF0 to AF7⁽¹⁾ (continued)

	AF7	USART1/2/3	USART3_CK	USART3_RTS_ DE		USART1_RTS_ DE	USART1_CTS	USART1_CK	USART1_TX	USART1_RX	ı	ı	USART3_TX	USART3_RX	USART3_CK	USART3_CTS	USART3_RTS_ DE	ı
	AF6	SPI3/I2C3/ DFSDM/ COMP1/ QUADSPI	-	DFSDM1_ DATIN0	DFSDM1_CKIN0	SPI3_SCK	OSIM_EIAS	SOM_EIRS	DFSDM1_ DATIN5	DFSDM1_CKIN5	DFSDM1_ DATIN6	DFSDM1_CKIN6	DFSDM1_ DATIN7	DFSDM1_CKIN7	DFSDM1_ DATIN1	DFSDM1_CKIN1	DFSDM1_ DATIN2	DFSDM1_CKIN2
(pənu	AF5	SP11/2/DCMI/ QUADSPI	SPI1_NSS	1	1	SPI1_SCK	SPI1_MISO	SPI1_MOSI	I2C4_SCL	I2C4_SDA	ı	SPI2_NSS	SPI2_SCK		SPI2_NSS	SPI2_SCK	SPI2_MISO	SPI2_MOSI
o AF7 ⁽¹⁾ (contil	AF4	12C1/2/3/4/ DCMI			I2C3_SMBA	-	I2C3_SDA	I2C1_SMBA	I2C1_SCL	I2C1_SDA	I2C1_SCL	I2C1_SDA	I2C2_SCL	I2C2_SDA	I2C2_SMBA	I2C2_SCL	I2C2_SDA	ı
Table 16. Alternate function AF0 to AF7(1) (continued)	AF3	SPI2/USART2/ CAN2/TIM8/ QUADSPI	TIM8_CH2N	TIM8_CH3N	-	-	-	CAN2_RX	TIM8_BKIN2	TIM8_BKIN	ı		I2C4_SCL	I2C4_SDA	TIM1_BKIN_ COMP2	1	TIM8_CH2N	TIM8_CH3N
le 16. Alternate	AF2	TIM1/2/3/4/5	TIM3_CH3	TIM3_CH4	-	-	TIM3_CH1	TIM3_CH2	TIM4_CH1	TIM4_CH2	TIM4_CH3	TIM4_CH4	-	-	-	-	-	
Tab	AF1	TIM1/2/5/8/ LPTIM1	TIM1_CH2N	TIM1_CH3N	LPTIM1_OUT	TIM2_CH2	1	LPTIM1_IN1	LPTIM1_ETR	LPTIM1_IN2	ı	IR_OUT	TIM2_CH3	TIM2_CH4	TIM1_BKIN	TIM1_CH1N	TIM1_CH2N	TIM1_CH3N
-	AF0	SYS_AF	ı	1	RTC_OUT	JTDO/ TRACESWO	NJTRST	1		1	1	,	1	1		1	1	RTC_REFIN
		Port	PB0	PB1	PB2	PB3	PB4	PB5	PB6	PB7	PB8	PB9	PB10	PB11	PB12	PB13	PB14	PB15
		-									Port B							

Table 16. Alternate function AF0 to AF7⁽¹⁾ (continued)

	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
	SYS_AF	TIM1/2/5/8/ LPTIM1	TIM1/2/3/4/5	SPI2/USART2/ CAN2/TIM8/ QUADSPI	12C1/2/3/4/ DCMI	SPI1/2/DCMI/ QUADSPI	SPI3/I2C3/ DFSDM/ COMP1/ QUADSPI	USART1/2/3
		LPTIM1_IN1	I2C4_SCL	ı	I2C3_SCL	1	DFSDM1_ DATIN4	1
-RAC	TRACED0	LPTIM1_OUT	I2C4_SDA	SPI2_MOSI	I2C3_SDA	1	DFSDM1_CKIN4	
		LPTIM1_IN2	1	1	1	SPI2_MISO	DFSDM1_ CKOUT	1
		LPTIM1_ETR	1	1	1	SPI2_MOSI	1	
	ı	1	1	1	ı	1	1	USART3_TX
	1	,	1	ı	ı	1	ı	USART3_RX
	ı	1	TIM3_CH1	TIM8_CH1	ı	1	DFSDM1_CKIN3	ı
	ı	ı	TIM3_CH2	TIM8_CH2	ı	ı	DFSDM1_ DATIN3	ı
	ı	1	TIM3_CH3	TIM8_CH3	ı	ı	1	
	1	TIM8_BKIN2	TIM3_CH4	TIM8_CH4	DCMI_D3	1	I2C3_SDA	1
μĽ	TRACED1	ı				•	SPI3_SCK	USART3_TX
	1	•			1	QUADSPI_BK 2_NCS	SPI3_MISO	USART3_RX
μĽ	TRACED3	ı				•	SPI3_MOSI	USART3_CK
	-	-	-	-	-	-	1	•
	-	-	-	-	1	-	-	-
	-	-	-	•	1	-	-	-

\7/

DS11585 Rev 9 93/272

Table 16. Alternate function AF0 to AF7⁽¹⁾ (continued)

			lab	lable 16. Alternate function AFU to AF7'' (continued)	TUNCTION AND T	O AF/ (COUTIL	(panu		
		AF0	AF1	AF2	AF3	AF4	AF5	94V	AF7
<u> </u>	Port	SYS_AF	TIM1/2/5/8/ LPTIM1	TIM1/2/3/4/5	SPI2/USART2/ CAN2/TIM8/ QUADSPI	I2C1/2/3/4/ DCMI	SPI1/2/DCMI/ QUADSPI	SPI3/I2C3/ DFSDM/ COMP1/ QUADSPI	USART1/2/3
	PD0	ı	ı	1	-	-	SPI2_NSS	DFSDM1_ DATIN7	ı
	PD1	1	1	-	-	-	SPI2_SCK	DFSDM1_CKIN7	1
	PD2	TRACED2	ı	TIM3_ETR	ı		•	ı	USART3_RTS_ DE
	PD3	ı	ı	ı	SPI2_SCK	DCMI_D5	SPI2_MISO	DFSDM1_ DATIN0	USART2_CTS
	PD4	ı	1	ı	ı		SPI2_MOSI	DFSDM1_CKIN0	USART2_RTS_ DE
	PD5	1	1	-	-	-	-	-	USART2_TX
Port D	PD6	ı	ı	ı	ı	DCMI_D10	QUADSPI_ BK2_I01	DFSDM1_ DATIN1	USART2_RX
	PD7	ı	ı	•	-	-	-	DFSDM1_CKIN1	USART2_CK
	PD8	,	-	-	-	-	-	-	USART3_TX
	PD9	,	,	-	-	-	-	-	USART3_RX
	PD10	,	1	-	-	-	-	-	USART3_CK
	PD11	,	1	-	-	I2C4_SMBA	-	-	USART3_CTS
	PD12	•		TIM4_CH1	-	I2C4_SCL	-	-	USART3_RTS_ DE
	PD13	•	-	TIM4_CH2	-	I2C4_SDA	-	-	-
	PD14			TIM4_CH3	-	-	-	-	
	PD15	1	ı	TIM4_CH4	-	-	-	-	

able 16. Alternate function AF0 to AF7⁽¹⁾ (continued)

			Tap	le 16. Alternate	Table 16. Alternate function AF0 to AF7(1) (continued)	o AF7''' (contir	ned)		
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
<u>a</u>	Port	SYS_AF	TIM1/2/5/8/ LPTIM1	TIM1/2/3/4/5	SPI2/USART2/ CAN2/TIM8/ QUADSPI	12C1/2/3/4/ DCMI	SPI1/2/DCMI/ QUADSPI	SPI3/I2C3/ DFSDM/ COMP1/ QUADSPI	USART1/2/3
	DE0		ı	TIM4_ETR	1	ı	ı	ı	ı
	PE1		1	1	1	ı	1	1	ı
	PE2	TRACECK	1	TIM3_ETR	1	ı	1	1	ı
	PE3	TRACED0	ı	TIM3_CH1	1	ı	1	1	1
	PE4	TRACED1	,	тімз_сн2	1	ı	1	DFSDM1_ DATIN3	1
	PE5	TRACED2	ı	EHO_EMIT	1	ı	1	DFSDM1_CKIN3	1
	PE6	TRACED3	ı	TIM3_CH4	1	ı	1	1	1
	PE7	-	TIM1_ETR	-	-	1	1	DFSDM1_ DATIN2	1
Port E	PE8	-	TIM1_CH1N	-	1	-	1	DFSDM1_CKIN2	1
	PE9	-	TIM1_CH1	-	1	-	1	DFSDM1_ CKOUT	1
	PE10	-	TIM1_CH2N	-	1	-	1	DFSDM1_ DATIN4	1
	PE11	-	TIM1_CH2	-	•	-	1	DFSDM1_CKIN4	1
	PE12	-	TIM1_CH3N			ı	SPI1_NSS	DFSDM1_ DATIN5	1
	PE13	-	TIM1_CH3	-	1	-	SPI1_SCK	DFSDM1_CKIN5	1
	PE14	-	TIM1_CH4	TIM1_BKIN2	TIM1_BKIN2_ COMP2	1	SPI1_MISO	-	1
	PE15		TIM1_BKIN	1	TIM1_BKIN_ COMP1	1	SPI1_MOSI	1	1

DS11585 Rev 9 95/272

Table 16. Alternate function AF0 to AF7⁽¹⁾ (continued)

	AF7	USART1/2/3	ı	ı	1	1	1	ı	1	ı		ı	ı		ı	ı	ı	1
	AF6	SPI3/I2C3/ DFSDM/ COMP1/ QUADSPI	1	1	ı	1	1	1	ı	1	1	1	1	1	1	DFSDM1_ DATIN6	DFSDM1_CKIN6	-
(pənu	AF5	SPI1/2/DCMI/ QUADSPI	-	1	1	-	-	-	1	1		1	,		1	ı	1	-
AF7''' (contir	AF4	12C1/2/3/4/ DCMI	I2C2_SDA	I2C2_SCL	I2C2_SMBA	1	1	ı	ı	•		•	1		•	I2C4_SMBA	I2C4_SCL	I2C4_SDA
Table 16. Alternate function AF0 to AF7(1) (continued)	AF3	SPI2/USART2/ CAN2/TIM8/ QUADSPI	ı	1	ı	1	1	1	ı	1	ı	1	QUADSPI_CLK		1	1	1	ı
le 16. Alternate	AF2	TIM1/2/3/4/5	1	1	1			1	TIM5_CH1	TIM5_CH2	TIM5_CH3	TIM5_CH4	1		1	1	1	1
Tab	AF1	TIM1/2/5/8/ LPTIM1	1	1	1	-	-		TIM5_ETR	1		1	1		1	ı	1	1
	AF0	SYS_AF	ı	ı	1	1	1	ı	1	ı	ı	ı	ı	ı	ı	1	ı	ı
		Port	PF0	PF1	PF2	PF3	PF4	PF5	PF6	PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15
		-									Port F							

able 16. Alternate function AF0 to AF7⁽¹⁾ (continued)

			Tab	le 16. Alternate	lable 16. Alternate function AF0 to AF7(1) (continued)	O AF / ' ' (contil	(pənc		
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
<u>ā</u>	Port	SYS_AF	TIM1/2/5/8/ LPTIM1	TIM1/2/3/4/5	SPI2/USART2/ CAN2/TIM8/ QUADSPI	I2C1/2/3/4/ DCMI	SPI1/2/DCMI/ QUADSPI	SPI3/I2C3/ DFSDM/ COMP1/ QUADSPI	USART1/2/3
	PG0	ı	ı	-		1	ı	ı	ı
	PG1	ı	ı	-	ı	1	-	1	1
	PG2	ı	ı	-	ı	1	SPI1_SCK	1	1
	PG3	ı	ı	-	ı	1	SPI1_MISO	1	1
	PG4	,	ı		1	ı	SPI1_MOSI	1	ı
	PG5	,	1		1	ı	SPI1_NSS	1	ı
	PG6		ı			I2C3_SMBA		1	
	PG7	ı	ı	-	ı	I2C3_SCL	-	1	1
Port G	PG8	1		-		I2C3_SDA	1	-	1
	PG9	ı	ı		ı	ı	1	SPI3_SCK	USART1_TX
	PG10	ı	LPTIM1_IN1	-		1	ı	SPI3_MISO	USART1_RX
	PG11	ı	LPTIM1_IN2	-	1	ı	ı	SPI3_MOSI	USART1_CTS
	PG12	ı	LPTIM1_ETR	1	ı	ı	1	SPI3_NSS	USART1_RTS_ DE
	PG13	1	ı	-		I2C1_SDA	1	1	USART1_CK
	PG14	,	ı	-	1	I2C1_SCL	-	1	1
	PG15	1	LPTIM1_OUT	-	•	I2C1_SMBA	-	1	

DS11585 Rev 9

97/272

Table 16. Alternate function AF0 to AF7⁽¹⁾ (continued)

	AF7	USART1/2/3	1	1	1									ı	ı		1	1
	AF6	SPI3/I2C3/ DFSDM/ COMP1/ QUADSPI	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1
ned)	AF5	SPI1/2/DCMI/ QUADSPI		1				1						1	1		1	
AF/'' (contin	AF4	I2C1/2/3/4/ DCMI	-	1		-	I2C2_SCL	I2C2_SDA	I2C2_SMBA	I2C3_SCL	I2C3_SDA	I2C3_SMBA	-	1	1	-	1	1
lable 16. Alternate function AF0 to AF7'' (continued)	AF3	SPI2/USART2/ CAN2/TIM8/ QUADSPI			QUADSPI_ BK2_IO0	-	-	ı	-	-	-	-	-	ı	ı	TIM8_CH1N	TIM8_CH2N	TIM8_CH3N
e 16. Alternate	AF2	TIM1/2/3/4/5	ı	1	ı	ı	ı	ı	ı	ı	ı	ı	TIM5_CH1	TIM5_CH2	TIM5_CH3	ı	ı	1
labi	AF1	TIM1/2/5/8/ LPTIM1	ı	1	1	1	ı	1	ı	ı	ı	ı	ı	ı	ı	1	1	1
	AF0	SYS_AF	ı	ı	1	1	ı	ı					ı	ı	ı	ı	ı	ı
		Port	DH0	PH1	PH2	PH3	PH4	PH5	PH6	PH7	PH8	6НА	PH10	PH11	PH12	PH13	PH14	PH15
		<u>r</u>								Port H								

Table 16. Alternate function AF0 to AF7⁽¹⁾ (continued)

AF7	USART1/2/3	ı	-	-		ı		ı		ı	-	-	-
AF6	SPI3/I2C3/ DFSDM/ COMP1/ QUADSPI	ı	1	1	1	1	1	1	1	1	1	1	1
AF5	SPI1/2/DCMI/ QUADSPI	SPI2_NSS	SPI2_SCK	SPI2_MISO	SPI2_MOSI	1	1	1	1	1	•	1	ı
AF4	12C1/2/3/4/ DCMI	ı	•		1	1	1	1	1	1	•		ı
AF3	SPI2/USART2/ CAN2/TIM8/ QUADSPI	ı	1	TIM8_CH4	TIM8_ETR	TIM8_BKIN	TIM8_CH1	TIM8_CH2	TIM8_CH3	1	1	1	ı
AF2	TIM1/2/3/4/5	TIM5_CH4	1	1	1	1	1	1	1	1	1	1	ı
AF1	TIM1/2/5/8/ LPTIM1	ı	1	1	1	1	1	1	1	1	1	1	ı
AF0	SYS_AF	1	1	1	ı	ı	ı	ı	ı	ı	1	1	ı
	Port	PI0	PI1	PI2	PI3	Pl4	PI5	PI6	PI7	PI8	PI9	P110	P111
	Ã						t						

1. Please refer to Table 17 for AF8 to AF15.

DS11585 Rev 9 99/272

ile 17. Alternate function AF8 to AF15⁽¹⁾

	AF15	EVENOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT
-	AF14	TIM2/15/16/17/ LPTIM2	TIM2_ETR	TIM15_CH1N	TIM15_CH1	TIM15_CH2	LPTIM2_OUT	LPTIM2_ETR	TIM16_CH1	TIM17_CH1	LPTIM2_OUT	TIM15_BKIN	TIM17_BKIN	-		-	-	-
-	AF13	SAI1/2	SAI1_EXTCLK	ı	SAI2_EXTCLK	SAI1_MCLK_A	SAI1_FS_B	-	TIM8_BKIN_C OMP2		SAI1_SCK_A	SAI1_FS_A	SAI1_SD_A	1	ı	SAI1_SD_B	SAI1_FS_B	SAI2_FS_B
F8 to AF15(1)	AF12	SDMMC/ COMP1/2/FM C/SWPMI1	•	1					TIM1_BKIN_C OMP2	1	SWPMI1_IO		-	TIM1_BKIN2_ COMP1	1	SWPMI1_TX	SWPMI1_RX	SWPMI1_SUS PEND
ate function A	AF11	ГСБ		CD_SEG0	LCD_SEG1	CD_SEG2	-	-	CD_SEG3	LCD_SEG4	OMOD_COMO	LCD_COM1	CD_COM2	-	ı	-	-	LCD_SEG17
Table 17. Alternate function AF8 to AF15(1)	AF10	CAN2/ OTG_FS/DCMI/ QUADSPI	-	1	QUADSPI_BK1_NCS	QUADSPI_CLK	DCMI_HSYNC	-	QUADSPI_BK1_IO3	QUADSPI_BK1_IO2	OTG_FS_SOF	-	OTG_FS_ID	OTG_FS_DM	OTG_FS_DP	OTG_FS_NOE	OTG_FS_SOF	-
=	AF9	CAN1/TSC	ı	1	1	ı	ı	1	1	1	1	1	-	CAN1_RX	CAN1_TX	-	-	TSC_G3_101
	AF8	UART4/5/ LPUART1/ CAN2	UART4_TX	UART4_RX	LPUART1_TX	LPUART1_RX			LPUART1_CT S	1	1		-		ı	-	-	UART4_RTS_ DE
		Port	PA0	PA1	PA2	PA3	PA4	PA5	PA6	PA7	PA8	PA9	PA10	PA11	PA12	PA13	PA14	PA15
		Δ.									Port A							

Table 17. Alternate function AF8 to AF15⁽¹⁾ (continued)

				lable 17. Alternate function AFS to AF1577 (continued)	ICTION AFS to	ALIDA (COULIN	inea)		
		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
<u>ū</u>	Port	UART4/5/ LPUART1/ CAN2	CAN1/TSC	CAN2/ OTG_FS/DCMI/ QUADSPI	ГСБ	SDMMC/ COMP1/2/FM C/SWPMI1	SAI1/2	TIM2/15/16/17/ LPTIM2	EVENOUT
	PB0	ı	1	QUADSPI_BK1_I01	CD_SEG5	COMP1_OUT	SAI1_EXTCLK	1	EVENTOUT
	PB1	LPUART1_RT S_DE	,	QUADSPI_BK1_IO0	LCD_SEG6	1	1	LPTIM2_IN1	EVENTOUT
	PB2	1	ı	1	CCD_VLCD	•	ı	ı	EVENTOUT
	PB3	1	1	OTG_FS_CRS_SYNC	LCD_SEG7	•	SAI1_SCK_B	ı	EVENTOUT
	PB4	UART5_RTS_ DE	TSC_62_101	DCMI_D12	CD_SEG8	1	SAI1_MCLK_B	TIM17_BKIN	EVENTOUT
	PB5	UART5_CTS	TSC_G2_102	DCMI_D10	LCD_SEG9	COMP2_OUT	SAI1_SD_B	TIM16_BKIN	EVENTOUT
	PB6	CAN2_TX	TSC_G2_103	DCMI_D5		TIM8_BKIN2_ COMP2	SAI1_FS_B	TIM16_CH1N	EVENTOUT
Port B	PB7	UART4_CTS	TSC_62_104	DCMI_VSYNC	LCD_SEG21	FMC_NL	TIM8_BKIN_C OMP1	TIM17_CH1N	EVENTOUT
	PB8	,	CAN1_RX	DCMI_D6	LCD_SEG16	SDMMC1_D4	SAI1_MCLK_A	TIM16_CH1	EVENTOUT
	PB9	1	CAN1_TX	DCMI_D7	LCD_COM3	SDMMC1_D5	SAI1_FS_A	TIM17_CH1	EVENTOUT
	PB10	LPUART1_RX	TSC_SYNC	QUADSPI_CLK	LCD_SEG10	COMP1_OUT	SAI1_SCK_A	ı	EVENTOUT
	PB11	LPUART1_TX	-	QUADSPI_BK1_NCS	LCD_SEG11	COMP2_OUT	1	•	EVENTOUT
	PB12	LPUART1_RT S_DE	TSC_G1_I01	CAN2_RX	LCD_SEG12	SWPMI1_IO	SAI2_FS_A	TIM15_BKIN	EVENTOUT
	PB13	LPUART1_CT S	TSC_G1_102	CAN2_TX	LCD_SEG13	SWPMI1_TX	SAIZ_SCK_A	TIM15_CH1N	EVENTOUT
	PB14	,	TSC_G1_103	1	LCD_SEG14	SWPMI1_RX	SAI2_MCLK_A	TIM15_CH1	EVENTOUT
	PB15	ı	TSC_G1_I04	'	LCD_SEG15	SWPMI1_SUS PEND	SAIZ_SD_A	TIM15_CH2	EVENTOUT

\7/

DS11585 Rev 9 101/272

Table 17. Alternate function AF8 to AF15⁽¹⁾ (continued)

			=	lable 17. Alternate function AF8 to AF15'' (continued)	CTION AFS to	AF15''' (contile	ned)		
		AF8	9F9	AF10	AF11	AF12	AF13	AF14	AF15
Ğ	Port	UART4/5/ LPUART1/ CAN2	CAN1/TSC	CAN2/ OTG_FS/DCMI/ QUADSPI	ГСБ	SDMMC/ COMP1/2/FM C/SWPMI1	SAI1/2	TIM2/15/16/17/ LPTIM2	EVENOUT
	PC0	LPUART1_RX	•	1	LCD_SEG18		,	LPTIM2_IN1	EVENTOUT
	PC1	LPUART1_TX	1	QUADSPI_BK2_100	LCD_SEG19		SAI1_SD_A		EVENTOUT
	PC2	,	1	QUADSPI_BK2_IO1	LCD_SEG20				EVENTOUT
	PC3		ı	QUADSPI_BK2_102	TCD_VLCD		SAI1_SD_A	LPTIM2_ETR	EVENTOUT
	PC4	1	ı	QUADSPI_BK2_103	LCD_SEG22		ı	ı	EVENTOUT
	PC5	1	ı	1	LCD_SEG23		ı	ı	EVENTOUT
	PC6	1	TSC_G4_101	DCMI_D0	LCD_SEG24	SDMMC1_D6	SAI2_MCLK_A	ı	EVENTOUT
	PC7	1	TSC_G4_102	DCMI_D1	LCD_SEG25	SDMMC1_D7	SAI2_MCLK_B	1	EVENTOUT
	PC8	1	TSC_G4_103	DCMI_D2	LCD_SEG26	SDMMC1_D0	1	1	EVENTOUT
Port C	60A	1	TSC_G4_104	OTG_FS_NOE	LCD_SEG27	SDMMC1_D1	SAIZ_EXTCLK	TIM8_BKIN2_C OMP1	EVENTOUT
	PC10	UART4_TX	TSC_G3_102	всмі_рв	LCD_COM4/L CD_SEG28/L CD_SEG40	SDMMC1_D2	SAIZ_SCK_B	,	EVENTOUT
	PC11	UART4_RX	TSC_G3_103	DCMI_D4	LCD_COM5/L CD_SEG29/L CD_SEG41	SDMMC1_D3	SAI2_MCLK_B	•	EVENTOUT
	PC12	UART5_TX	TSC_G3_104	DCMI_D9	LCD_COM6/L CD_SEG30/L CD_SEG42	SDMMC1_CK	SAI2_SD_B	•	EVENTOUT
	PC13	-	•	-	-	-	•	1	EVENTOUT
	PC14	-	-	-	-	-	•	1	EVENTOUT
	PC15	1	1	1	-	-	1	1	EVENTOUT

Table 17. Alternate function AF8 to AF15⁽¹⁾ (continued)

			<u></u>	lable 17. Alternate function AFS to AF15.7 (continued)	ICTION AFS to /	AF15''' (contin	ned)		
		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
<u>A</u>	Port	UART4/5/ LPUART1/ CAN2	CAN1/TSC	CAN2/ OTG_FS/DCMI/ QUADSPI	ГСР	SDMMC/ COMP1/2/FM C/SWPMI1	SAI1/2	TIM2/15/16/17/ LPTIM2	EVENOUT
	PD0	ı	CAN1_RX	ı	ı	FMC_D2	1	ı	EVENTOUT
	PD1	ı	CAN1_TX	1	1	FMC_D3	1	1	EVENTOUT
	PD2	UART5_RX	TSC_SYNC	DCMI_D11	LCD_COM7/L CD_SEG31/L CD_SEG43	SDMMC1_CM D	1	1	EVENTOUT
	ЕПА	ı		QUADSPI_BK2_NCS	1	FMC_CLK	1	1	EVENTOUT
	PD4	ı		QUADSPI_BK2_IO0	1	FMC_NOE	1	1	EVENTOUT
•	PD5	1	-	QUADSPI_BK2_IO1	1	FMC_NWE	1	1	EVENTOUT
(1	PD6	,	,	QUADSPI_BK2_102	1	FMC_NWAIT	SAI1_SD_A	1	EVENTOUT
בי ה	PD7	ı	1	QUADSPI_BK2_103	,	FMC_NE1	1	ı	EVENTOUT
	8QA	ı	•	DCMI_HSYNC	LCD_SEG28	FMC_D13	1	1	EVENTOUT
	6QA	ı	•	DCMI_PIXCLK	LCD_SEG29	FMC_D14	SAI2_MCLK_A	1	EVENTOUT
	PD10	ı	TSC_G6_101	ı	CCD_SEG30	FMC_D15	SAIZ_SCK_A	1	EVENTOUT
	PD11	ı	TSC_G6_102	1	LCD_SEG31	FMC_A16	SAI2_SD_A	LPTIM2_ETR	EVENTOUT
	PD12	ı	TSC_G6_103	1	LCD_SEG32	FMC_A17	SAI2_FS_A	LPTIM2_IN1	EVENTOUT
	PD13	1	TSC_G6_104	1	LCD_SEG33	FMC_A18	1	LPTIM2_OUT	EVENTOUT
	PD14	1	-	1	LCD_SEG34	FMC_D0	-		EVENTOUT
	PD15	ı	1	1	LCD_SEG35	FMC_D1	1		EVENTOUT

\7/

DS11585 Rev 9 103/272

Table 17. Alternate function AF8 to AF15⁽¹⁾ (continued)

			<u></u>	Table 17. Atternate function AFS to AF1577 (continued)	ICTION AFS to	AFT5''' (Contin	nea)		
		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
<u> </u>	Port	UART4/5/ LPUART1/ CAN2	CAN1/TSC	CAN2/ OTG_FS/DCMI/ QUADSPI	ГСБ	SDMMC/ COMP1/2/FM C/SWPMI1	SAI1/2	TIM2/15/16/17/ LPTIM2	EVENOUT
	DE0	ı	1	DCMI_D2	9E93S ⁻ G27	FMC_NBL0	ı	TIM16_CH1	EVENTOUT
	PE1	ı	ı	DCMI_D3	LCD_SEG37	FMC_NBL1	1	TIM17_CH1	EVENTOUT
	PE2	ı	TSC_G7_101	1	CD_SEG38	FMC_A23	SAI1_MCLK_A	ı	EVENTOUT
	PE3	ı	TSC_G7_102	1	CD_SEG39	FMC_A19	SAI1_SD_B	1	EVENTOUT
	PE4	ı	TSC_G7_103	DCMI_D4	-	FMC_A20	SAI1_FS_A	1	EVENTOUT
	PE5	ı	TSC_G7_104	DCMI_D6	-	FMC_A21	SAI1_SCK_A	1	EVENTOUT
	PE6	ı	-	DCMI_D7	-	FMC_A22	SAI1_SD_A	1	EVENTOUT
T to d	PE7	ı	1	1	-	FMC_D4	SAI1_SD_B	1	EVENTOUT
	PE8	ı	•	1	-	FMC_D5	SAI1_SCK_B	1	EVENTOUT
	PE9	ı	-	1	-	PMC_D6	SAI1_FS_B	1	EVENTOUT
	PE10	1	TSC_G5_101	QUADSPI_CLK	-	FMC_D7	SAI1_MCLK_B	1	EVENTOUT
	PE11	1	TSC_G5_102	QUADSPI_BK1_NCS	-	FMC_D8	-	1	EVENTOUT
	PE12	ı	TSC_G5_103	QUADSPI_BK1_IO0	-	FMC_D9	1	1	EVENTOUT
	PE13	ı	TSC_G5_104	QUADSPI_BK1_IO1	-	FMC_D10	-	1	EVENTOUT
	PE14	1	•	QUADSPI_BK1_IO2	-	FMC_D11	-	-	EVENTOUT
	PE15	ı	1	QUADSPI_BK1_I03	-	FMC_D12	1	1	EVENTOUT

Table 17. Alternate function AF8 to AF15⁽¹⁾ (continued)

			=	able 17. Alternate function AFS to AF15.7 (continued)	CTION APS TO	ALION (COULIN	nea)		
		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
<u> </u>	Port	UART4/5/ LPUART1/ CAN2	CAN1/TSC	CAN2/ OTG_FS/DCMI/ QUADSPI	ГСР	SDMMC/ COMP1/2/FM C/SWPMI1	SAI1/2	TIM2/15/16/17/ LPTIM2	EVENOUT
	DF0	ı		ı	1	FMC_A0	ı	,	EVENTOUT
	PF1	ı	ı	1	1	FMC_A1	1	1	EVENTOUT
	PF2	1	1	ı	1	FMC_A2	1	ı	EVENTOUT
	PF3	1	1	ı	1	FMC_A3	1	ı	EVENTOUT
	PF4	ı	ı	1	1	FMC_A4	1	1	EVENTOUT
	PF5	ı	-	ı	ı	FMC_A5	1	1	EVENTOUT
	PF6	1	1	QUADSPI_BK1_IO3	1	1	SAI1_SD_B	ı	EVENTOUT
t C C	PF7	1	ı	QUADSPI_BK1_102	ı		SAI1_MCLK_B	1	EVENTOUT
L 5 L	PF8	1	ı	QUADSPI_BK1_IO0	1	ı	SAI1_SCK_B	ı	EVENTOUT
	PF9	1	1	QUADSPI_BK1_IO1	1	1	SAI1_FS_B	TIM15_CH1	EVENTOUT
	PF10	1	ı	DCMI_D11	1	1	1	TIM15_CH2	EVENTOUT
	PF11	1	ı	DCMI_D12	1	ı	1	ı	EVENTOUT
	PF12	1	1	1	ı	FMC_A6	1	1	EVENTOUT
	PF13	1	ı	1	ı	FMC_A7	1	1	EVENTOUT
	PF14	1	TSC_G8_101	-	-	FMC_A8	1	1	EVENTOUT
	PF15	1	TSC_G8_102	1	•	FMC_A9	1	1	EVENTOUT

47/

DS11585 Rev 9 105/272

Table 17. Alternate function AF8 to AF15⁽¹⁾ (continued)

			<u> </u>	Table 17. Alternate function And to Anton (confinned)	ICTION APS 10	Ario, (conti	nea)		
		AF8	64V	AF10	AF11	AF12	AF13	AF14	AF15
a	Port	UART4/5/ LPUART1/ CAN2	CAN1/TSC	CAN2/ OTG_FS/DCMI/ QUADSPI	ГСБ	SDMMC/ COMP1/2/FM C/SWPMI1	SAI1/2	TIM2/15/16/17/ LPTIM2	EVENOUT
	PG0	ı	TSC_68_103	1		FMC_A10	ı	ı	EVENTOUT
	PG1	1	TSC_G8_I04	-	•	FMC_A11	1	1	EVENTOUT
	PG2	ı	ı		•	FMC_A12	SAIZ_SCK_B	1	EVENTOUT
	PG3	ı	ı		ı	FMC_A13	SAI2_FS_B	ı	EVENTOUT
	PG4	ı	1	ı	1	FMC_A14	SAI2_MCLK_B	ı	EVENTOUT
	PG5	LPUART1_CT S	1	1	,	FMC_A15	SAI2_SD_B	1	EVENTOUT
	PG6	LPUART1_RT S_DE	ı	1		ı	ı	ı	EVENTOUT
Port G	PG7	LPUART1_TX	1	1		FMC_INT	SAI1_MCLK_A	1	EVENTOUT
	PG8	LPUART1_RX	1	-		-	1	1	EVENTOUT
	PG9	1	1	1	1	FMC_NCE/FM C_NE2	SAIZ_SCK_A	TIM15_CH1N	EVENTOUT
	PG10	ı	1	ı	1	FMC_NE3	SAI2_FS_A	TIM15_CH1	EVENTOUT
	PG11	ı	ı		•	-	SAI2_MCLK_A	TIM15_CH2	EVENTOUT
	PG12	1	-	-	-	FMC_NE4	SAI2_SD_A	1	EVENTOUT
	PG13	1	-	-	-	FMC_A24	1	1	EVENTOUT
	PG14	ı	-	-	-	FMC_A25	1	1	EVENTOUT
	PG15	ı	1	DCMI_D13		1	1	1	EVENTOUT

Table 17. Alternate function AF8 to AF15⁽¹⁾ (continued)

			<u></u>	lable 17. Alternate function AFS to AF15.7 (continued)	ICTION AFS TO	AFT5''' (CONTIN	nea)		
		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
<u> </u>	Port	UART4/5/ LPUART1/ CAN2	CAN1/TSC	CAN2/ OTG_FS/DCMI/ QUADSPI	ГСБ	SDMMC/ COMP1/2/FM C/SWPMI1	SAI1/2	TIM2/15/16/17/ LPTIM2	EVENOUT
	0НА	,	-	ı	ı	-		1	EVENTOUT
	PH1	1	1	1	ı	1	1	1	EVENTOUT
	PH2	1	1	1	ı	1	1	1	EVENTOUT
	PH3	-		1	ı	•	ı	ı	EVENTOUT
	PH4	-		1	ı	•	ı	ı	EVENTOUT
	PH5	1	1	DCMI_PIXCLK	ı	1	1	1	EVENTOUT
	9НА	1	1	DCMI_D8	ı	1	1	1	EVENTOUT
t C	2HA	-		DCMI_D9	ı	•	ı	ı	EVENTOUT
5	PH8		1	DCMI_HSYNC	ı	1	1	1	EVENTOUT
	6НА	1	1	DCMI_D0	ı	1	1	1	EVENTOUT
	PH10	-	•	DCMI_D1	ı	•	ı	ı	EVENTOUT
	PH11	-		DCMI_D2			•	1	EVENTOUT
	PH12	-	•	DCMI_D3	ı	•	ı	ı	EVENTOUT
	PH13	-	CAN1_TX	1	ı	•	ı	ı	EVENTOUT
	PH14	-	•	DCMI_D4	-	-	-	1	EVENTOUT
	PH15	-	-	DCMI_D11	-	-	•	-	EVENTOUT

DS11585 Rev 9 107/272

Table 17. Alternate function AF8 to AF15⁽¹⁾ (continued)

							nen)		
		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
ď	Port	UART4/5/ LPUART1/ CAN2	CAN1/TSC	CAN2/ OTG_FS/DCMI/ QUADSPI	ГСБ	SDMMC/ COMP1/2/FM C/SWPMI1	SAI1/2	TIM2/15/16/17/ LPTIM2	EVENOUT
	PIO	1	•	DCMI_D13				1	EVENTOUT
	PI1	ı	1	DCMI_D8	ı	1	•	1	EVENTOUT
	PI2	ı	1	DCMI_D9	1	1	1	ı	EVENTOUT
	PI3	ı	1	DCMI_D10	1	1	1	ı	EVENTOUT
	Pl4	ı	-	DCMI_D5	-	•	1	1	EVENTOUT
- tio	PI5	1	-	DCMI_VSYNC	-	-	-	-	EVENTOUT
5	9IA	ı	•	DCMI_D6	•	•	1	1	EVENTOUT
	LIA PI7	ı	•	DCMI_D7	•	•	1	1	EVENTOUT
	BI8	ı	-	DCMI_D12	•	-	•	1	EVENTOUT
	6ld	ı	CAN1_RX	1	•	•	1	1	EVENTOUT
	P110	ı	•	1	•	•	1	1	EVENTOUT
	P111	ı		1	•	-	•	1	EVENTOUT

1. Please refer to Table 16 for AF0 to AF7.

STM32L496xx Memory mapping

5 Memory mapping

0xFFFF FFFF 0xBFFF FFFF Reserved Cortex™-M4 0xA000 1400 with FPU 7 QUADSPI registers Internal 0xA000 1000 Peripherals FMC registers 0xA000 0000 0xE000 0000 0x5FFF FFFF Reserved 6 0x5006 0C00 AHB2 0x4800 0000 0xC000 0000 Reserved 0x4002 4400 AHB1 FMC and 5 QUADSPI 0x4002 0000 Reserved registers 0x4001 6400 APB2 0xA000 0000 0x4001 0000 QUADSPI Flash Reserved bank 0x4000 9800 4 0x9000 0000 APB1 0x4000 0000 FMC bank3 0x1FFF FFFF 0x8000 0000 Reserved 0x1FFF F810 Option Bytes 3 0x1FFF F800 Reserved FMC bank1 0x1FFF F000 System memory 0x6000 0000 0x1FFF 8000 Reserved 0x1FFF 7810 Options Bytes 2 0x1FFF 7800 Reserved 0x1FFF 7400 Peripherals OTP area 0x4000 0000 0x1FFF 7000 System memory 1 0x1FFF 0000 SRAM2 Reserved 0x2004 0000 0x1001 0000 SRAM1 SRAM2 0x2000 0000 0x1000 0000 Reserved 0 0x0810 0000 CODE Flash memory 0x0800 0000 Reserved 0x0000 0000 0x0010 0000 Flash, system memory or SRAM, depending on BOOT configuration 0x0000 0000 Reserved

Figure 17. STM32L496xx memory map

MSv38032V1

Memory mapping STM32L496xx

Table 18. STM32L496xx memory map and peripheral register boundary addresses⁽¹⁾

Bus	Boundary address	Size (bytes)	Peripheral
AHB4	0xA000 1000 - 0xA000 13FF	1 KB	QUADSPI
AHB3	0xA000 0400 - 0xA000 0FFF	3 KB	Reserved
AUDS	0xA000 0000 - 0xA000 03FF	1 KB	FMC
-	0x5006 0C00 - 0x5FFF FFFF	~260 MB	Reserved
	0x5006 0800 - 0x5006 0BFF	1 KB	RNG
	0x5005 0400 - 0x5005 FFFF	62 KB	Reserved
	0x5005 0000 - 0x5005 03FF	1 KB	DCMI
	0x5004 0400 - 0x5004 FFFF	62 KB	Reserved
	0x5004 0000 - 0x5004 03FF	1 KB	ADC
	0x5000 0000 - 0x5003 FFFF	16 KB	OTG_FS
	0x4800 2400 - 0x4FFF FFFF	~127 MB	Reserved
AHB2	0x4800 2000 - 0x4800 23FF	1 KB	GPIOI
AUDZ	0x4800 1C00 - 0x4800 1FFF	1 KB	GPIOH
	0x4800 1800 - 0x4800 1BFF	1 KB	GPIOG
	0x4800 1400 - 0x4800 17FF	1 KB	GPIOF
	0x4800 1000 - 0x4800 13FF	1 KB	GPIOE
	0x4800 0C00 - 0x4800 0FFF	1 KB	GPIOD
	0x4800 0800 - 0x4800 0BFF	1 KB	GPIOC
	0x4800 0400 - 0x4800 07FF	1 KB	GPIOB
	0x4800 0000 - 0x4800 03FF	1 KB	GPIOA
-	0x4002 BC00 - 0x47FF FFFF	~127 MB	Reserved
	0x4002 B000 - 0x4002 BBFF	3 KB	DMA2D
	0x4002 4400 - 0x4002 AFFF	26 KB	Reserved
	0x4002 4000 - 0x4002 43FF	1 KB	TSC
	0x4002 3400 - 0x4002 3FFF	1 KB	Reserved
	0x4002 3000 - 0x4002 33FF	1 KB	CRC
A LID4	0x4002 2400 - 0x4002 2FFF	3 KB	Reserved
AHB1	0x4002 2000 - 0x4002 23FF	1 KB	FLASH registers
	0x4002 1400 - 0x4002 1FFF	3 KB	Reserved
	0x4002 1000 - 0x4002 13FF	1 KB	RCC
	0x4002 0800 - 0x4002 0FFF	2 KB	Reserved
	0x4002 0400 - 0x4002 07FF	1 KB	DMA2
	0x4002 0000 - 0x4002 03FF	1 KB	DMA1

STM32L496xx Memory mapping

Table 18. STM32L496xx memory map and peripheral register boundary addresses⁽¹⁾ (continued)

Bus	Boundary address	Size (bytes)	Peripheral
	0x4001 6400 - 0x4001 FFFF	39 KB	Reserved
	0x4001 6000 - 0x4001 63FF	1 KB	DFSDM1
	0x4001 5C00 - 0x4001 5FFF	1 KB	Reserved
	0x4001 5800 - 0x4001 5BFF	1 KB	SAI2
	0x4001 5400 - 0x4001 57FF	1 KB	SAI1
	0x4001 4C00 - 0x4001 53FF	2 KB	Reserved
	0x4001 4800 - 0x4001 4BFF	1 KB	TIM17
	0x4001 4400 - 0x4001 47FF	1 KB	TIM16
	0x4001 4000 - 0x4001 43FF	1 KB	TIM15
	0x4001 3C00 - 0x4001 3FFF	1 KB	Reserved
4 DD0	0x4001 3800 - 0x4001 3BFF	1 KB	USART1
APB2	0x4001 3400 - 0x4001 37FF	1 KB	TIM8
	0x4001 3000 - 0x4001 33FF	1 KB	SPI1
	0x4001 2C00 - 0x4001 2FFF	1 KB	TIM1
	0x4001 2800 - 0x4001 2BFF	1 KB	SDMMC1
	0x4001 2000 - 0x4001 27FF	2 KB	Reserved
	0x4001 1C00 - 0x4001 1FFF	1 KB	FIREWALL
	0x4001 0800- 0x4001 1BFF	5 KB	Reserved
	0x4001 0400 - 0x4001 07FF	1 KB	EXTI
	0x4001 0200 - 0x4001 03FF		COMP
	0x4001 0030 - 0x4001 01FF	1 KB	VREFBUF
	0x4001 0000 - 0x4001 002F		SYSCFG

STM32L496xx **Memory mapping**

Table 18. STM32L496xx memory map and peripheral register boundary addresses⁽¹⁾ (continued)

Bus	Boundary address	Size (bytes)	Peripheral
	0x4000 9800 - 0x4000 FFFF	26 KB	Reserved
	0x4000 9400 - 0x4000 97FF	1 KB	LPTIM2
	0x4000 8C00 - 0x4000 93FF	2 KB	Reserved
	0x4000 8800 - 0x4000 8BFF	1 KB	SWPMI1
	0x4000 8400 - 0x4000 87FF	1 KB	I2C4
	0x4000 8000 - 0x4000 83FF	1 KB	LPUART1
	0x4000 7C00 - 0x4000 7FFF	1 KB	LPTIM1
	0x4000 7800 - 0x4000 7BFF	1 KB	OPAMP
	0x4000 7400 - 0x4000 77FF	1 KB	DAC1
APB1	0x4000 7000 - 0x4000 73FF	1 KB	PWR
	0x4000 6800 - 0x4000 6FFF	1 KB	Reserved
	0x4000 6800 - 0x4000 6BFF	1 KB	CAN2
	0x4000 6400 - 0x4000 67FF	1 KB	CAN1
	0x4000 6000 - 0x4000 63FF	1 KB	CRS
	0x4000 5C00- 0x4000 5FFF	1 KB	I2C3
	0x4000 5800 - 0x4000 5BFF	1 KB	I2C2
	0x4000 5400 - 0x4000 57FF	1 KB	I2C1
	0x4000 5000 - 0x4000 53FF	1 KB	UART5
	0x4000 4C00 - 0x4000 4FFF	1 KB	UART4

STM32L496xx Memory mapping

Table 18. STM32L496xx memory map and peripheral register boundary addresses⁽¹⁾ (continued)

Bus	Boundary address	Size (bytes)	Peripheral
	0x4000 4800 - 0x4000 4BFF	1 KB	USART3
	0x4000 4400 - 0x4000 47FF	1 KB	USART2
	0x4000 4000 - 0x4000 43FF	1 KB	Reserved
	0x4000 3C00 - 0x4000 3FFF	1 KB	SPI3
	0x4000 3800 - 0x4000 3BFF	1 KB	SPI2
	0x4000 3400 - 0x4000 37FF	1 KB	Reserved
	0x4000 3000 - 0x4000 33FF	1 KB	IWDG
	0x4000 2C00 - 0x4000 2FFF	1 KB	WWDG
APB1	0x4000 2800 - 0x4000 2BFF	1 KB	RTC
	0x4000 2400 - 0x4000 27FF	1 KB	LCD
	0x4000 1800 - 0x4000 23FF	3 KB	Reserved
	0x4000 1400 - 0x4000 17FF	1 KB	TIM7
	0x4000 1000 - 0x4000 13FF	1 KB	TIM6
	0x4000 0C00- 0x4000 0FFF	1 KB	TIM5
	0x4000 0800 - 0x4000 0BFF	1 KB	TIM4
	0x4000 0400 - 0x4000 07FF	1 KB	TIM3
	0x4000 0000 - 0x4000 03FF	1 KB	TIM2

^{1.} The gray color is used for reserved boundary addresses.

Electrical characteristics STM32L496xx

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A$ max (given by the selected temperature range).

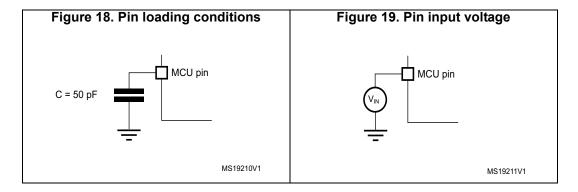
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = V_{DDA} = 3$ V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

6.1.3 Typical curves


Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 18*.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 19.

6.1.6 Power supply scheme

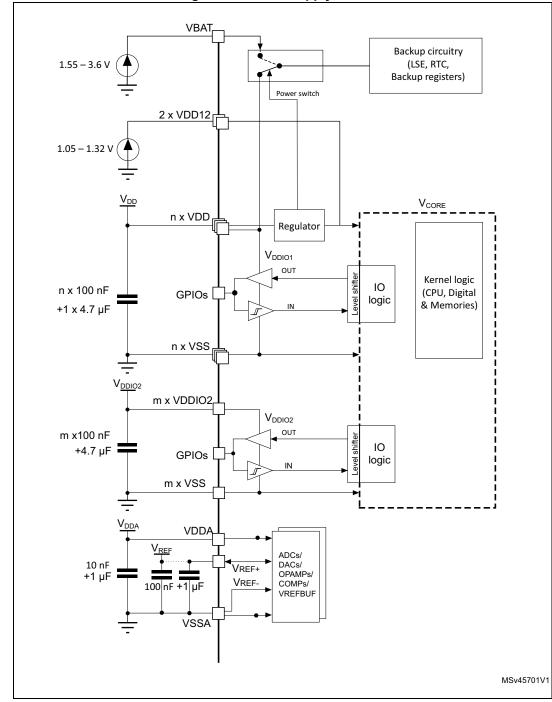
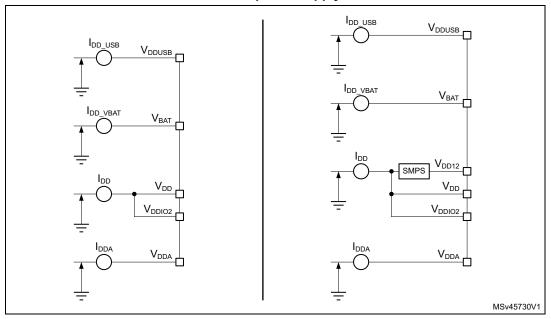


Figure 20. Power supply scheme

Caution:

Each power supply pair (V_{DD}/V_{SS} , V_{DDA}/V_{SSA} etc.) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device.



DS11585 Rev 9 115/272

Electrical characteristics STM32L496xx

6.1.7 Current consumption measurement

Figure 21. Current consumption measurement scheme with and without external SMPS power supply

The I_{DD_ALL} parameters given in *Table 26* to *Table 48* represent the total MCU consumption including the current supplying V_{DD} , V_{DDIO2} , V_{DDA} , V_{DDUSB} and V_{BAT} .

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 19: Voltage characteristics*, *Table 20: Current characteristics* and *Table 21: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Exposure to maximum rating conditions for extended periods may affect device reliability. Device mission profile (application conditions) is compliant with JEDEC JESD47 qualification standard, extended mission profiles are available on demand.

mV

Symbol Ratings Min Max Unit External main supply voltage (including V_{DD}, $V_{DDX} - V_{SS}$ 4.0 -0.3 $V_{DDA}, V_{DDIO2}, V_{DDUSB}, V_{LCD}, V_{BAT}$ Range 1 -0.3 V_{DD12} - V_{SS} External SMPS supply voltage 1.4 Range 2 -0.3 $\begin{array}{l} \text{min (V}_{DD},\, V_{DDA},\, V_{DDIO2}, \\ V_{DDUSB},\, V_{LCD}) + 4.0^{(3)(4)} \end{array}$ ٧ Input voltage on FT_xxx pins V_{SS} -0.3 V_{SS} -0.3 Input voltage on TT_xx pins $V_{IN}^{(2)}$ Input voltage on BOOT0 pin V_{SS} 9.0 V_{SS}-0.3 Input voltage on any other pins 4.0 Variations between different V_{DDX} $|\Delta V_{DDx}|$ 50 mV power pins of the same domain Variations between all the different

Table 19. Voltage characteristics⁽¹⁾

- 3. This formula has to be applied only on the power supplies related to the IO structure described in the pin definition table.
- 4. To sustain a voltage higher than 4 V the internal pull-up/pull-down resistors must be disabled.
- 5. Include VREF- pin.

 $|V_{SSx}-V_{SS}|$

ground pins⁽⁵⁾

Table 20. Current characteristics

Symbol	Ratings		Unit
ΣIV _{DD}	Total current into sum of all V _{DD} power lines (source) ^{(1) (2)}	150	
ΣIV _{SS}	Total current out of sum of all V _{SS} ground lines (sink) ⁽¹⁾	150	
IV _{DD(PIN)}	Maximum current into each V _{DD} power pin (source) ⁽¹⁾⁽²⁾	100	
IV _{SS(PIN)}	Maximum current out of each V _{SS} ground pin (sink) ⁽¹⁾	100	
	Output current sunk by any I/O and control pin except FT_f	20	
I _{IO(PIN)}	Output current sunk by any FT_f pin	20	
	Output current sourced by any I/O and control pin	20	mA
5 1	Total output current sunk by sum of all I/Os and control pins ⁽³⁾	100	
$\Sigma I_{IO(PIN)}$	Total output current sourced by sum of all I/Os and control pins ⁽³⁾	100	
I _{INJ(PIN)} ⁽⁴⁾	Injected current on FT_xxx, TT_xx, RST and B pins, except PA4, PA5	-5/+0 ⁽⁵⁾	
,	Injected current on PA4, PA5	-5/0	
ΣΙΙ _{ΙΝJ(PIN)} Ι	Total injected current (sum of all I/Os and control pins) ⁽⁶⁾	25	

All main power (V_{DD}, V_{DDA}, V_{DDIO2}, V_{DDUSB}, V_{LCD}, V_{BAT}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supplies, in the permitted range.

577

DS11585 Rev 9 117/272

^{1.} All main power (V_{DD} , V_{DDA} , V_{DDIO2} , V_{DDUSB} , V_{LCD} , V_{BAT}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

V_{IN} maximum must always be respected. Refer to Table 20: Current characteristics for the maximum allowed injected current values.

^{2.} Valid also for V_{DD12} on SMPS Package

This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.

- Positive injection (when V_{IN} > V_{DDIOx}) is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.
- 5. A negative injection is induced by V_{IN} < V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer also to *Table 19: Voltage characteristics* for the minimum allowed input voltage values.
- When several inputs are submitted to a current injection, the maximum ∑|I_{INJ(PIN)}| is the absolute sum of the negative injected currents (instantaneous values).

Table 21. Thermal characteristics

Symbol	Ratings	Ratings Value	
T _{STG}	Storage temperature range	-65 to +150	°C
T _J	Maximum junction temperature	150	°C

6.3 Operating conditions

6.3.1 General operating conditions

Table 22. General operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
f _{HCLK}	Internal AHB clock frequency	-	0	80	
f _{PCLK1}	Internal APB1 clock frequency	-	0	80	MHz
f _{PCLK2}	Internal APB2 clock frequency	-	0	80	
V _{DD}	Standard operating voltage	-	1.71	3.6	V
V	Ctandard enerating valtage	full frequency range	1.08	1.32	V
V _{DD12}	Standard operating voltage	up to 26MHz	1.05	1.32	
.,	DC[45:2] UOs supply voltage	At least one I/O in PG[15:2] used	1.08	3.6	V
V _{DDIO2}	PG[15:2] I/Os supply voltage	PG[15:2] not used	0	3.6	7 V
		ADC or COMP used	1.62		
		DAC or OPAMP used	1.8		
V _{DDA}	Analog supply voltage	VREFBUF used	2.4	3.6	V
		ADC, DAC, OPAMP, COMP, VREFBUF not used	0		

 $\overline{\Delta}$

Table 22. General operating conditions (continued)

Symbol	Parameter	С	onditions	Min	Max	Unit
V _{BAT}	Backup operating voltage		-	1.55	3.6	
.,	LICD aupply voltage	USB used	USB used		3.6	
V _{DDUSB}	USB supply voltage	USB not used		0	3.6	
		TT_xx I/O		-0.3	V _{DDIOx} +0.3	V
		воото		0	9]
V _{IN}	I/O input voltage	All I/O except	BOOT0 and TT_xx	-0.3	$\begin{array}{c} {\rm Min(Min(V_{DD},V_{DDA},}\\ {\rm V_{DDIO2},V_{DDUSB},}\\ {\rm V_{LCD})+3.6V,}\\ {\rm 5.5V)^{(2)(3)}} \end{array}$	
		LQFP144	-	-	625	
		LQFP100	-	-	476	
	Power dissipation at T _A = 85 °C for suffix 6 ⁽⁴⁾	LQFP64	-	-	444	- mW
P_D		UFBGA169		-	385	
		UFBGA132	-	-	364	
		WLCSP100	-	-	559	
		LQFP144	-	-	156	
		LQFP100	-	-	119	
P _D	Power dissipation at	LQFP64	-	-	111	mW
ΓD	$T_A = 125 ^{\circ}\text{C}$ for suffix $3^{(4)}$	UFBGA169		-	96] ''''
		UFBGA132	-	-	91	
		WLCSP100	-	-	140	
	Ambient temperature for the	Maximum pov	ver dissipation	-40	85	
TA	suffix 6 version	Low-power dissipation ⁽⁵⁾		-40	105	°c
IA	Ambient temperature for the	Maximum power dissipation		-40	125	
	suffix 3 version	Low-power dis	ssipation ⁽⁵⁾	-40	130	
TJ	Junction temperature range	Suffix 6 version	on	-40	105	- °C
13		Suffix 3 version	on	-40	130	

^{1.} When RESET is released functionality is guaranteed down to $\rm V_{BOR0}\,Min.$

This formula has to be applied only on the power supplies related to the IO structure described by the pin definition table. Maximum I/O input voltage is the smallest value between Min(V_{DD}, V_{DDIO}, V_{DDIO}, V_{DDIO}, V_{LCD})+3.6 V and 5.5V.

^{3.} For operation with voltage higher than Min (V_{DD} , V_{DDA} , V_{DDIO2} , V_{DDUSB} , V_{LCD}) +0.3 V, the internal Pull-up and Pull-Down resistors must be disabled.

^{4.} If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} (see Section 7.7: Thermal characteristics).

^{5.} In low-power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} (see Section 7.7: Thermal characteristics).

Electrical characteristics STM32L496xx

6.3.2 Operating conditions at power-up / power-down

The parameters given in *Table 23* are derived from tests performed under the ambient temperature condition summarized in *Table 22*.

Table 23. Operating conditions at power-up / power-down⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit	
+	V _{DD} rise time rate		0	∞	uo/\/	
t _{VDD}	V _{DD} fall time rate	-	10	∞	µs/V	
4	V _{DDA} rise time rate		0	8	μοΛ/	
t _{VDDA}	V _{DDA} fall time rate	-	10	∞	µs/V	
+	V _{DDUSB} rise time rate		0	∞	ue/\/	
t _{VDDUSB}	V _{DDUSB} fall time rate	-	10	∞	μs/V	
t _{VDDIO2}	V _{DDIO2} rise time rate		0	8	ue/\/	
	V _{DDIO2} fall time rate	_	10	8	µs/V	

^{1.} At Power up, the $V_{\mbox{\scriptsize DD12}}$ voltage should not be forced externally

The requirements for power-up/down sequence specified in *Section 3.10.1: Power supply schemes* must be respected.

6.3.3 Embedded reset and power control block characteristics

The parameters given in *Table 24* are derived from tests performed under the ambient temperature conditions summarized in *Table 22: General operating conditions*.

Table 24. Embedded reset and power control block characteristics

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Max	Unit
t _{RSTTEMPO} (2)	Reset temporization after BOR0 is detected	V _{DD} rising	-	250	400	μs
V _{BOR0} ⁽²⁾	Brown-out reset threshold 0	Rising edge	1.62	1.66	1.7	V
VBOR0	Brown-out reset timeshold o	Falling edge	1.6	1.64	1.69	V
V	Brown-out reset threshold 1	Rising edge	Rising edge 2.06 2.1 2.14	2.14	V	
V _{BOR1}	brown-out reset threshold i	Falling edge	1.96	2	2.04	V
V	Brown-out reset threshold 2	Rising edge	2.26	2.31	2.35	V
V _{BOR2}		Falling edge	2.16	2.20	2.24	
	Brown-out reset threshold 3	Rising edge	2.56	2.61	2.66	V
V _{BOR3}		Falling edge	2.47	2.52	2.57	V
V	Brown-out reset threshold 4	Rising edge	2.85	2.90	2.95	V
V _{BOR4}	Brown-out reset times 1010 4	Falling edge	2.76	2.81	2.86	v
V	Programmable voltage	Rising edge	2.1	2.15	2.19	V
V _{PVD0}	detector threshold 0	Falling edge	2	2.05	2.1	v

Table 24. Embedded reset and power control block characteristics (continued)

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Max	Unit
V	PVD threshold 1	Rising edge	2.26	2.31	2.36	V
V _{PVD1}	PVD threshold 1	Falling edge	2.15	2.20	2.25	V
V	DVD throubold 2	Rising edge	2.41	2.46	2.51	V
V _{PVD2}	PVD threshold 2	Falling edge	2.31	2.36	2.41	V
V	DVD throubold 2	Rising edge	2.56	2.61	2.66	V
V _{PVD3}	PVD threshold 3	Falling edge	2.47	2.52	2.57	V
V	DVD throubold 4	Rising edge	2.69	2.74	2.79	V
V_{PVD4}	PVD threshold 4	Falling edge	2.59	2.64	2.69	V
V	DVD throughold 5	Rising edge	2.85	2.91	2.96	\/
V _{PVD5}	PVD threshold 5	Falling edge	2.75	2.81	2.86	V
	DVD three-bald C	Rising edge	2.92	2.98	3.04	
V _{PVD6}	PVD threshold 6	Falling edge	2.84	2.90	2.96	V
V _{hyst_BORH0}	Hysteresis voltage of BORH0	Hysteresis in continuous mode	-	20	-	mV
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Hysteresis in other mode	-	30	-	
V _{hyst_BOR_PVD}	Hysteresis voltage of BORH (except BORH0) and PVD	-	-	100	-	mV
I _{DD} (BOR_PVD) ⁽²⁾	BOR ⁽³⁾ (except BOR0) and PVD consumption from V _{DD}	-	-	1.1	1.6	μΑ
V	V _{DDA} peripheral voltage	Rising edge	1.61	1.65	1.69	٧
V _{PVM3}	monitoring	Falling edge	1.6	1.64	1.68	V
V	V _{DDA} peripheral voltage	Rising edge	1.78	1.82	1.86	V
V_{PVM4}	monitoring	Falling edge	1.77	1.81	1.85	V
V _{hyst_PVM3}	PVM3 hysteresis	-	-	10	-	mV
V _{hyst_PVM4}	PVM4 hysteresis	-	-	10	-	mV
I _{DD} (PVM1/PVM2)	PVM1 and PVM2 consumption from V _{DD}	-	-	0.2	-	μΑ
I _{DD} (PVM3/PVM4)	PVM3 and PVM4 consumption from V _{DD}	-	-	2	-	μΑ

Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes.

577

DS11585 Rev 9 121/272

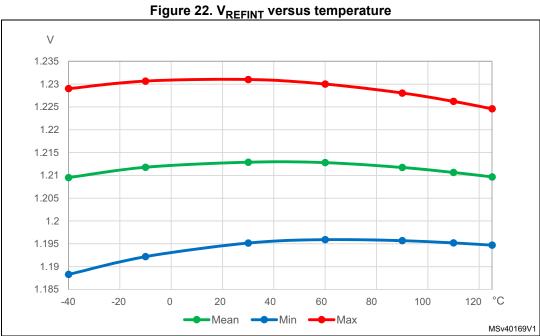
^{2.} Guaranteed by design.

^{3.} BOR0 is enabled in all modes (except shutdown) and its consumption is therefore included in the supply current characteristics tables.

Electrical characteristics STM32L496xx

6.3.4 Embedded voltage reference

The parameters given in *Table 25* are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 22: General operating conditions*.


Table 25. Embedded internal voltage reference

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT}	Internal reference voltage	-40 °C < T _A < +130 °C	1.182	1.212	1.232	V
t _{S_vrefint} (1)	ADC sampling time when reading the internal reference voltage	-	4 ⁽²⁾	-	-	μs
t _{start_vrefint}	Start time of reference voltage buffer when ADC is enable	-	-	8	12 ⁽²⁾	μs
I _{DD} (V _{REFINTBUF})	V _{REFINT} buffer consumption from V _{DD} when converted by ADC	-	-	12.5	20 ⁽²⁾	μА
ΔV_{REFINT}	Internal reference voltage spread over the temperature range	V _{DD} = 3 V	-	5	7.5 ⁽²⁾	mV
T _{Coeff}	Average temperature coefficient	-40°C < T _A < +130°C	-	30	50 ⁽²⁾	ppm/°C
A _{Coeff}	Long term stability	1000 hours, T = 25°C	-	300	1000 ⁽²⁾	ppm
V _{DDCoeff}	Average voltage coefficient	3.0 V < V _{DD} < 3.6 V	-	250	1200 ⁽²⁾	ppm/V
V _{REFINT_DIV1}	1/4 reference voltage		24	25	26	
V _{REFINT_DIV2}	1/2 reference voltage	-	49	50	51	% V _{REFINT}
V _{REFINT_DIV3}	3/4 reference voltage		74	75	76	IXELIIVI

^{1.} The shortest sampling time can be determined in the application by multiple iterations.

^{2.} Guaranteed by design.

Electrical characteristics STM32L496xx

6.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 21: Current consumption* measurement scheme with and without external SMPS power supply.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- · All I/O pins are in analog input mode
- All peripherals are disabled except when explicitly mentioned
- The Flash memory access time is adjusted with the minimum wait states number, depending on the f_{HCLK} frequency (refer to the table "Number of wait states according to CPU clock (HCLK) frequency" available in the RM0351 reference manual).
- When the peripherals are enabled f_{PCLK} = f_{HCLK}

The parameters given in *Table 26* to *Table 49* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 22: General operating conditions*.

Table 26. Current consumption in Run and Low-power run modes, code with data processing

	:	Unit							S	<u>[</u>								4	ξ	
•		125 °C	4.7	3.7	2.8	2.4	2.2	2.0	2.0	12.4	11.4	10.4	8.4	6.3	5.3	4.2	2197	2084	2012	1975
		105°C	3.8	2.7	1.8	1.4	1.2	1.1	1.0	11.3	10.3	9.3	7.3	5.2	4.2	3.2	1167	1047	973	942
	MAX ⁽¹⁾	85 °C	3.3	2.2	1.4	0.9	0.7	9.0	0.5	10.7	9.7	8.7	6.7	4.7	3.6	2.6	656	558	485	447
		25 °C	3.0	2.0	1.1	2.0	9.0	4.0	0.3	10.4	9.4	8.4	6.4	4.4	3.4	2.3	425	309	232	195
rr)		25 °C	2.9	1.9	1.0	9.0	9.4	0.3	0.2	10.3	9.3	8.3	6.3	4.2	3.2	2.2	318	195	116	62
retcn U		125 °C	3.51	2.53	1.74	1.35	1.15	1.06	0.97	10.4	9.53	8.61	6.72	4.84	3.9	2.95	1150	1040	696	934
ON Pre		105 °C	3.05	2.07	1.29	6.0	7.0	9.0	0.52	9.93	9.01	8.09	6.2	4.33	3.39	2.45	678	564	490	457
(Cache	ТУР	85 °C	2.82	1.85	1.07	0.68	0.48	0.38	0.3	9.67	8.75	7.83	5.94	4.07	3.14	2.2	444	328	256	223
nable		2° 55	2.69	1.72	0.94	95.0	98.0	0.26	0.17	6.5	8.59	79.7	5.78	3.92	2.99	2.06	307	195	123	9.06
, ARI		25 °C	2.65	1.68	0.91	0.52	6.33	0.23	0.14	9.44	8.52	7.61	5.72	3.87	2.94	2.01	274	158	88.2	63
m Flash		fнсLK	26 MHz	16 MHz	8 MHz	4 MHz	2 MHz	1 MHz	100 kHz	80 MHz	72 MHz	64 MHz	48 MHz	32 MHz	24 MHz	16 MHz	2 MHz	1 MHz	400 kHz	100 kHz
running from Flash, ARI enable (Cache ON Prefetch OFF)	Conditions	Voltage scaling				Range 2							Range 1						able	
ב	Cond	•					fuctive fuse UD	to 48MHz	inciuded, bypass mode	PLL ON above	peripherals	disable						fHCLK = fMS1	all peripherals disable	
		Parameter							Supply								!	Supply current in	Low-power	
		Symbol							(aid)	'DD_ALL('I'W'I')								PDD ALL	(LPRun)	

1. Guaranteed by characterization results, unless otherwise specified.

577

DS11585 Rev 9 125/272

Table 27. Current consumption in Run modes, code with data processing running from Flash, (ART enable Cache ON Prefetch OFF) and power supplied (by external SMPS (Vacate = 1.10 V)

±							{	<u> </u>					
	125 °C	3.74	3.43	3.10	2.42	1.74	1.40	1.06	0.75	0.58	0.50	0.46	0.42
	105 °C	3.57	3.24	2.91	2.23	1.56	1.22	0.88	0.56	0.39	0.30	0.26	0.22
TYP	2° 58	3.48	3.15	2.81	2.14	1.46	1.13	0.79	0.46	0.29	0.21	0.16	0.13
	2° 55	3.42	3.09	2.76	2.08	1.41	1.07	0.74	0.41	0.24	0.16	0.11	0.07
	25 °C	3.39	3.06	2.74	2.06	1.39	1.06	0.72	0.39	0.22	0.14	0.10	90.0
	fнсLK	80 MHz	72 MHz	64 MHz	48 MHz	32 MHz	24 MHz	16 MHz	8 MHz	4 MHz	2 MHz	1 MHz	100 kHz
Conditions ⁽¹⁾							fHCLK = fHSE up to 48MHz included, bypass mode						
Domoro	raiailletei						Supply current in Run	mode					
Sympol	99111001						(810)	'DD_ALL(Ruii)					

All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%, $V_{DD12} = 1.10 \text{ V}$

Table 28. Current consumption in Run and Low-power run modes, code with data processing running from Flash, ART disable

		Unit							4	<u> </u>								<	<u>{</u>	
		125 °C	5.3	4.3	3.2	2.6	2.3	2.1	2.0	13.31	12.2	12.1	10.6	8.2	6.6	5.3	2317	2138	2033	1982
		105 °C	4.3	3.3	2.2	1.6	1.3	1.1	1.0	12.2	11.0	11.0	6.5	7.0	5.5	4.2	1287	1105	966	947
3	MAX ⁽¹⁾	3° 58	3.8	2.8	1.7	1.1	8.0	9.0	9.0	11.6	10.5	10.4	6.8	6.5	5.0	9.6	192	.609	202	454
		55 °C	3.6	2.6	1.5	6.0	9.0	0.4	0.3	11.2	10.1	10.1	8.6	6.2	4.7	3.3	538	367	256	201
		25 °C	3.5	2.5	1.4	8.0	0.5	0.3	0.2	11.1	10	6.6	8.4	0.9	4.5	3.2	436	255	141	85
		125 °C	3.98	3.05	2.07	1.53	1.24	1.1	0.97	11.1	10.1	10	8.59	6.41	5.06	3.84	1260	1100	686	939
		105 °C	3.51	2.59	1.61	1.08	0.79	0.65	0.52	10.5	9.59	9.48	8.05	5.88	4.54	3.33	782	618	514	463
	ТУР	85 °C	3.28	2.36	1.39	0.85	0.57	0.43	0.3	10.3	9.29	9.2	7.77	5.62	4.28	3.07	549	381	277	228
		22 °C	3.14	2.23	1.26	0.73	0.44	0.3	0.18	10.1	9.1	9.02	7.59	5.45	4.12	2.92	412	246	144	92.8
		25 °C	3.1	2.19	1.22	69.0	0.41	0.27	0.14	10	9.02	8.94	7.51	5.38	4.07	2.86	378	213	101	62
		fнсLK	26 MHz	16 MHz	гнм 8	4 MHz	2 MHz	1 MHz	100 kHz	2HW 08	72 MHz	64 MHz	48 MHz	32 MHz	24 MHz	16 MHz	2 MHz	1 MHz	400 kHz	100 kHz
	Conditions	Voltage scaling				Range 2							Range 1						able	
	Conc						fHCLK = fHSE up	included, bypass	mode	PLL ON above	48 MHZ all	disable						f _{HCLK} = f _{MSI}	all peripherals disable	
		Parameter								Run mode							, day	Supply current in	Low-power	5
		Symbol							(al.B)	'DD_ALL(I'sdi')								IDD ALL	(LPRun)	

1. Guaranteed by characterization results, unless otherwise specified.

DS11585 Rev 9 127/272

Table 29. Current consumption in Run modes, code with data processing running from Flash,

Uni	ţ						{	<u> </u>					1
	125 °C	3.99	3.63	3.59	3.09	2.30	1.82	1.38	0.89	99.0	0.53	0.47	0.42
	105°C	3.77	3.45	3.41	2.89	2.11	1.63	1.20	69'0	0.47	0.34	0.28	0.22
TYP	ე. 98	3.70	3.34	3.31	2.79	2.02	1.54	1.10	09'0	26.0	0.25	0.19	0.13
	55 °C	3.63	3.27	3.24	2.73	1.96	1.48	1.05	0.54	0.31	0.19	0.13	0.08
	25 °C	3.59	3.24	3.21	2.70	1.93	1.46	1.03	6.53	08.0	0.18	0.12	90.0
	fнсLK	80 MHz	72 MHz	64 MHz	48 MHz	32 MHz	24 MHz	16 MHz	8 MHz	4 MHz	2 MHz	1 MHz	100 kHz
Conditions ⁽¹⁾	•						fHCLK = fHSE up to 48MHz included, bypass mode						
	Parameter						Supply current in Run						
	Symbol						(2110)	(IDD_ALL(IDD)					

All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%, $V_{DD12} = 1.10 \text{ V}$

Table 30. Current consumption in Run and Low-power run modes, code with data processing running from SRAM1

		Unit							8	<u> </u>								<u> </u>	<u>{</u>	
		125 °C	4.8	3.7	2.8	2.4	2.2	2.1	2.0	12.7	11.7	10.6	8.5	6.4	5.4	4.3	2180	2065	1991	1957
		105 °C	3.8	2.7	1.8	1.4	1.2	1.1	1.0	11.6	10.6	9.5	7.4	5.3	4.3	3.2	1154	1034	928	925
	MAX ⁽¹⁾	85 °C	3.4	2.3	1.42	6.0	7.0	9.0	0.5	11.1	10.0	0.6	6.9	4.8	3.7	2.7	634	530	458	429
		25 °C	3.1	2.0	1.1	7.0	0.5	0.4	0.3	10.7	9.7	8.7	9.9	4.5	3.5	2.4	402	283	206	171
		25 °C	3.0	1.9	1.0	9.0	0.4	0.2	0.2	10.6	9.6	8.5	6.4	4.4	3.3	2.3	295	170	06	53
		125 °C	3.58	2.58	1.77	1.36	1.16	1.06	0.97	10.8	9.8	8.84	6.88	4.95	3.99	3.02	1140	1020	951	918
		105 °C	3.12	2.12	1.31	0.91	0.71	0.61	0.52	10.2	9.27	8.32	6.36	4.44	3.47	2.51	665	250	475	440
	ТУР	85 °C	2.89	1.89	1.09	0.69	0.49	0.39	0.3	9.95	9	8.05	6.1	4.18	3.22	2.26	430	314	241	208
		J. 55	2.76	1.76	96.0	0.57	98.0	0.26	0.17	82.6	8.84	7.89	5.93	4.03	3.07	2.11	296	180	109	78.1
		25 °C	2.72	1.73	0.93	0.53	0.33	0.23	0.14	9.71	8.77	7.82	5.87	3.97	3.02	2.07	258	136	78.5	37.4
5		fнсLK	26 MHz	16 MHz	8 MHz	4 MHz	2 MHz	1 MHz	100 kHz	80 MHz	72 MHz	64 MHz	48 MHz	32 MHz	24 MHz	16 MHz	2 MHz	1 MHz	400 kHz	100 kHz
	Conditions	Voltage scaling				Range 2							Range 1	'				o de coi	ulsable rer-down	
	Conc					ı	fHCLK = fHSE UP	included, bypass	mode	PLL ON above	48 MHz all	disable						fHCLK = fMSI	FLASH in power-d	
		Parameter							Supply	-							, de	Supply current in	low-power	
		Symbol							(all d)	'DD_ALL(''\di')								IDD ALL	(LPRun)	

1. Guaranteed by characterization results, unless otherwise specified.

Table 31. Current consumption in Run, code with data processing running from SRAM1 and power supplied by external SMPS (V_{DD12} = 1.10 V)

	± -	5		1	1	1		S	<u> </u>					1
		125 °C	3.88	3.52	3.18	2.47	1.78	1.43	1.09	92'0	69'0	09'0	0.46	0.42
		105 °C	3.67	3.33	2.99	2.29	1.60	1.25	06.0	0.57	0.39	0.31	0.26	0.22
	TYP	85 °C	3.58	3.24	2.89	2.19	1.50	1.16	0.81	0.47	0.30	0.21	0.17	0.13
		2° 55	3.52	3.18	2.84	2.13	1.45	1.10	92.0	0.41	0.25	0.16	0.11	0.07
		25 °C	3.49	3.15	2.81	2.11	1.43	1.09	0.74	0.40	0.23	0.14	0.10	90.0
* DU12 -		fнсLK	80 MHz	72 MHz	64 MHz	48 MHz	32 MHz	24 MHz	16 MHz	8 MHz	4 MHz	2 MHz	1 MHz	100 kHz
ordering and power supplied by external order (VDD12 = 1.10 V)	Conditions ⁽¹⁾	•						fHCLK = fHSE up to 48MHz included, bypass mode	48 MHz all peripherals disable					
5	Doctor	raiailletei						obom and ai taoring Viscons						
	Cymphol	Syllings						(Birs)	DD_ALL(ruin)					

All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%, $V_{DD12} = 1.10 \text{ V}$

Table 32. Typical current consumption in Run and Low-power run modes, with different codes running from Flash, ART enable (Cache ON Prefetch OFF)

			Condition	ons	TYP		TYP	
Symbol	Parameter	-	Voltage scaling	Code	25 °C	Unit	25 °C	Unit
			7	Reduced code ⁽¹⁾	2.65		102	
			2 3 MHz	Coremark	2.97		114	
		f _{HCLK} = f _{HSE} up	Range ∟k = 26	Dhrystone 2.1	3.1	mA	119	μΑ/MHz
		to 48 MHz	Ra fHCLK	Fibonacci	2.9		112	
I _{DD_ALL}	Supply current in	included, bypass mode PLL ON	ĮĮ.	While(1)	2.43		93	
(Run)	Run mode	above 48 MHz	Z	Reduced code ⁽¹⁾	9.44		118	
		all peripherals	1 MHz	Coremark	10.6		133	
		disable	Range _K = 80	Dhrystone 2.1	10.9	mA	136	μΑ/MHz
			Ra fHCLK ⁼	Fibonacci	10.3		129	
			ĮĮ.	While(1)	8.66		108	
				Reduced code ⁽¹⁾	274		137	
	Supply			Coremark	307		154	
I _{DD_ALL} (LPRun)	current in Low-power	f _{HCLK} = f _{MSI} = 2 M all peripherals dis		Dhrystone 2.1	308	μΑ	154	μΑ/MHz
(=: / tarr)	run	a per.p.roraio aio		Fibonacci	273	•	137	
				While(1)	258		129	

^{1.} Reduced code used for characterization results provided in *Table 26*, *Table 28*, *Table 30*.

Table 33. Typical current consumption in Run, with different codes running from Flash, ART enable (Cache ON Prefetch OFF) and power supplied (by external SMPS (V_{DD12} = 1.10 V)

		Co	onditions ⁽	1)	TYP		TYP	
Symbol	Parameter	-	Voltage scaling	Code	25 °C	Unit	25 °C	Unit
			Z Z	Reduced code ⁽²⁾	1.14		44	
			26 MHz	Coremark	1.28		49	
		f _{HCLK} = f _{HSE} up to	= 26	Dhrystone 2.1	1.34		51	
		48 MHz included,	fHCLK :	Fibonacci	1.25		48	
I _{DD ALL}	Supply current in	bypass mode PLL ON above	Ţ	While(1)	1.05	mA	40	μΑ/MHz
(Run)	Run mode	48 MHz	각	Reduced code ⁽²⁾	3.39	ША	42	μΑνίνιι ιΖ
		all peripherals	80 MHz	Coremark	3.81		48	
		disable)8 =	Dhrystone 2.1	3.92		49	
			fHCLK :	Fibonacci	3.70		46	
			щ	While(1)	3.11		39	

^{1.} All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%, $V_{DD12} = 1.10 \text{ V}$

^{2.} Reduced code used for characterization results provided in *Table 26*, *Table 28*, *Table 30*.

DS11585 Rev 9 131/272

Electrical characteristics STM32L496xx

Table 34. Typical current consumption in Run, with different codes running from Flash, ART enable (Cache ON Prefetch OFF) and power supplied (by external SMPS ($V_{DD12} = 1.05 V$)

		Ce	onditions ⁽	1)	TYP		TYP	
Symbol	Parameter	-	Voltage scaling	Code	25 °C	Unit	25 °C	Unit
		$f_{HCLK} = f_{HSE}$ up to	Z	Reduced code ⁽²⁾	1.04		40	
	Supply	48 MHz included, bypass mode PLL	MHz	Coremark	1.17		45	
I _{DD_ALL}	current in	ON above	26	Dhrystone 2.1	1.22	mA	47	μΑ/MHz
(Run)	Run mode	48 MHz	 	Fibonacci	1.14		44	
		all peripherals disable	fнсск	While(1)	0.96		37	

All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%, V_{DD12} = 1.05 V

Table 35. Typical current consumption in Run and Low-power run modes, with different codes running from Flash, ART disable

			Conditio	ons	TYP		TYP	
Symbol	Parameter	-	Voltage scaling	Code	25 °C	Unit	25 °C	Unit
			ł	Reduced code ⁽¹⁾	3.1		119	
			2 3 MHz	Coremark	2.85		110	
		$f_{HCLK} = f_{HSE}$ up to	Range 2	Dhrystone 2.1	2.86	mA	110	μA/MHz
		48 MHz included,	Ra fHCLK	Fibonacci	2.63		101	
I _{DD_ALL}	Supply current in	bypass mode PLL ON above	ੰ ਵੇ	While(1)	2.42		93.1	
(Run)	Run mode	48 MHz	1 MHz	Reduced code ⁽¹⁾	10		125	
		all peripherals		Coremark	9.33		117	
		disable	Range ∟K = 80	Dhrystone 2.1	9.4	mA	118	μΑ/MHz
			Ra fHCLK	Fibonacci	8.66		108	
			ੂੰ ਮੁ	While(1)	8.61		108	
				Reduced code ⁽¹⁾	378		189	
	Supply	£ £ 0.MI		Coremark	412		206	
I _{DD_ALL} (LPRun)	current in Low-power	f _{HCLK} = f _{MSI} = 2 MI all peripherals disa		Dhrystone 2.1	418	μΑ	209	μΑ/MHz
(=: : (a)	run	a pop. ioraio dioc		Fibonacci	392		196	*
				While(1)	266		133	

^{1.} Reduced code used for characterization results provided in *Table 26*, *Table 28*, *Table 30*.

Downloaded from Arrow.com.

DS11585 Rev 9 132/272

^{2.} Reduced code used for characterization results provided in Table 26, Table 28, Table 30.

Table 36. Typical current consumption in Run modes, with different codes running from Flash, ART disable and power supplied by external SMPS ($V_{DD12} = 1.10 \text{ V}$)

		C	onditions ⁽	1)	TYP		TYP	
Symbol	Parameter	-	Voltage scaling	Code	25 °C	Unit	25 °C	Unit
			꾸	Reduced code ⁽²⁾	1.34		51	
			26 MHz	Coremark	1.23		47	
		f _{HCLK} = f _{HSE} up to	= 26	Dhrystone 2.1	1.23	ĺ	47	
	_	48 MHz included,	fHCLK =	Fibonacci	1.13		44	
I _{DD_ALL}	Supply current in	bypass mode PLL ON above	fно	While(1)	1.04	mA	40	μΑ/MHz
(Run)	Run mode	48 MHz	42	Reduced code ⁽¹⁾	3.59	IIIA	45	μΑνίνιι ιΖ
		all peripherals) MHz	Coremark	3.35	ĺ	42	
		disable	= 80	Dhrystone 2.1	3.38		42	
			^f нсск [:]	Fibonacci	3.11		39	
			fнс	While(1)	3.10	ĺ	39	

All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%, V_{DD12} = 1.10 V

Table 37. Typical current consumption in Run modes, with different codes running from Flash, ART disable and power supplied by external SMPS ($V_{DD12} = 1.05 \text{ V}$)

		C	onditions ⁽	1)	TYP		TYP	
Symbol	Parameter	-	Voltage scaling	Code	25 °C	Unit	25 °C	Unit
		$f_{HCLK} = f_{HSE}$ up to	MHz	Reduced code ⁽²⁾	1.22		47	
	Supply	48 MHz included,		Coremark	1.12		43	
I _{DD_ALL} (Run)	current in	bypass mode PLL ON above	= 26	Dhrystone 2.1	1.12	mA	43	μΑ/MHz
(* 13.1.7)	Run mode	48 MHz	fHCLK :	Fibonacci	1.03		40	
		all peripherals	ЭН	While(1)	0.95		37	

All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%, V_{DD12} = 1.05 V

^{2.} Reduced code used for characterization results provided in *Table 26*, *Table 28*, *Table 30*.

^{2.} Reduced code used for characterization results provided in *Table 26*, *Table 28*, *Table 30*.

Electrical characteristics STM32L496xx

Table 38. Typical current consumption in Run and Low-power run modes, with different codes running from SRAM1

			Conditio	ons	TYP		TYP	
Symbol	Parameter	-	Voltage scaling	Code	25 °C	Unit	25 °C	Unit
			2 MHz	Reduced code ⁽¹⁾	2.72		105	
			Z Z	Coremark	2.72		105	
		f _{HCLK} = f _{HSE} up to	Range 2	Dhrystone 2.1	2.65	mA	102	μΑ/MHz
		48 MHz included,	Ra fHCLK	Fibonacci	2.47		95	
I _{DD_ALL}	Supply current in	bypass mode PLL ON above	Ę.	While(1)	2.37		91	
(Run)	Run mode	48 MHz all	1 MHz	Reduced code ⁽¹⁾	9.71		121	
		peripherals	- ₹	Coremark	9.7		121	
		disable	Range ′ LK = 80 l	Dhrystone 2.1	9.48	mA	119	μΑ/MHz
			Ra fHCLK	Fibonacci	8.79		110	
			, 도	While(1)	8.45		106	
				Reduced code ⁽¹⁾	258		129	
	Supply	O.M.	-	Coremark	268		134	
I _{DD_ALL} (LPRun)	current in Low-power	f _{HCLK} = f _{MSI} = 2 MH all peripherals disa		Dhrystone 2.1	240	μΑ	120	μΑ/MHz
(=: : (ai)	run	a poporaio aioa	~.~	Fibonacci	230		115	
				While(1)	255		128	

^{1.} Reduced code used for characterization results provided in *Table 26*, *Table 28*, *Table 30*.

Table 39. Typical current consumption in Run, with different codes running from SRAM1 and power supplied by external SMPS ($V_{DD12} = 1.10 \text{ V}$)

		Co	nditions ⁽¹⁾		TYP		TYP	
Symbol	Parameter	-	Voltage scaling	Code	25 °C	Unit	25 °C	Unit
			Z	Reduced code ⁽²⁾	1.17		45	
) MHz	Coremark	1.17		45	
		f -f unto	= 26	Dhrystone 2.1	1.14		44	
		f _{HCLK} = f _{HSE} up to 48 MHz included,		Fibonacci	1.07		41	
I _{DD_ALL}	Supply current in	bypass mode	fHCLK	While(1)	1.02	mA	39	μΑ/MHz
(Run)	Run mode	PLL ON above 48 MHz all peripherals disable	MHz	Reduced code ⁽¹⁾	3.49	ША	44	µA/IVII IZ
			Σ	Coremark	3.49		44	
		periprierais disable	= 80	Dhrystone 2.1	3.41		43	
			fHCLK :	Fibonacci	3.16		39	
			fн	While(1)	3.04		38	

All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%, V_{DD12} = 1.10 V

^{2.} Reduced code used for characterization results provided in *Table 26*, *Table 28*, *Table 30*.

Table 40. Typical current consumption in Run, with different codes running from SRAM1 and power supplied by external SMPS ($V_{DD12} = 1.05 \text{ V}$)

		Co	nditions ⁽¹⁾		TYP		TYP	
Symbol	Parameter	-	Voltage scaling	Code	25 °C	Unit	25 °C	Unit
		f _{HCLK} = f _{HSE} up to	MHz	Reduced code ⁽²⁾	1.07		41	
	Supply	48 MHz included,		Coremark	1.07		41	
I _{DD_ALL} (Run)	current in Run mode	bypass mode PLL ON above	= 26	Dhrystone 2.1	1.04	mA	40	μΑ/MHz
()		48 MHz all	fHCLK "	Fibonacci	0.97		37	
		peripherals disable	1 5	While(1)	0.93		36	

^{1.} All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%, V_{DD12} = 1.05 V

DS11585 Rev 9 135/272

^{2.} Reduced code used for characterization results provided in *Table 26*, *Table 28*, *Table 30*.

Table 41. Current consumption in Sleep and Low-power sleep modes, Flash ON

Conditions	litione				<u>.</u>	4		-	. ()		MAX(1)			
		SHOHE				-					VANI			
	-	Voltage scaling	fнсLK	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	Unit
_			26 MHz	0.79	0.82	0.95	1.17	1.63	6.0	1.0	1.2	1.7	2.7	
		•	16 MHz	0.54	0.57	0.7	0.92	1.38	0.6	0.7	1.0	1.4	2.4	
		•	8 MHz	0.33	0.37	0.49	0.71	1.17	0.4	0.5	0.7	1.2	2.2	
	,	Range 2	4 MHz	0.23	0.26	0.39	0.61	1.06	0.3	0.4	0.6	1.1	2.1	
	fHCLK = fHSE UP		2 MHz	0.18	0.21	0.34	0.56	1.01	0.2	0.3	9.0	1.0	1.0	
	included, bypass		1 MHz	0.16	0.19	0.31	0.53	66.0	0.2	0.3	9.0	1.0	1.0	
	mode		100 kHz	0.13	0.17	0.29	0.51	96.0	0.1	0.3	9.0	1.0	1.9	S
	pli ON above		80 MHz	2.57	2.62	2.76	3.01	3.53	2.8	2.9	3.2	3.8	4.9	<u> </u>
	48 MHz all		72 MHz	2.34	2.38	2.53	2.78	3.29	2.6	2.7	3.0	3.5	4.6	
	disable		64 MHz	2.1	2.15	2.29	2.54	3.05	2.3	2.4	2.7	3.3	4.4	
		Range 1	48 MHz	1.58	1.63	1.78	2.03	2.54	1.8	1.9	2.2	2.7	3.8	
			32 MHz	1.11	1.15	1.3	1.54	2.05	1.2	1.4	1.7	2.2	3.3	
			24 MHz	0.87	0.91	1.06	1.3	1.81	1.0	1.1	1.4	1.9	3.0	
			16 MHz	0.63	0.67	0.82	1.06	1.56	0.7	0.8	1.1	1.6	2.7	
			2 MHz	103	140	270	909	985	130	247	009	066	2025	
	fHCLK = fMSI		1 MHz	74.2	111	245	476	922	100	215	467	696	1999	<
sleep	all peripherals disable	able	400 kHz	09	89.8	224	457	937	79	194	444	941	1975	<u>{</u>
			100 kHz	53.7	84.1	216	448	928	70	185	434	933	1967	
ı														

. Guaranteed by characterization results, unless otherwise specified.

Unit

Table 42. Current consumption in Sleep, Flash ON and power supplied by external SMPS ($V_{\rm DD12}=1.10~{\rm V}$)

1.10 0.74 0.65 0.46 0.56 0.50 0.44 0.43 1.27 0.91 0.41 125° 105 °C 0.23 0.22 1.08 1.00 0.73 0.55 0.26 0.24 0.91 0.47 0.38 0.31 TYP 85 °C 0.15 0.13 0.13 0.99 0.82 0.64 0.38 0.29 0.91 0.47 0.17 0.21 22 °C 0.16 0.08 0.86 0.59 0.33 0.24 0.09 0.94 0.77 0.41 0.07 0.11 25 °C 0.75 0.14 90.0 0.92 0.84 0.40 0.23 0.10 0.08 0.07 0.57 0.31 72 MHz 80 MHz 64 MHz 100 kHz 24 MHz 16 MHz 48 MHz 32 MHz 1 MHz 8 MHz 4 MHz 2 MHz fHCLK $f_{HCLK} = f_{HSE}$ up to 48 MHz included, bypass Conditions⁽¹⁾ pll ON above 48 MHz all peripherals disable Supply current in sleep mode, Parameter I_{DD_ALL}(Sleep) Symbol

ШĄ

All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%, $V_{DD12} = 1.10 \text{ V}$

577

DS11585 Rev 9 137/272

STM32L496xx **Electrical characteristics**

Table 43. Current consumption in Low-bower sleep modes. Flash in power-down

		Unit		٧	ξ	
		125 °C	2006	1975	1955	1947
		105 °C	696	942	923	916
	MAX ⁽¹⁾	85 °C	474	446	426	420
ei -dowi		25°C 55°C 85°C 105°C 125°C 25°C 55°C 105°C 105°C 125°C	224	193	171	162
III pow		25 °C	105	22	54	44
, ridsii		125 °C	896	951	947	906
illodes		105 °C	487	460	443	437
ı sieep	TYP	85 °C	258	223	207	199
v-powe		22°C	124	97.5	75.6	9'.29
IIII EO		25 °C	92.7	9.59	42.6	31.2
Telli collisuilipiloli III Eow-power sleep IIIodes, Flasii III power-dowii		_f нс∟к	2 MHz 92.7	1 MHz 63.5 97.5	400 kHz 42.6 75.6	100 kHz 31.2 67.6
ieiii coii	onditions	Voltage scaling				
able 43. cui	ິວ	1		Supply current $ f_{HCLK} = f_{MSI}$	all peripheral	
		Parameter		Supply current	sleep mode	•
		Symbol		PDD ALL	(LPSleep)	

Guaranteed by characterization results, unless otherwise specified.

	*	=					<u> </u>			
	‡			1	ı	=	<u> </u>			1
		125 °C	353	329	998	375	355	098	298	376
		105 °C 125 °C	154.6	156.7	159.7	163.8	155.6	157.9	160.8	165.0
	MAX ⁽¹⁾	85 °C	64	64.9	66.3	8'.29	64.8	62.9	67.1	69.1
		25 °C	16.4	16.6	16.9	17.4	16.6	16.8	17.3	17.9
		25 °C	5.3	5.3	5.4	5.4	5.3	2.5	6'9	6.2
mode		105 °C 125 °C 25 °C	135	137	140	143	135	136	140	143
Table 44. Current consumption in Stop 2 mode		105°C	60.1	9.09	61.5	67.9	59.5	6.09	61.7	63.2
otion in	TYP	၁。 58	25.2	25.5	25.7	26.3	25.3	25.6	26.1	26.8
nsumk		25 °C 55 °C	98.9	6.91	6.93	7.08	7.19	2.3	7.41	7.7
rent co		25 °C	2.57	2.62	2.69	2.7	2.92	2.99	3.04	3.31
44. Cur		V _{DD}	1.8 V	2.4 V	3 <	3.6 V	1.8 V	2.4 V	3 <	3.6 V
Table	Conditions	•		ליוןלייוֹל ט	LOD disabled			LCD enabled ⁽²⁾	clocked by LSI	
	rotomered	raiailletei				Supply current in	RTC disabled			
	Cymphol	Symbol				Ipp ALL	(Stop 2)			

Table 44. Current consumption in Stop 2 mode (continued)

	<u>*</u>									<	ξ							
		125 °C	354	360	367	376	355	360	367	376								ı
		105 °C	155.4	157.6	160.6	164.9	155.8	158.2	161.4	165.5		1		ı	1		1	1
	MAX ⁽¹⁾	3° 58	64.8	65.7	67.2	0.69	65.1	66.3	9.79	69.5	-	ı		1	ı	1		ı
		2° 55	17.2	17.5	17.9	18.7	16.8	17.1	17.5	18.3	-		-	1			-	1
ueu)		25 °C	6.1	6.2	6.5	7.1	5.5	5.8	6.2	6.58			-	ı				1
(collul		125 °C	139	140	144	147	135	137	141	144	139	140	143	146	ı	1	-	
z IIIOue		105 °C	61.4	62.3	63.5	65.2	09	2.09	62.1	63.6	61.4	62.1	63.4	65.0	61.4	62.2	63.5	65.1
പാധ്യ	ТУР	ე。 <u>9</u> 8	26.2	26.5	27	27.7	25.5	25.8	26.4	27.1	26.2	26.6	26.9	27.6	26.2	26.5	26.8	27.5
ווטוול		2° 55	7.46	7.61	7.81	8.05	7.31	7.46	7.63	7.95	7.52	7.68	7.81	8.07	7.48	7.56	7.65	7.94
บเรนเท		25 °C	2.97	3.09	3.15	3.4	2.98	3.10	3.23	3.47	2.93	3.1	3.3	3.48	2.86	3.01	3.18	3.31
i eii c		ααΛ	1.8 V	2.4 V	3 8	3.6 V	1.8 V	2.4 V	3 V	3.6 V	1.8 V	2.4 V	3 V	3.6 V	1.8 V	2.4 V	3 V	3.6 V
iable 44: Currein Consumption in Stop 2 mode (Continued)	Conditions	•		RTC clocked by LSI,	LCD disabled			RTC clocked by LSI,	LCD enabled ⁽³⁾			RTC clocked by LSE	32768Hz,LCD disabled			quartz ⁽³⁾	in low drive mode,	
Parameter Supply current in Stop 2 mode, RTC enabled																		
Symbol lpD_ALL(Stop 2 St with RTC) R																		

DS11585 Rev 9 139/272

Table 44. Current consumption in Stop 2 mode (continued)

	<u>*</u>			шA	
		125 °C	-	1	-
		85 °C 105 °C 125 °C		ı	-
	MAX ⁽¹⁾	ე. 98		1	-
		22 °C	ı	ı	
,		25 °C		1	-
,		125 °C	-	1	-
		V _{DD} 25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C	ı	ı	1
-	Τ¥Ρ	3° 58		1	
		55 °C	1	1	-
		25 °C	1.69	1.35	1.7
		V _{DD}	3 V	3 \	3 V
	Conditions	•	Wakeup clock is MSI = 48 MHz, voltage Range 1. See ⁽⁴⁾	Wakeup clock is MSI = 4 MHz, voltage Range 2. See ⁽⁴⁾	Wakeup clock is HSI16 = 16 MHz, voltage Range 1. See ⁽⁴⁾ .
	Doromotor	raiailletei		oply current ing wakeup n Stop 2 de	
	Cympol	9311130		l _{DD_ALL} (wake dur up from from Stop 2) mo	

1. Guaranteed by characterization results, unless otherwise specified.

LCD enabled with external voltage source. Consumption from VLCD excluded. Refer to LCD controller characteristics for IVLCD.

Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.

Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 51: Low-power mode wakeup timings.

able 45. Current consumption in Stop 1 mode

	3					4	ξ											<u> </u>	ξ.							
•		125 °C	1395	1403	1413	1428	1397	1405	1415	1429	1396	1404	1415	1429	1397	1406	1416	1430	1				-	-	-	ı
		105 °C	651	655	629	999	653	929	099	299	652	929	099	299	653	299	661	899	_	_	_	_	_	-	-	-
	$MAX^{(1)}$	3° 58	287	288	290	293	288.5	289	291	294	288	289	291	295	288	290	2912	295	-	-	-	-	-		-	-
		2° 55	9.62	79.8	80.5	81.4	81.1	81.0	81.6	82.4	80.5	80.9	81.6	82.8	80.6	81.1	81.8	83.0	-	-	-	-	-		-	-
		25 °C	25.4	25.5	25.9	28.6	27.1	27.2	27.4	28.8	26.6	26.7	27.7	28.9	26.7	26.7	28.3	30.9	-	-	-	-	-	1	1	-
ae		125 °C	523	526	530	536	504	506	508	510	524	528	531	537	510	511	515	519	524	527	531	537	-	-	-	-
om i d		105 °C	243	244	245	248	234	234	234	235	244	245	246	249	235	238	238	239	244	245	246	249	244	246	247	250
ı in sto	TYP	ე. 98	107	108	108	109	102	102	103	103	108	109	109	110	104	104	104	105	108	109	109	111	108	109	109	110
Imptior		2° 55	30.7	30.8	31	31.5	29.7	29.9	29.9	30.1	31.1	31.4	31.7	32.3	30.1	30.2	30.5	31	31.3	31.6	31.9	32.5	31.1	31.4	31.7	32.3
consi		25 °C	11.2	11.3	11.6	11.9	11.7	11.7	12.1	12.2	11.9	12.1	12.4	12.6	11.7	11.8	11.8	12.3	11.6	11.8	12.3	12.7	11.5	11.5	12	12.4
Current consumption in Stop 1 mode		V _{DD}	1.8 V	2.4 V	3 V	3.6 V	1.8 V	2.4 V	3 V	3.6 V	1.8 V	2.4 V	3 V	3.6 V	1.8 V	2.4 V	3 V	3.6 V	1.8 V	2.4 V	3 V	3.6 V	1.8 V	2.4 V	3 V	3.6 V
lable 45.	Conditions			CD	disabled		TCD	enabled ⁽²⁾	clocked by	LSI		CD	disabled			CCD	enabled ⁽²⁾			CD	disabled			CD	disabled	
	Con	-		ı				1	•					RTC clocked by	lSI					KIC clocked by	at 32768 Hz		- - -	KIC clocked by	low drive mode	
•		Parameter		Supply current in Stop 1 mode, RTC disabled													Supplycurrent	in stop 1	mode,	KIC enabled						
	-	Symbol				PDD ALL	(Stop 1)											PDD_ALL		`						

DS11585 Rev 9 141/272

Table 45. Current consumption in Stop 1 mode (continued)

:	Unit		шĄ	
	125 °C	1	ı	-
	V _{DD} 25 °C 55 °C 85 °C 105 °C 125 °C 55 °C 85 °C 105 °C 125 °C	-	ı	-
MAX ⁽¹⁾	ე. 98	-	ı	-
	2° 55	ı	ı	
	25 °C	ı	ı	-
	125 °C	1	ı	-
TYP	105 °C	1	1	-
TYP	ე. 98	1	ı	1
	2° 55	ı	ı	-
	25 °C	0.99	1.1	0.95
	V _{DD}	3 V	3 V	3 V
Conditions	•	MSI = 48 MHz, 1.	MSI = 4 MHz, 2.	
CO	•	Wakeup clock M8 voltage Range 1. See ⁽⁴⁾ .	Supply current Wakeup clock MS during voltage Range 2.	Wakeup clock HSI16 = 16 MHz, voltage Range 1. See ⁽⁴⁾ .
	Parameter		Supply current during wakeup from	
-	symbol		Supply (JDD ALL during (wakeup wakeup from Stop1)	

1. Guaranteed by characterization results, unless otherwise specified.

LCD enabled with external voltage source. Consumption from VLCD excluded. Refer to LCD controller characteristics for IVLCD.

Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.

Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 51: Low-power mode wakeup timings.

Table 46. Current consumption in Stop 0 mode

		Unit		<u> </u>	ξ.	
		25°C 55°C 85°C 105°C 125°C	1795	1803	1813	$1822^{(2)}$
	(105 °C	906	910	915	921
	MAX ⁽¹⁾	3° 58	1471	474	478	482
		ე. 99	218	221	224	228
		25 °C	148	151	154	157
פכע		125 °C	734	737	141	744
atob o		105 °C	404	407	409	412
	TYP	25°C 55°C 85°C 105°C	244	247	249	251
		22 °C	153	155	156	158
		25 °C	127	129	131	133
lable 46. Cultelli collouilipiioli iii otop o illoue	Conditions	aav	1.8 V	2.4 V	Λε	3.6 V
		Parameter		Supply current in Stop 0	RTC disabled	
		Symbol		PDD ALL	(Stop 0)	

1. Guaranteed by characterization results, unless otherwise specified.

2. Guaranteed by test in production.

Table 47. Current consumption in Standby mode

	‡id I	5				Ν								2	<u> </u>			
		125 °C	36572	41366	46714	52888 ⁽²⁾	ı	ı	ı	ı	36564	41383	46728	53018	-	1	ı	-
	(105°C	13059	15026	17245	19850	-	-	-	-	13585	15473	17889	20714	-	-	-	-
	MAX ⁽¹⁾	3° 58	4159	4846	6082	7230	1		ı	1	5182	5992	6938	7754	-			-
		J. 99	668	1009	1211	1508	-	-	-	-	1422	1704	2032	2511	-	-	-	-
е		25 °C	227	252	318	435	-	-	-	-	£9 <i>L</i>	942	1166	1454	-	-	-	-
by mod		125 °C	10353	12012	13589	15539	-	-	-	-	11100	12900	15500	18100	-	-	-	-
า Stand		J. 201	3822	4447	5071	2898	-	-	-	-	4270	0009	0669	7130	-	-	-	-
Table 47. Current consumption in Standby mode	TYP	၁ _° 58	1343	1562	1777	2115	ı		ı	1	1700	2020	2390	2920				
onsur		22°C	299	348	404	501	-	-		-	581	200	843	1050	-	-	-	-
rrent c		25 °C	108	118	133	171	296	349	411	909	377	461	259	689	422	518	260	780
47. Cu		V _{DD}	1.8 V	2.4 V	3 V	3.6 V	1.8 V	2.4 V	3 V	3.6 V	1.8 V	2.4 V	3 V	3.6 V	1.8 V	2.4 V	3 V	3.6 V
lable	Conditions	1		no independent	watchdog			with independent	watchdog			RTC clocked by LSI, no				RTC clocked by LSI,	watchdog	
	Daramotor				Supply current	mode (backup	registers	RTC disabled					Supply current	mode (backup	registers	RTC enabled		
	Sympo	Sup Sup in Sup In Sup Standby) regis												PD_ALL Standby	with RTC)			

DS11585 Rev 9 143/272

Table 47. Current consumption in Standby mode (continued)

	Unit		٩L								Рυ				mA
	MAX ⁽¹⁾	125 °C	ı	ı	1	ı	ı	ı	ı	1	54376	54505	54634	54763	
		105 °C	-	-	ı	-	-	ı	-	1	24695	24767	24840	24913	-
3		3° 58		ı	ı	-	ı	ı	-		10537	10545	10553	10561	-
		J. 22	-		ı	-		ı	-	ı	2640	2661	2683	2704	-
		25 °C		ı	ı	•	ı	ı	ı	ı	908	608	811	814	
	ТҮР	125 °C	10783	12583	15130	17540	10884	12619	15121	17551	22747	22888	23711	24361	
(105 °C	4193	4957	5925	7027	4244	4952	5931	7019	10153	10154	10429	10702	1
		85 °C	1683	1963	2319	2825	1679	1985	2371	2914	4297	4328	4403	4545	
		22 °C	504	633	6//	1009	624	751	914	1162	1111	1112	1116	1149	1
		25 °C	308	400	208	661	426	521	643	819	371	372	374	378	1. 4.
		V _{DD}	1.8 V	2.4 V	3 V	3.6 V	1.8 V	2.4 V	3 V	3.6 V	1.8 V	2.4 V	3 V	3.6 V	3 V
	Conditions	1		RTC clocked by LSE	bypassed at 32768Hz		RTC clocked by LSE quartz ⁽³⁾ in low drive mode				1				Wakeup clock is MSI = 4 MHz. See ⁽⁵⁾ .
	Daramoter	raiailletei	Supply current in Standby mode (backup registers retained), RTC enabled								Supply current to be added in Standby mode when SRAM2 is retained				Supply current during wakeup from Standby mode
	Symbol		lpp_ALL (Standby with RTC)								^l DD_ALL (SRAM2) ⁽⁴⁾				lpp_ALL (wakeup from Standby)

1. Guaranteed by characterization results, unless otherwise specified.

2. Guaranteed by test in production.

Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.

The supply current in Standby with SRAM2 mode is: IDD_ALL(Standby) + IDD_ALL(SRAM2). The supply current in Standby with RTC with SRAM2 mode is: IIDD_ALL(Standby + RTC) + IDD_ALL(SRAM2). 4.

Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 51: Low-power mode wakeup timings. δ.

Table 48. Current consumption in Shutdown mode

	<u>±</u>				Ρη					< 0	<u> </u>				mA
		125 °C	31391	35017	39297	44571	-	-	-	1	-	-	-	ı	-
		105 °C	10498	11897	13473	15679	-	-	-	1	-	-	-	ı	-
	MAX ⁽¹⁾	95 °C	3314	3844	4447	5354	-	-	-	ı	-	-	-	ı	-
950		22 °C	929	648	780	1009	1	-	1	ı	1	-	1	ı	-
		25 °C	85	111	154	236		,		ı				ı	1
		125 °C	0268	10300	12500	14700	9180	10700	12900	15300	ı	-	ı	ı	1
Idiaowi		105 °C	3020	3530	4260	5220	3230	3820	4660	5730	3459	4041	5145	6325	-
table 40. Call office consumption in Office and income	ТҮР	ე。 <u>2</u> 8	983	1150	1400	1790	1190	1440	1790	2280	1303	1572	1982	2520	1
		25 °C	161	193	242	338	363	478	621	831	472	989	732	948	1
11.001		25 °C	24	31	44	92	225	314	421	561	341	435	553	716	9.0
0000		V _{DD}	1.8 V	2.4 V	3 V	3.6 V	1.8 V	2.4 V	3 V	3.6 V	1.8 V	2.4 V	3 V	3.6 V	3 V
OF DIGIS	Conditions	•			•			RTC clocked by LSE	bypassed at 32768 Hz			RTC clocked by LSE	mode mode		Wakeup clock is MSI = 4 MHz. See ⁽³⁾ .
	Daramotor		Supply current	ın Shutdown mode	(backup	registers retained) RTC disabled		-	Supply current in Shutdown	mode	registers	retained) RTC			Supply current during wakeup from Shutdown mode
	lodamy	6			I _{DD} ALL (Shutdown)					PD ALL	with RTC)				IDD_ALL (wakeup from Shutdown)

1. Guaranteed by characterization results, unless otherwise specified.

Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 51: Low-power mode wakeup timings.

47/

DS11585 Rev 9 145/272

Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.

Table 49. Current consumption in VBAT mode

	<u>±</u>				∀ C									
		125 °C	-	-	-	-	-	-	-	-	-	-	-	-
		105 °C	-	-	-	-	-	1	-	-	-	-	1	-
	MAX ⁽¹⁾	ე. 98	-	ı	ı	ı	ı	ı	-	-	ı	ı	ı	1
		22°C	-	1	1	1	1	ı	1	1	1	1	1	1
		25 °C	-	ı	ı	ı	ı	ı	-	-	ı	ı	ı	1
		125 °C	806	1016	1965	2688	ı	ı	-	-	1432	1567	2529	3293
		J. 201	329	371	546	696	535	664	643	1459	928	921	1128	1588
-	ΤΥΡ	3° 58	110	125	154	324	312	411	544	791	448	250	989	976
		25 °C	18	20	25	22	216	300	402	529	347	436	545	705
		25 °C	2	2	3	10	198	280	375	488	320	405	512	648
	6	VBAT	1.8 V	2.4 V	3 V	3.6 V	1.8 V	2.4 V	3 V	3.6 V	1.8 V	2.4 V	3 V	3.6 V
	Conditions	-		DTC disabled	N C disabled		PTC polytono OTG	clocked by LSE	bypassed at	21.00.120		RTC enabled and	quartz ⁽²⁾	
	Daramoter							Backup domain	supply current					
	Odays	og de						1	'VDD_VBAT(VBAT) supply current					

1. Guaranteed by characterization results, unless otherwise specified.

Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 70: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution:

Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption measured previously (see *Table 50: Peripheral current consumption*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the I/O supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DDIOX} \times f_{SW} \times C$$

where

 $I_{\mbox{SW}}$ is the current sunk by a switching I/O to charge/discharge the capacitive load

 V_{DDIOx} is the I/O supply voltage

f_{SW} is the I/O switching frequency

C is the total capacitance seen by the I/O pin: $C = C_{INT} + C_{EXT} + C_{S}$

C_S is the PCB board capacitance including the pad pin.

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

DS11585 Rev 9 147/272

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in *Table 50*. The MCU is placed under the following conditions:

- All I/O pins are in Analog mode
- The given value is calculated by measuring the difference of the current consumptions:
 - when the peripheral is clocked on
 - when the peripheral is clocked off
- Ambient operating temperature and supply voltage conditions summarized in *Table 19: Voltage characteristics*
- The power consumption of the digital part of the on-chip peripherals is given in *Table 50*. The power consumption of the analog part of the peripherals (where applicable) is indicated in each related section of the datasheet.

Table 50. Peripheral current consumption

	Peripheral	Range 1	Range 2	Low-power run and sleep	Unit
	Bus Matrix ⁽¹⁾	4.44	3.75	4.00	
	ADC independent clock domain	0.40	0.08	0.30	
	ADC AHB clock domain	5.55	4.63	5.00	
	CRC	0.48	0.42	0.50	
	DMA1	2.00	1.60	2.00	
	DMA2	1.76	1.50	1.50	
	DMA2D	24.33	20.21	24.50	
	FLASH	8.50	7.10	8.00	
	FMC	7.58	6.29	7.00	
	GPIOA ⁽²⁾	1.59	1.25	1.50	
	GPIOB ⁽²⁾	1.56	1.25	1.50	
ALID	GPIOC ⁽²⁾	1.58	1.29	1.50	/
AHB	GPIOD ⁽²⁾	1.40	1.17	1.40	µA/MHz
	GPIOE ⁽²⁾	1.36	1.13	1.40	
	GPIOF ⁽²⁾	1.70	1.40	1.50	
	GPIOG ⁽²⁾	1.80	1.50	1.80	
	GPIOH ⁽²⁾	1.50	1.30	1.50	
	GPIOI ⁽²⁾	1.18	0.96	1.00	
	DCMI	1.6	1.3	1.2	
	OTG_FS independent clock domain	23.20	NA	NA	
	OTG_FS AHB clock domain	14.30	NA	NA	
	QUADSPI	6.84	5.67	6.50	

Table 50. Peripheral current consumption (continued)

	Peripheral	Range 1	Range 2	Low-power run and sleep	Unit
	RNG independent clock domain	2.20	NA	NA	
	RNG AHB clock domain	0.51	NA	NA	
ALID	SRAM1	2.80	2.29	2.50	
AHB	SRAM2	1.20	1.00	1.00	μΑ/MHz
	TSC	1.50	1.17	1.00	
	All AHB Peripherals	121.00	79.10	87.20	
	AHB to APB1 bridge ⁽³⁾	0.90	0.70	0.90	
	CAN1	3.68	3.04	3.50	
	DAC1	3.20	2.70	3.00	
	I2C1 independent clock domain	3.80	3.20	3.30	
	I2C1 APB clock domain	1.00	0.79	1.00	
	I2C2 independent clock domain	3.41	2.83	3.00	
	I2C2 APB clock domain	0.98	0.79	1.00	
	I2C3 independent clock domain	2.89	2.38	2.50	
	I2C3 APB clock domain	0.98	0.83	1.00	
	I2C4 independent clock domain	3.41	2.83	3.00	
	I2C4 APB clock domain	0.98	0.79	1.00	
APB1	LCD	1.03	0.80	1.03	\ /\ \ \ \
APDI	LPUART1 independent clock domain	2.40	2.00	2.20	µA/MHz
	LPUART1 APB clock domain	0.98	0.83	0.80	
	LPTIM1 independent clock domain	3.10	2.54	2.54	
	LPTIM1 APB clock domain	0.88	0.75	0.90	
	LPTIM2 independent clock domain	2.86	2.42	2.25	
	LPTIM2 APB clock domain	0.90	0.67	0.75	
	OPAMP	0.29	0.20	0.30	
	PWR	0.80	0.63	0.60	
	SPI2	1.78	1.50	1.50	
	SPI3	1.76	1.50	1.50	
	SWPMI1 independent clock domain	2.10	1.50	2.00	
	SWPMI1 APB clock domain	1.00	0.79	0.75	

DS11585 Rev 9 149/272

Table 50. Peripheral current consumption (continued)

	Peripheral	Range 1	Range 2	Low-power run and sleep	Unit
	TIM2	5.85	4.88	5.70	
	TIM3	5.20	4.25	5.00	
	TIM4	4.50	3.67	4.20	
	TIM5	5.60	4.58	5.10	
	TIM6	0.85	0.70	0.90	
	TIM7	0.86	0.71	0.90	
	USART2 independent clock domain	4.06	3.40	4.00	
APB1	USART2 APB clock domain	1.38	1.17	1.40	μΑ/MHz
AFDI	USART3 independent clock domain	4.80	3.92	4.60	μΑνινιπΖ
	USART3 APB clock domain	1.80	1.50	1.80	
	UART4 independent clock domain	3.80	3.10	3.00	
	UART4 APB clock domain	1.30	1.13	1.30	
	UART5 independent clock domain	3.83	3.17	3.50	
	UART5 APB clock domain	1.60	1.25	1.50	
	WWDG	0.39	0.33	0.40	
	All APB1 on	84.20	74.96	82.70	
	AHB to APB2 bridge ⁽⁴⁾	1.00	0.90	0.90	
	DFSDM1	6.00	5.00	5.50	
	FW	0.28	0.30	0.30	
	SAI1 independent clock domain	2.60	2.10	2.30	
	SAI1 APB clock domain	2.09	1.80	2.00	
	SAI2 independent clock domain	3.30	2.70	3.00	
	SAI2 APB clock domain	2.50	2.00	2.50	
	SDMMC1 independent clock domain	4.20	3.90	4.20	
APB2	SDMMC1 APB clock domain	2.10	1.80	2.00	μΑ/MHz
AFDZ	SPI1	1.71	1.42	1.50	μΑνινιιιΖ
	SYSCFG/VREFBUF/COMP	0.55	0.50	0.50	
	TIM1	8.41	6.96	7.50	
	TIM8	8.83	7.33	8.00	
	TIM15	3.96	3.29	3.50	
	TIM16	3.24	2.67	3.00	
	TIM17	2.94	2.46	2.50	
	USART1 independent clock domain	5.20	4.29	5.50	
	USART1 APB clock domain	1.70	1.50	1.60	

	Table cert emphicial	carront conca	inpulon (oonun	aou,	
Peripheral		Range 1	Range 2	Low-power run and sleep	Unit
APB2	All APB2 on	55.40	41.33	46.00	uA/MHz
	ALL	234.98	195.83	235.70	μΑνίνιι ιΖ

Table 50. Peripheral current consumption (continued)

- 1. The BusMatrix is automatically active when at least one master is ON (CPU, DMA).
- 2. The GPIOx (x= A...I) dynamic current consumption is approximately divided by a factor two versus this table values when the GPIO port is locked thanks to LCKK and LCKy bits in the GPIOx_LCKR register. In order to save the full GPIOx current consumption, the GPIOx clock should be disabled in the RCC when all port I/Os are used in alternate function or analog mode (clock is only required to read or write into GPIO registers, and is not used in AF or analog modes).
- 3. The AHB to APB1 Bridge is automatically active when at least one peripheral is ON on the APB1.
- 4. The AHB to APB2 Bridge is automatically active when at least one peripheral is ON on the APB2.

The consumption for the peripherals when using SMPS can be found using STM32CubeMX PCC tool.

6.3.6 Wakeup time from low-power modes and voltage scaling transition times

The wakeup times given in *Table 51* are the latency between the event and the execution of the first user instruction.

The device goes in low-power mode after the WFE (Wait For Event) instruction.

Table 51. Low-power mode wakeup timings⁽¹⁾

Symbol	Parameter		Conditions	Тур	Max	Unit
t _{WUSLEEP}	t _{WUSLEEP} Wakeup time from Sleep mode to Run mode -		-	6	6	Nb of
twustep wakeup time from Sleep mode to Run mode Wakeup time from Low-power sleep mode to Low-power run mode Wakeup time from Low-power sleep mode to Low-power run mode Wakeup time from Stop 0 wakeup Wakeup time from Stop 0 wakeup			h with Flash in power-down er sleep mode (SLEEP_PD=1 in and with clock MSI = 2 MHz	9	CPU cycles	
		Pange 1	Wakeup clock MSI = 48 MHz	7.0	11.6	
		Range i	Wakeup clock HSI16 = 16 MHz	6.2	10.7	
	1		Wakeup clock MSI = 24 MHz	7.3	11.7	
		Range 2	Wakeup clock HSI16 = 16 MHz	6.2	10.7	
t			Wakeup clock MSI = 4 MHz	7.6	13.2	lie.
WUSTOP0		Pange 1	Wakeup clock MSI = 48 MHz	2.5	2.9	μs
	Wake up time from Stop 0	Trange 1	Wakeup clock HSI16 = 16 MHz	2.7	2.9	
	mode to Run mode in		Wakeup clock MSI = 24 MHz	3.2	3.6	
	SRAM1	Range 2	Wakeup clock HSI16 = 16 MHz	2.7	2.9	
			Wakeup clock MSI = 4 MHz	5.7	13.2	

DS11585 Rev 9 151/272

Table 51. Low-power mode wakeup timings⁽¹⁾ (continued)

Symbol	Parameter		Conditions	Тур	Max	Unit
Wake up time f mode to Run mode to Low-p mode in Flash Wake up time f mode to Low-p mode in SRAM Wake up time f mode to Low-p mode in SRAM Wake up time f mode to Run mode		Dange 1	Wakeup clock MSI = 48 MHz	8.4	9.4	
		Range	Wakeup clock HSI16 = 16 MHz	7.8	8.4	
	Wake up time from Stop 1 mode to Run mode in Flash		Wakeup clock MSI = 24 MHz	8.7	9.6	
		Range 2	Wakeup clock HSI16 = 16 MHz	7.8	8.3	
			Wakeup clock MSI = 4 MHz	8.0	8.0 12.9	
		Panga 1	Wakeup clock MSI = 48 MHz	5.5	5.9	
	Wake up time from Stop 1	Range	Wakeup clock HSI16 = 16 MHz	6.6	7.0	
t _{WUSTOP1}	mode to Run mode in		Wakeup clock MSI = 24 MHz	6.1	6.5	μs
	SRAM1	Range 2	Wakeup clock HSI16 = 16 MHz	6.6	7.0	
			Wakeup clock MSI = 4 MHz	8.5	12.8	
	Wake up time from Stop 1 mode to Low-power run mode in Flash	Regulator in low-power	Wakaun alaak MCL - 2 MLL	13.8	20.0	
	Wake up time from Stop 1 mode to Low-power run mode in SRAM1	mode (LPR=1 in PWR_CR1)	Wakeup clock MSI = 2 MHz	11.8	22.0	
		Dance 4	Wakeup clock MSI = 48 MHz	8.9	9.8	
		Range	Wakeup clock HSI16 = 16 MHz	8.3	9.2	
	Wake up time from Stop 2 mode to Run mode in Flash		Wakeup clock MSI = 24 MHz	9.3	10.2	
		Range 2	Wakeup clock HSI16 = 16 MHz	8.2	9.2	
4			Wakeup clock MSI = 4 MHz	14.2	16.1	ш
WUSTOP2		Pango 1	Wakeup clock MSI = 48 MHz	up clock MSI = 48 MHz 8.9 9.8 up clock HSI16 = 16 MHz 8.3 9.2 up clock MSI = 24 MHz 9.3 10.2 up clock HSI16 = 16 MHz 8.2 9.2 up clock MSI = 4 MHz 14.2 16.1		
	Wake up time from Stop 2	Range	Wakeup clock HSI16 = 16 MHz	7.2	8.1	
	mode to Run mode in		Wakeup clock MSI = 24 MHz	6.8	7.8	
	SRAM1	Range 2	Wakeup clock HSI16 = 16 MHz	7.2	8.2	
			Wakeup clock MSI = 4 MHz	8.4	16.7	
t	Wakeup time from Standby	Pange 1	Wakeup clock MSI = 8 MHz	15.3	23.2	116
t _{WUSTBY}	mode to Run mode	Trange 1	Wakeup clock MSI = 4 MHz	21.3	30.5	μs
t _{WUSTBY}	Wakeup time from Standby	Range 1	Wakeup clock MSI = 8 MHz	15.3	23.1	II6
SRAM2	with SRAM2 to Run mode	Range 1 Wakeup	Wakeup clock MSI = 4 MHz	21.3	30.6	μs
t _{WUSHDN}	Wakeup time from Shutdown mode to Run mode	Range 1	Wakeup clock MSI = 4 MHz	305.9	322.3	μs

^{1.} Guaranteed by characterization results.

t_{VOST}

40

20

	Table 02. Regulator into	acs transition times			
Symbol	Parameter	Conditions	Тур	Max	Unit
t _{WULPRUN}	Wakeup time from Low-power run mode to Run mode ⁽²⁾	Code run with MSI 2 MHz	5	7	μs
4	Regulator transition time from Range 2 to	Codo rup with MSI 24 MHz	20	40	μδ

Code run with MSI 24 MHz

Table 52. Regulator modes transition times⁽¹⁾

- 1. Guaranteed by characterization results.
- 2. Time until REGLPF flag is cleared in PWR_SR2.

Range 1 or Range 1 to Range 2⁽³⁾

3. Time until VOSF flag is cleared in PWR SR2.

Table 53. Wakeup time using USART/LPUART⁽¹⁾

Symbol	Parameter	Conditions	Тур	Max	Unit
	Wakeup time needed to calculate the	Stop 0 mode	-	1.7	
t _{WUUSART} t _{WULPUART}	maximum USART/LPUART baudrate allowing to wakeup up from stop mode when USART/LPUART clock source is HSI16	Stop 1 mode and Stop 2 mode	-	8.5	μs

^{1.} Guaranteed by design.

6.3.7 **External clock source characteristics**

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.

The external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the recommended clock input waveform is shown in Figure 23: High-speed external clock source AC timing diagram.

Table 54. High-speed external user clock characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f	User external clock source frequency	Voltage scaling Range 1	-	8	48	MHz
f _{HSE_ext}	Oser external clock source frequency	Voltage scaling Range 2	-	8	26	IVII IZ
V _{HSEH}	OSC_IN input pin high level voltage	-	0.7 V _{DDIOx}	-	V_{DDIOx}	V
V _{HSEL}	OSC_IN input pin low level voltage	-	V _{SS}	-	0.3 V _{DDIOx}	
t _{w(HSEH)}	OSC_IN high or low time	Voltage scaling Range 1	7	-	-	ns
t _{w(HSEL)}	OGO_IN HIGH OF IOW LITTLE	Voltage scaling Range 2	18	-	-	113

^{1.} Guaranteed by design.

DS11585 Rev 9 153/272

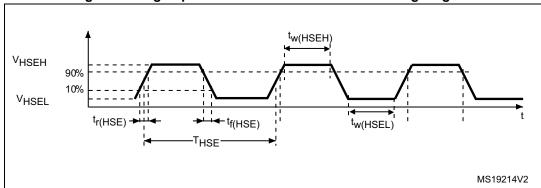
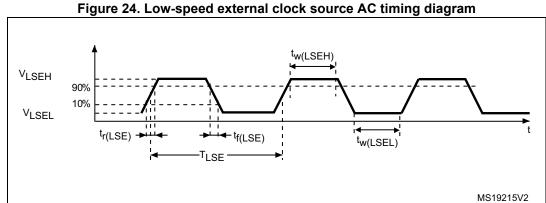


Figure 23. High-speed external clock source AC timing diagram

Low-speed external user clock generated from an external source


In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.

The external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the recommended clock input waveform is shown in Figure 24.

	rabio coi zon opeca oxi	orriar accr or	on onaraot	01104100		
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User external clock source frequency	-	-	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage	-	0.7 V _{DDIOx}	-	V_{DDIOx}	V
V _{LSEL}	OSC32_IN input pin low level voltage	-	V_{SS}	-	0.3 V _{DDIOx}	٧
t _{w(LSEL)}	OSC32_IN high or low time	-	250	-	-	ns

Table 55. Low-speed external user clock characteristics⁽¹⁾

^{1.} Guaranteed by design.

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 48 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 56*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Table 56. HSE oscillator characteristics⁽¹⁾

Symbol	Parameter	Conditions ⁽²⁾	Min	Тур	Max	Unit
f _{OSC_IN}	Oscillator frequency	-	4	8	48	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
		During startup ⁽³⁾	-	-	5.5	
		V_{DD} = 3 V, Rm = 30 Ω , CL = 10 pF@8 MHz	-	0.44	-	
		V _{DD} = 3 V, Rm = 45 Ω, CL = 10 pF@8 MHz	-	0.45	-	
I _{DD(HSE)}	HSE current consumption	$V_{DD} = 3 \text{ V},$ $Rm = 30 \Omega,$ CL = 5 pF@48 MHz	-	0.68	-	mA
		$V_{DD} = 3 V,$ $Rm = 30 \Omega,$ CL = 10 pF@48 MHz	-	0.94	-	
		$V_{DD} = 3 \text{ V},$ $Rm = 30 \Omega,$ CL = 20 pF@48 MHz	-	1.77	1.77 -	
G _m	Maximum critical crystal transconductance	Startup	-	-	1.5	mA/V
t _{SU(HSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	2	-	ms

- 1. Guaranteed by design.
- 2. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
- 3. This consumption level occurs during the first 2/3 of the $t_{SU(HSE)}$ startup time
- 4. t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 20 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 25*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .

DS11585 Rev 9 155/272

Note:

For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

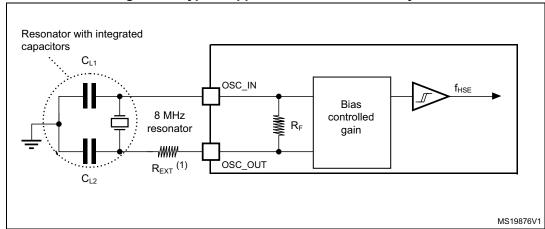


Figure 25. Typical application with an 8 MHz crystal

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in Table 57. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽²⁾	Min	Тур	Max	Unit
I _{DD(LSE)} LSE current consumption		LSEDRV[1:0] = 00 Low drive capability	-	250	-	
	LSEDRV[1:0] = 01 Medium low drive capability	-	315	-		
	LSEDRV[1:0] = 10 Medium high drive capability	-	500	-	nA	
		LSEDRV[1:0] = 11 High drive capability	-	630	-	
Gm _{critmax} gm		LSEDRV[1:0] = 00 Low drive capability	-	-	0.5	
	Maximum critical crystal	LSEDRV[1:0] = 01 Medium low drive capability	-	-	0.75	μΑ/V
	gm	LSEDRV[1:0] = 10 Medium high drive capability	-	-	1.7	μΑνν
	LSEDRV[1:0] = 11	_	_	27		

High drive capability

V_{DD} is stabilized

Table 57. LSE oscillator characteristics (from = 32.768 kHz)(1)

156/272 DS11585 Rev 9

s

2.7

 $t_{\text{SU(LSE)}}^{(3)}$

Startup time

- 1. Guaranteed by design.
- 2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".
- t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

Resonator with integrated capacitors

CL1

OSC32_IN

Drive programmable amplifier

Figure 26. Typical application with a 32.768 kHz crystal

Note:

 C_{L2}

An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

OSC32_OUT

DS11585 Rev 9 157/272

6.3.8 Internal clock source characteristics

The parameters given in *Table 58* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 22: General operating conditions*. The provided curves are characterization results, not tested in production.

High-speed internal (HSI16) RC oscillator

Table 58. HSI16 oscillator characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI16}	HSI16 Frequency	V _{DD} =3.0 V, T _A =30 °C	15.88	-	16.08	MHz
TRIM	HSI16 user trimming step	Trimming code is not a multiple of 64	0.2	0.3	0.4	%
IRIM	norro user trimining step	Trimming code is a multiple of 64	-4	-6	-8	76
DuCy(HSI16) ⁽²⁾	Duty Cycle	-	45	-	55	%
A (LICIAC)) There escalator frequency	T _A = 0 to 85 °C	-1	-	1	%
$\Delta_{Temp}(HSI16)$		T _A = -40 to 125 °C	-2	-	1.5	%
Δ _{VDD} (HSI16)	HSI16 oscillator frequency drift over V _{DD}	V _{DD} =1.62 V to 3.6 V	-0.1	-	0.05	%
t _{su} (HSI16) ⁽²⁾	HSI16 oscillator start-up time	-	-	0.8	1.2	μs
t _{stab} (HSI16) ⁽²⁾	HSI16 oscillator stabilization time	-	-	3	5	μs
I _{DD} (HSI16) ⁽²⁾	HSI16 oscillator power consumption	-	-	155	190	μΑ

^{1.} Guaranteed by characterization results.

^{2.} Guaranteed by design.

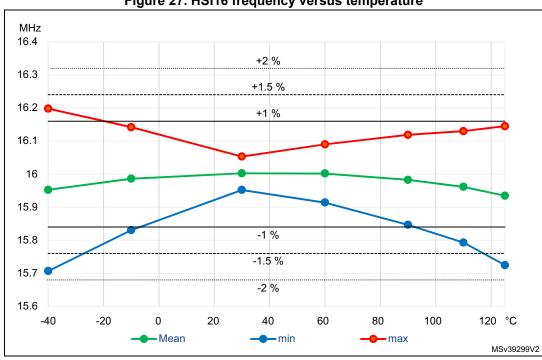


Figure 27. HSI16 frequency versus temperature

Multi-speed internal (MSI) RC oscillator

Table 59. MSI oscillator characteristics⁽¹⁾

Symbol	Parameter		Conditions	Min	Тур	Max	Unit	
			Range 0	98.7	100	101.3		
			Range 1	197.4	200	202.6	1411=	
			Range 2	394.8	400	405.2	kHz	
				Range 3	7896	800	810.4	
			Range 4	0.987	1	1.013		
		MCI mada	Range 5	1.974	2	2.026		
		MSI mode	Range 6	3.948	4	4.052		
		Range 7	7.896	8	8.104	NALI-		
	$\begin{array}{c} \text{MSI frequency} \\ \text{after factory} \\ \text{calibration, done} \\ \text{at V}_{DD}\text{=-3 V and} \\ \text{T}_{A}\text{=-30 °C} \end{array}$		Range 8	15.79	16	16.21	MHz	
l		MSI frequency		Range 9	23.69	24	24.31	
l				Range 10	31.58	32	32.42	
			Range 11	47.38	48	48.62		
IMSI			Range 0	-	98.304	-	- kHz	
			Range 1	-	196.608	-		
			Range 2	-	393.216	-		
			Range 3	-	786.432	-		
			Range 4	-	1.016	-		
		PLL mode XTAL=	Range 5	-	1.999	-		
		32.768 kHz	Range 6	-	3.998	-		
			Range 7	-	7.995	-		
			Range 8	-	15.991	-	MHz	
			Range 9	-	23.986	-		
		Range 10	-	32.014	-			
			Range 11	-	48.005	-		
	MSI oscillator		T _A = -0 to 85 °C	-3.5	-	3		
$\Delta_{TEMP}(MSI)^{(2)}$	frequency drift over temperature	MSI mode	T _A = -40 to 125 °C	-8	-	6	%	

Table 59. MSI oscillator characteristics⁽¹⁾ (continued)

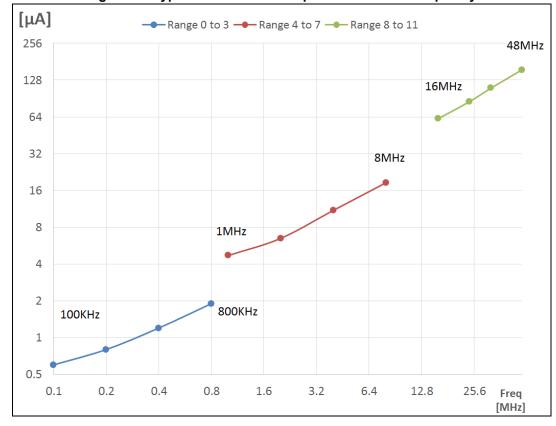

Symbol	Parameter		Conditions	-	Min	Тур	Max	Unit
			Range 0 to 3	V _{DD} =1.62 V to 3.6 V	-1.2	-	0.5	
			Range 0 to 3	V _{DD} =2.4 V to 3.6 V	-0.5	-	0.5	
$\Delta_{\text{VDD}}(\text{MSI})^{(2)}$	MSI oscillator frequency drift over V _{DD}	MSI mode	Range 4 to 7	V _{DD} =1.62 V to 3.6 V	-2.5	-	0.7	%
ΔΛDD(IM2I), ,	(reference is 3 V)		Range 4 to 7	V _{DD} =2.4 V to 3.6 V	-0.8	-	0.7	70
			Dance 0 to 11	V _{DD} =1.62 V to 3.6 V	-5	-	1	
			Range 8 to 11 V _{DD} to 3.	V _{DD} =2.4 V to 3.6 V	-1.6	-	1	
	Frequency		T _A = -40 to 85 °C		-	1	2	
ΔF _{SAMPLING} (MSI) ⁽²⁾⁽⁴⁾	variation in sampling mode ⁽³⁾	MSI mode T_A = -40 to 125 °		°C	-	2	4	%
CC jitter(MSI) ⁽⁴⁾	RMS cycle-to- cycle jitter	PLL mode R	ange 11	-	-	60	-	ps
P jitter(MSI) ⁽⁴⁾	RMS Period jitter	PLL mode R	tange 11	-	-	50	-	ps
		Range 0		-	-	10	20	
		Range 1		-	-	5	10	
4 (MACI)(4)	MSI oscillator	Range 2		-	-	4	8	
t _{SU} (MSI) ⁽⁴⁾	start-up time	Range 3		-	-	3	7	us
		Range 4 to 7	7	-	-	3	6	
		Range 8 to	11	-	-	2.5	6	
			10 % of final frequency	-	-	0.25	0.5	
t _{STAB} (MSI) ⁽⁴⁾	MSI oscillator stabilization time		5 % of final frequency	-	-	0.5	1.25	ms
			1 % of final frequency	-	-	-	2.5	

Table 59. MSI oscillator characteristics⁽¹⁾ (continued)

Symbol	Parameter		Conditions		Min	Тур	Max	Unit
			Range 0	-	-	0.6	1	
			Range 1	-	-	0.8	1.2	
			Range 2	-	-	1.2	1.7	
		Range 3	-	-	1.9	2.5		
	I _{DD} (MSI) ⁽⁴⁾ MSI oscillator power consumption	MSI and PLL mode	Range 4	-	-	4.7	6	
(MCI)(4)			Range 5	-	-	6.5	9	
IDD(INIQI),			Range 6	-	-	11	15	μΑ
			Range 7	-	-	18.5	25	
			Range 8	-	-	62	80	
			Range 9	-	-	85	110	
			Range 10	-	-	110	130	
			Range 11	-	-	155	190	

- 1. Guaranteed by characterization results.
- 2. This is a deviation for an individual part once the initial frequency has been measured.
- 3. Sampling mode means Low-power run/Low-power sleep modes with Temperature sensor disable.
- 4. Guaranteed by design.

Figure 28. Typical current consumption versus MSI frequency

High-speed internal 48 MHz (HSI48) RC oscillator

Table 60. HSI48 oscillator characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI48}	HSI48 Frequency	V _{DD} =3.0V, T _A =30°C	-	48	-	MHz
TRIM	HSI48 user trimming step	-	-	0.11 ⁽²⁾	0.18 ⁽²⁾	%
USER TRIM COVERAGE	HSI48 user trimming coverage	±32 steps	±3 ⁽³⁾	±3.5 ⁽³⁾	-	%
DuCy(HSI48)	Duty Cycle	-	45 ⁽²⁾	-	55 ⁽²⁾	%
ACC	Accuracy of the HSI48 oscillator over temperature (factory	V _{DD} = 3.0 V to 3.6 V, T _A = -15 to 85 °C	-	-	±3 ⁽³⁾	%
ACC _{HSI48_REL}	calibrated)	V _{DD} = 1.65 V to 3.6 V, T _A = -40 to 125 °C	-	-	±4.5 ⁽³⁾	70
D (UCI40)	HSI48 oscillator frequency drift	V _{DD} = 3 V to 3.6 V	-	0.025 ⁽³⁾	0.05 ⁽³⁾	%
D _{VDD} (HSI48)	with V _{DD}	V _{DD} = 1.65 V to 3.6 V	-	0.05 ⁽³⁾	0.1 ⁽³⁾	70
t _{su} (HSI48)	HSI48 oscillator start-up time	-	-	2.5 ⁽²⁾	6 ⁽²⁾	μs
I _{DD} (HSI48)	HSI48 oscillator power consumption	-	-	340 ⁽²⁾	380 ⁽²⁾	μA
N _T jitter	Next transition jitter Accumulated jitter on 28 cycles ⁽⁴⁾	-	-	+/-0.15 ⁽²⁾	-	ns
P _T jitter	Paired transition jitter Accumulated jitter on 56 cycles ⁽⁴⁾	-	-	+/-0.25 ⁽²⁾	-	ns

^{1.} V_{DD} = 3 V, TA = -40 to 125°C unless otherwise specified.

^{2.} Guaranteed by design.

^{3.} Guaranteed by characterization results.

^{4.} Jitter measurement are performed without clock source activated in parallel.

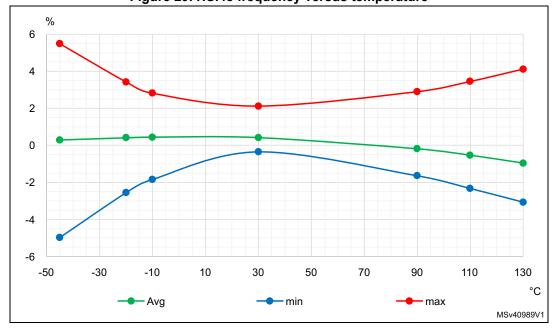


Figure 29. HSI48 frequency versus temperature

Low-speed internal (LSI) RC oscillator

Table 61. LSI oscillator characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSI}	LSI Frequency	V _{DD} = 3.0 V, T _A = 30 °C	31.04	-	32.96	kHz
		V_{DD} = 1.62 to 3.6 V, T_A = -40 to 125 °C	29.5	-	34	KI IZ
t _{SU} (LSI) ⁽²⁾	LSI oscillator start- up time	-	-	80	130	μs
t _{STAB} (LSI) ⁽²⁾	LSI oscillator stabilization time	5% of final frequency	-	125	180	μs
I _{DD} (LSI) ⁽²⁾	LSI oscillator power consumption	-	-	110	180	nA

^{1.} Guaranteed by characterization results.

6.3.9 PLL characteristics

The parameters given in *Table 62* are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 22: General operating conditions*.

Table 62. PLL, PLLSAI1, PLLSAI2 characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f	PLL input clock ⁽²⁾	-	4	-	16	MHz
^I PLL_IN	PLL input clock duty cycle	-	45	-	55	%

^{2.} Guaranteed by design.

200

300

520

260

380

650

μΑ

Conditions Min **Symbol Parameter** Тур Max Unit Voltage scaling Range 1 2.0645 80 PLL multiplier output clock P MHz f_{PLL P OUT} Voltage scaling Range 2 2.0645 26 Voltage scaling Range 1 8 80 PLL multiplier output clock Q MHz f_{PLL_Q_OUT} Voltage scaling Range 2 8 26 Voltage scaling Range 1 8 80 PLL multiplier output clock R MHz f_{PLL_R_OUT} Voltage scaling Range 2 8 26 Voltage scaling Range 1 64 344 MHz f_{VCO_OUT} PLL VCO output Voltage scaling Range 2 128 64 PLL lock time 15 40 t_{LOCK} μs RMS cycle-to-cycle jitter 40 System clock 80 MHz Jitter **±ps** RMS period jitter 30 VCO freq = 64 MHz 150 200

Table 62. PLL, PLLSAI1, PLLSAI2 characteristics⁽¹⁾ (continued)

 $V_{DD}^{(1)}$

I_{DD}(PLL)

VCO freg = 96 MHz

VCO freq = 192 MHz

VCO freq = 344 MHz

6.3.10 Flash memory characteristics

PLL power consumption on

Table 63. Flash memory characteristics⁽¹⁾

Symbol	Parameter	Conditions	Тур	Max	Unit	
t _{prog}	64-bit programming time	-	81.69	90.76	μs	
+	t _{prog_row} one row (32 double word) programming time	normal programming	2.61	2.90		
^t prog_row		fast programming	1.91	2.12		
+	t _{prog_page} one page (2 Kbyte) programming time	normal programming	20.91	23.24	ms	
^t prog_page		fast programming	15.29	16.98		
t _{ERASE}	Page (2 KB) erase time	-	22.02	24.47		
+	one bank (512 Kbyte)	normal programming	5.35	5.95		
^L prog_bank	programming time	fast programming	3.91	4.35	S	
t _{ME}	Mass erase time (one or two banks)	-	22.13	24.59	ms	

^{1.} Guaranteed by design.

Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared between the 3 PLLs.

Table 63. Flash memory characteristics⁽¹⁾ (continued)

Symbol	Parameter	Conditions	Тур	Max	Unit
I _{DD}	Average consumption from V _{DD}	Write mode	3.4	-	
		Erase mode	3.4	-	mA
	Maximum current (peak)	Write mode	7 (for 2 µs)	-	ША
		Erase mode	7 (for 41 μs)	-	

^{1.} Guaranteed by design.

Table 64. Flash memory endurance and data retention

Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit
N _{END}	Endurance	T _A = -40 to +105 °C	10	kcycles
	1 kcycle ⁽²⁾ at T _A = 85 °C	30		
	D. t t ii	1 kcycle ⁽²⁾ at T _A = 105 °C	15	
4		1 kcycle ⁽²⁾ at T _A = 125 °C	7	Vooro
t _{RET}	Data retention	10 kcycles ⁽²⁾ at T _A = 55 °C	30	Years
		10 kcycles ⁽²⁾ at T _A = 85 °C	15	
		10 kcycles ⁽²⁾ at T _A = 105 °C	10	

^{1.} Guaranteed by characterization results.

^{2.} Cycling performed over the whole temperature range.

6.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 65*. They are based on the EMS levels and classes defined in application note AN1709.

Level/ **Parameter Symbol Conditions** Class $V_{DD} = 3.3 \text{ V}, T_A = +25 ^{\circ}\text{C},$ Voltage limits to be applied on any I/O pin $f_{HCLK} = 80 \text{ MHz}.$ 2B V_{FESD} to induce a functional disturbance conforming to IEC 61000-4-2 Fast transient voltage burst limits to be $V_{DD} = 3.3 \text{ V}, T_A = +25 ^{\circ}\text{C},$ $f_{HCLK} = 80 MHz$, applied through 100 pF on V_{DD} and V_{SS} 5A V_{EFTB} pins to induce a functional disturbance conforming to IEC 61000-4-4

Table 65. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- · Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

DS11585 Rev 9 167/272

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Cumbal	Doromotor	Canditions	Monitored	Max vs. [f _{HSE} /f _{HCLK}]	l lmi4
Symbol Parameter		Conditions	frequency band	8 MHz / 80 MHz	Unit
			0.1 MHz to 30 MHz	3	
		V _{DD} = 3.6 V, T _A = 25 °C.	30 MHz to 130 MHz	-2	4DuV/
S_{EMI}	Peak level	BGA169 package	130 MHz to 1 GHz	0	dΒμV
		compliant with IEC 61967-2	1 GHz to 2 GHz	8	
			EMI Level	1.5	-

Table 66. EMI characteristics

6.3.12 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the ANSI/JEDEC standard.

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	T _A = +25 °C, conforming to ANSI/ESDA/JEDEC JS-001	2	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	T _A = +25 °C, conforming to ANSI/ESD STM5.3.1	C3	250	V

Table 67. ESD absolute maximum ratings

577

^{1.} Guaranteed by characterization results.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin.
- A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table 68. Electrical sensitivities

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	T _A = +105 °C conforming to JESD78A	II level A ⁽¹⁾

^{1.} Negative injection is limited to -30 mA for PF0, PF1, PG6, PG7, PG8, PG12, PG13, PG14.

6.3.13 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below $V_{\rm SS}$ or above $V_{\rm DDIOx}$ (for standard, 3.3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of the -5 μ A/+0 μ A range) or other functional failure (for example reset occurrence or oscillator frequency deviation).

The characterization results are given in *Table 69*.

Negative induced leakage current is caused by negative injection and positive induced leakage current is caused by positive injection.

Table 69. I/O current injection susceptibility⁽¹⁾

Symbol	Description		tional ptibility	Unit
Symbol	Description	Negative injection	Positive injection	Oilit
	Injected current on all pins except PA4, PA5, PB0, PF12, PF13, OPAMP1_V1NM, OPAMP2_V1NM	-5	NA ⁽²⁾	
I _{INJ}	Injected current on pins PB0, PF12, PF13	0	NA ⁽²⁾	mA
	Injected current on OPAMP1_V1NM, OPAMP2_V1NM	0	0	
	Injected current on PA4, PA5 pins	-5	0	

- 1. Guaranteed by characterization.
- 2. Injection is not possible

57/

DS11585 Rev 9 169/272

6.3.14 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 70* are derived from tests performed under the conditions summarized in *Table 22: General operating conditions*. All I/Os are designed as CMOS- and TTL-compliant (except BOOT0).

Table 70. I/O static characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	I/O input low level voltage except BOOT0	1.62 V <v<sub>DDIOx<3.6 V</v<sub>	-	-	0.3xV _{DDIOx} (2)	
V _{IL} ⁽¹⁾	I/O input low level voltage except BOOT0	1.62 V <v<sub>DDIOx<3.6 V</v<sub>	-	-	0.39xV _{DDIOx} - 0.06 ⁽³⁾	V
	I/O input low level voltage except BOOT0	1.08 V <v<sub>DDIOX<1.62 V</v<sub>	-	-	0.43xV _{DDIOx} - 0.1 ⁽³⁾	
	BOOT0 I/O input low level voltage	1.62 V <v<sub>DDIOx<3.6 V</v<sub>	-	-	0.17xV _{DDIOx} (3)	
	I/O input high level voltage except BOOT0	1.62 V <v<sub>DDIOx<3.6 V</v<sub>	0.7xV _{DDIOx} (2)	-	-	
V _{IH} ⁽¹⁾	I/O input high level voltage except BOOT0	1.62 V <v<sub>DDIOX<3.6 V</v<sub>	0.49xV _{DDIOX} + 0.26 ⁽³⁾	-	-	V
	I/O input high level voltage except BOOT0	1.08 V <v<sub>DDIOX<1.62 V</v<sub>	0.61xV _{DDIOX} + 0.05 ⁽³⁾	-	-	
	BOOT0 I/O input high level voltage	1.62 V <v<sub>DDIOx<3.6 V</v<sub>	0.77xV _{DDIOX} (3)	-	-	
(0)	TT_xx, FT_xxx and NRST I/O input hysteresis	1.62 V <v<sub>DDIOx<3.6 V</v<sub>	-	200	-	
$V_{hys}^{(3)}$	FT_sx	1.08 V <v<sub>DDIOx<1.62 V</v<sub>	-	150	-	mV
	BOOT0 I/O input hysteresis	1.62 V <v<sub>DDIOx<3.6 V</v<sub>	-	200	-	

Table 70. I/O static characteristics (continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		$V_{IN} \le Max(V_{DDXXX})^{(6)(7)}$	-	-	±100	
	FT_xx input leakage current ⁽³⁾⁽⁵⁾	$\begin{aligned} & Max(V_{DDXXX}) \leq V_{IN} \leq \\ & Max(V_{DDXXX}) + 1 \ V^{(6)(7)} \end{aligned}$	-	1	650	
		$Max(V_{DDXXX})+1 V < V_{IN} \le 5.5 V^{(6)(7)}$	-	-	200	
		$V_{IN} \le Max(V_{DDXXX})^{(6)(7)}$	-	-	±150	
l _{lkg} (4)	FT_lu, FT_u, PB2 and PC3 IO	$\begin{aligned} & Max(V_{DDXXX}) \leq V_{IN} \leq \\ & Max(V_{DDXXX}) + 1 \ V^{(6)(7)} \end{aligned}$	-	-	2500 ⁽³⁾	nA
ikg		$Max(V_{DDXXX})+1 V < V_{IN} \le 5.5 V^{(6)(7)}$	-	-	250	
	TT_xx input leakage	$V_{IN} \le Max(V_{DDXXX})^{(6)}$	-	-	±150	
	current	$Max(V_{DDXXX}) \le V_{IN} < 3.6 V^{(6)}$	-	-	2000 ⁽³⁾	
	OPAMPx_VINM (x=1,2) dedicated input leakage current (UFBGA132 only)	-	-	1	(8)	
R _{PU}	Weak pull-up equivalent resistor ⁽⁹⁾	V _{IN} = V _{SS}	25	40	55	kΩ
R _{PD}	Weak pull-down equivalent resistor ⁽⁹⁾	V _{IN} = V _{DDIOx}	25	40	55	kΩ
C _{IO}	I/O pin capacitance	-	-	5	-	pF

- 1. Refer to Figure 30: I/O input characteristics.
- 2. Guaranteed by test production.
- 3. Guaranteed by design.
- 4. This value represents the pad leakage of the IO itself. The total product pad leakage is provided by this formula: $I_{Total_Ileak_max} = 10 \ \mu A + [number of IOs where V_{IN} is applied on the pad] \times I_{lkg}(Max)$.
- 5. All FT_xx GPIOs except FT_lu, FT_u, PB2 and PC3.
- 6. $Max(V_{DDXXX})$ is the maximum value of all the I/O supplies.
- To sustain a voltage higher than Min(V_{DD}, V_{DDA}, V_{DDIO2}, V_{DDUSB}, V_{LCD}) +0.3 V, the internal Pull-up and Pull-Down resistors must be disabled.
- 8. Refer to I_{bias} in *Table 86: OPAMP characteristics* for the values of the OPAMP dedicated input leakage current.
- 9. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10% order).

All I/Os are CMOS- and TTL-compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in *Figure 30* for standard I/Os, and in *Figure 30* for 5 V tolerant I/Os.

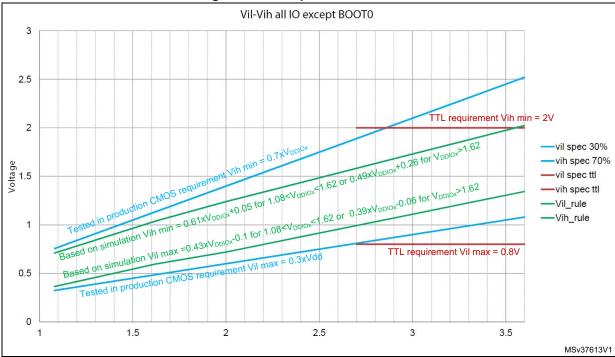


Figure 30. I/O input characteristics

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to ± 8 mA, and sink or source up to ± 20 mA (with a relaxed V_{OL}/V_{OH}).

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 6.2*:

- The sum of the currents sourced by all the I/Os on V_{DDIOX}, plus the maximum consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see *Table 19: Voltage characteristics*).
- The sum of the currents sunk by all the I/Os on V_{SS}, plus the maximum consumption of the MCU sunk on V_{SS}, cannot exceed the absolute maximum rating ΣI_{VSS} (see Table 19: Voltage characteristics).

577

Output voltage levels

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 22: General operating conditions*. All I/Os are CMOS- and TTL-compliant (FT OR TT unless otherwise specified).

Table 71. Output voltage characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL}	Output low level voltage for an I/O pin	CMOS port ⁽²⁾	-	0.4	
V _{OH}	Output high level voltage for an I/O pin	I _{IO} = 8 mA V _{DDIOx} ≥ 2.7 V	V _{DDIOx} -0.4	-	
V _{OL} ⁽³⁾	Output low level voltage for an I/O pin	TTL port ⁽²⁾	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	I _{IO} = 8 mA V _{DDIOx} ≥ 2.7 V	2.4	-	
V _{OL} ⁽³⁾	Output low level voltage for an I/O pin	I _{IO} = 20 mA	-	1.3	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	V _{DDIOx} ≥ 2.7 V	V _{DDIOx} -1.3	-	
V _{OL} ⁽³⁾	Output low level voltage for an I/O pin	I _{IO} = 4 mA	-	0.45	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	V _{DDIOx} ≥ 1.62 V	V _{DDIOx} -0.45	-	V
V _{OL} ⁽³⁾	Output low level voltage for an I/O pin	I _{IO} = 2 mA	-	0.35_xV_{DDIOx}	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	1.62 V ≥ V _{DDIOx} ≥ 1.08 V	0.65 _x V _{DDIOx}	-	
		I _{IO} = 20 mA V _{DDIOx} ≥ 2.7 V	-	0.4	
V _{OLFM+}	Output low level voltage for an FT I/O pin in FM+ mode (FT I/O with "f" option)	I _{IO} = 10 mA V _{DDIOx} ≥ 1.62 V	-	0.4	
	. ,	I _{IO} = 2 mA 1.62 V ≥ V _{DDIOx} ≥ 1.08 V	-	0.4	

The I_{IO} current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 19:
 Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always respect the absolute maximum ratings ΣI_{IO}.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 31* and *Table 72*, respectively.

Unless otherwise specified, the parameters given are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 22: General operating conditions*.

577

DS11585 Rev 9 173/272

^{2.} TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

^{3.} Guaranteed by design.

Table 72. I/O AC characteristics⁽¹⁾⁽²⁾

Speed	Symbol	Parameter	Conditions	Min	Max	Unit	
			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	5		
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	1		
	Emay	Fmax Maximum frequency	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	0.1	MHz	
	rillax	Maximum frequency	C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	10	IVITZ	
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	1.5		
00			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	0.1		
00			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	25		
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	52		
	Tr/Tf	Tr/Tf Output rise and fall time	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	140	ns	
	11711		C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	17	115	
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	37		
			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	110		
			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	25		
		Fmax Maximum frequency	C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	10		
	Fmax		C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	1	MHz	
	Fillax	iviaximum nequency	C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	50	IVII IZ	
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	15		
01			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	1		
01			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	9		
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	16		
	Tr/Tf	Output rice and fall time	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	40		
	11/11	Output rise and fall time	C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	4.5	- ns -	
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	9		
			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	21		

Table 72. I/O AC characteristics⁽¹⁾⁽²⁾ (continued)

Speed	Symbol	Parameter	Conditions	Min	Max	Unit	
			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	50		
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	25		
	Emay	Maximo um fra accomac	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	5	MHz	
	Fmax	Maximum frequency	C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	100 ⁽³⁾	IVI⊓∠	
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	37.5		
10			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	5		
10			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	5.8		
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	11		
	Tr/Tf	Output rise and fall time	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	28	20	
		TI/TI Output lise and fall time	C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	2.5	ns	
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	5		
			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	12		
		C=30 pF, 2.7 V≤V _{DDIOx} ≤3.6 V		-	120 ⁽³⁾		
			C=30 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	50		
		Maximum francisco	C=30 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	10		
	Fmax	Maximum frequency	C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	180 ⁽³⁾	MHz	
11			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	75		
			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	10		
			C=30 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	3.3		
	Tr/Tf	Output rise and fall time	C=30 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	6	ns	
			C=30 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	16		
- Fm I	Fmax	Maximum frequency	C-50 pF 16 \/s\/	-	1	MHz	
Fm+	Tf	Output fall time ⁽⁴⁾	C=50 pF, 1.6 V≤V _{DDIOx} ≤3.6 V	-	5	ns	

The I/O speed is configured using the OSPEEDRy[1:0] bits. The Fm+ mode is configured in the SYSCFG_CFGR1 register. Refer to the RM0351 reference manual for a description of GPIO Port configuration register.

^{2.} Guaranteed by design.

^{3.} This value represents the I/O capability but the maximum system frequency is limited to 80 MHz.

^{4.} The fall time is defined between 70% and 30% of the output waveform accordingly to I²C specification.

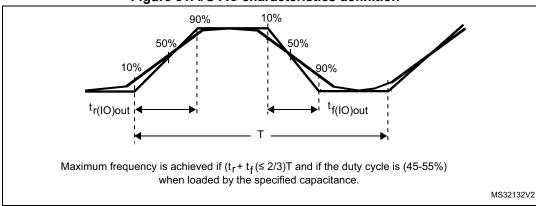


Figure 31. I/O AC characteristics definition⁽¹⁾

1. Refer to Table 72: I/O AC characteristics.

6.3.15 **NRST** pin characteristics

The NRST pin input driver uses the CMOS technology. It is connected to a permanent pullup resistor, R_{PU}.

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 22: General operating conditions.

Table 73. NRST pin characteristics⁽¹⁾ Conditions Min

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)}	NRST input low level voltage	-	-	-	0.3 _x V _{DDIOx}	V
V _{IH(NRST)}	NRST input high level voltage	-	0.7 _x V _{DDIOx}	-	-	V
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis	-	-	200	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	V _{IN} = V _{SS}	25	40	55	kΩ
V _{F(NRST)}	NRST input filtered pulse	-	-	-	70	ns
V _{NF(NRST)}	NRST input not filtered pulse	1.71 V ≤ V _{DD} ≤ 3.6 V	350	-	-	ns

Guaranteed by design.

DS11585 Rev 9 176/272

^{2.} The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order).

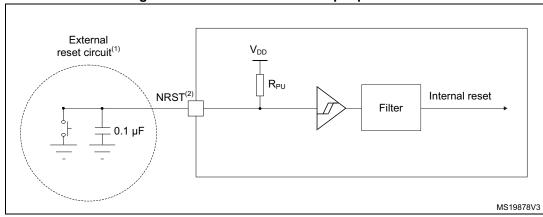


Figure 32. Recommended NRST pin protection

- 1. The reset network protects the device against parasitic resets.
- The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 73: NRST pin characteristics. Otherwise the reset will not be taken into account by the device.
- 3. The external capacitor on NRST must be placed as close as possible to the device.

6.3.16 Extended interrupt and event controller input (EXTI) characteristics

The pulse on the interrupt input must have a minimal length in order to guarantee that it is detected by the event controller.

Table 74. EXTI Input Characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
PLEC	Pulse length to event controller	-	20	-	-	ns

1. Guaranteed by design.

6.3.17 Analog switches booster

Table 75. Analog switches booster characteristics⁽¹⁾

Symbol	Parameter	Min	Тур	Max	Unit
V_{DD}	Supply voltage	1.62	-	3.6	V
t _{SU(BOOST)}	Booster startup time	-	-	240	μs
	Booster consumption for $1.62 \text{ V} \leq \text{V}_{DD} \leq 2.0 \text{ V}$	-	-	250	
I _{DD(BOOST)}	Booster consumption for $2.0 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}$	-	-	500	μΑ
	Booster consumption for $2.7 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}$	-	-	900	

1. Guaranteed by design.

577

DS11585 Rev 9 177/272

6.3.18 Analog-to-Digital converter characteristics

Unless otherwise specified, the parameters given in *Table 76* are preliminary values derived from tests performed under ambient temperature, f_{PCLK} frequency and V_{DDA} supply voltage conditions summarized in *Table 22: General operating conditions*.

Note: It is recommended to perform a calibration after each power-up.

Table 76. ADC characteristics^{(1) (2)}

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DDA}	Analog supply voltage	-	1.62	-	3.6	V
V	Positive reference voltage	V _{DDA} ≥ 2 V	2	-	V_{DDA}	V
V _{REF+}		V _{DDA} < 2 V	V_{DDA}			V
V _{REF-}	Negative reference voltage	-	V _{SSA}			V
f	ADC clock frequency	Range 1	0.14	-	80	- MHz
f _{ADC}		Range 2	0.14	-	26	
	Sampling rate for FAST channels	Resolution = 12 bits	-	-	5.33	- Msps
		Resolution = 10 bits	-	-	6.15	
		Resolution = 8 bits	-	-	7.27	
£		Resolution = 6 bits	-	-	8.88	
f _s	Sampling rate for SLOW channels	Resolution = 12 bits	-	-	4.21	
		Resolution = 10 bits	-	-	4.71	
		Resolution = 8 bits	-	-	5.33	
		Resolution = 6 bits	-	-	6.15	
f_{TRIG}	External trigger frequency	f _{ADC} = 80 MHz Resolution = 12 bits	-	-	5.33	MHz
		Resolution = 12 bits	-	-	15	1/f _{ADC}
V _{AIN} ⁽³⁾	Conversion voltage range(2)	-	0	-	V _{REF+}	V
R _{AIN}	External input impedance	-	-	-	50	kΩ
C _{ADC}	Internal sample and hold capacitor	-	-	5	-	pF
t _{STAB}	Power-up time	-	1		conversion cycle	
	Calibration time	f _{ADC} = 80 MHz	1.45			μs
t _{CAL}		-	116		1/f _{ADC}	
	Trigger conversion latency Regular and injected channels without conversion abort	CKMODE = 00	1.5	2	2.5	- 1/f _{ADC}
f .		CKMODE = 01	-	-	2.0	
t _{LATR}		CKMODE = 10	-	-	2.25	
		CKMODE = 11	-	-	2.125	

Table 76. ADC characteristics⁽¹⁾ (continued)

		(oontinuou)				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{LATRIN} J	Trigger conversion latency Injected channels aborting a regular conversion	CKMODE = 00	2.5	3	3.5	- 1/f _{ADC}
		CKMODE = 01	-	-	3.0	
		CKMODE = 10	-	-	3.25	
		CKMODE = 11	-	-	3.125	
t _s	Sampling time	f _{ADC} = 80 MHz	0.03125	-	8.00625	μs
		-	2.5	-	640.5	1/f _{ADC}
t _{ADCVREG_STUP}	ADC voltage regulator start-up time	-	-	-	20	μs
^t conv	Total conversion time (including sampling time)	f _{ADC} = 80 MHz Resolution = 12 bits	0.1875	-	8.1625	μs
		Resolution = 12 bits	ts + 12.5 cycles for successive approximation = 15 to 653			1/f _{ADC}
I _{DDA} (ADC)	ADC consumption from the V _{DDA} supply	fs = 5 Msps	-	730	830	μА
		fs = 1 Msps	-	160	220	
		fs = 10 ksps	-	16	50	
I _{DDV_S} (ADC)	ADC consumption from the V _{REF+} single ended mode	fs = 5 Msps	-	130	160	μА
		fs = 1 Msps	-	30	40	
		fs = 10 ksps	-	0.6	2	
I _{DDV_D} (ADC)	ADC consumption from the V _{REF+} differential mode	fs = 5 Msps	-	260	310	μА
		fs = 1 Msps	-	60	70	
		fs = 10 ksps	-	1.3	3	

^{1.} Guaranteed by design

The maximum value of RAIN can be found in Table 77: Maximum ADC RAIN.

^{2.} The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4V). It is disable when $V_{DDA} \ge 2.4$ V.

^{3.} V_{REF+} can be internally connected to V_{DDA} and V_{REF-} can be internally connected to V_{SSA}, depending on the package. Refer to Section 4: Pinouts and pin description for further details.

Table 77. Maximum ADC R_{AIN}⁽¹⁾⁽²⁾

Decelution	Sampling cycle	Sampling time [ns]	R _{AIN} max (Ω)			
Resolution	@80 MHz	@80 MHz	Fast channels ⁽³⁾	Slow channels ⁽⁴⁾		
	2.5	31.25	100	N/A		
	6.5	81.25	330	100		
	12.5	156.25	680	470		
12 hita	24.5	306.25	1500	1200		
12 bits	47.5	593.75	2200	1800		
	92.5	1156.25	4700	3900		
	247.5	3093.75	12000	10000		
	640.5	8006.75	39000	33000		
	2.5	31.25	120	N/A		
	6.5	81.25	390	180		
	12.5	156.25	820	560		
40 hita	24.5	306.25	1500	1200		
10 bits	47.5	593.75	2200	1800		
	92.5	1156.25	5600	4700		
	247.5	3093.75	12000	10000		
	640.5	8006.75	47000	39000		
	2.5	31.25	180	N/A		
	6.5	81.25	470	270		
	12.5	156.25	1000	680		
0 6:4-	24.5	306.25	1800	1500		
8 bits	47.5	593.75	2700	2200		
	92.5	1156.25	6800	5600		
	247.5	3093.75	15000	12000		
	640.5	8006.75	50000	50000		
	2.5	31.25	220	N/A		
	6.5	81.25	560	330		
	12.5	156.25	1200	1000		
6 hita	24.5	306.25	2700	2200		
6 bits	47.5	593.75	3900	3300		
	92.5	1156.25	8200	6800		
	247.5	3093.75	18000	15000		
	640.5	8006.75	50000	50000		

^{1.} Guaranteed by design.

- 2. The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4V). It is disable when $V_{DDA} \ge 2.4$ V.
- 3. Fast channels are: PC0, PC1, PC2, PC3, PA0.
- 4. Slow channels are: all ADC inputs except the fast channels.

DS11585 Rev 9 181/272

Table 78. ADC accuracy - limited test conditions 1⁽¹⁾⁽²⁾⁽³⁾

Sym- bol	Parameter	(Conditions ⁽⁴)	Min	Тур	Max	Unit
			Single	Fast channel (max speed)	-	4	5	
	Total		ended	Slow channel (max speed)	-	4	5	
ET	unadjusted error		Differential	Fast channel (max speed)	-	3.5	4.5	
			Differential	Slow channel (max speed)	-	3.5	4.5	
			Single	Fast channel (max speed)	-	1	2.5	
EO	Offset		ended	Slow channel (max speed)	-	1	2.5	
	error		Differential	Fast channel (max speed)	-	1.5	2.5	
			Dillerential	Slow channel (max speed)	-	1.5	2.5	
			Single	Fast channel (max speed)	-	2.5	4.5	
EG	Gain error		ended	Slow channel (max speed)	-	2.5	4.5	LSB
EG	Gain enoi		Differential	Fast channel (max speed)	-	2.5	3.5	LOD
			Dillerential	Slow channel (max speed)	-	2.5	3.5	
			Single	Fast channel (max speed)	-	1	1.5	
ED	Differential	ended	Slow channel (max speed)	-	1	1.5		
ED linearity error	ADC clock frequency ≤	Differential -	Fast channel (max speed)	-	1	1.2		
		80 MHz, Sampling rate ≤ 5.33 Msps,	Dillerential	Slow channel (max speed)	-	1	1.2	
		$V_{DDA} = VREF + = 3 V,$	Single	Fast channel (max speed)	-	1.5	2.5	
EL	Integral	TA = 25 °C	ended	Slow channel (max speed)	-	1.5	2.5	
	linearity error		Differential	Fast channel (max speed)	-	1	2	
			Dillerential	Slow channel (max speed)	-	1	2	
			Single	Fast channel (max speed)	10.4	10.5	-	
ENOB	Effective number of		ended	Slow channel (max speed)	10.4	10.5	-	bits
LINOB	bits		Differential	Fast channel (max speed)	10.8	10.9	-	טונס
			Dillerential	Slow channel (max speed)	10.8	10.9	-	
	Cianal to		Single	Fast channel (max speed)	64.4	65	-	
SINAD	Signal-to- noise and		ended	Slow channel (max speed)	64.4	65	-	
SINAD	distortion		Differential	Fast channel (max speed)	66.8	67.4	-	
	ratio	Dillerential	Slow channel (max speed)	66.8	67.4	ı	٩D	
		Single	Fast channel (max speed)	65	66	-	dB	
SNR	Signal-to-	en	_ I	Slow channel (max speed)	65	66	-	
SINK	noise ratio	0	Differential	Fast channel (max speed)	67	68	-	
			Dillerential	Slow channel (max speed)	67	68	-	

Table 78. ADC accuracy - limited test conditions $1^{(1)(2)(3)}$ (continued)

Sym- bol	Parameter	C	Conditions ⁽⁴⁾							
		ADC clock frequency ≤	Single	Fast channel (max speed)	-	-74	-73			
THD h	Total harmonic	80 MHz, Sampling rate ≤ 5.33 Msps,	ended	Slow channel (max speed)	-	-74	-73	dB		
	distortion	tion \\/ = \\/ = 3 \/	Differential -	Fast channel (max speed)	-	-79	-76	uБ		
		TA = 25 °C	Dillerential	Slow channel (max speed)	-	-79	-76			

- 1. Guaranteed by design.
- 2. ADC DC accuracy values are measured after internal calibration.
- ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
 significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
 Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
- 4. The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4 V). It is disable when $V_{DDA} \ge 2.4$ V. No oversampling.

DS11585 Rev 9 183/272

Table 79. ADC accuracy - limited test conditions $2^{(1)(2)(3)}$

Sym- bol	Parameter		Conditions ⁽⁴)	Min	Тур	Max	Unit
			Single	Fast channel (max speed)	-	4	6.5	
	Total		ended	Slow channel (max speed)	-	4	6.5	
ET	unadjusted error		Differential	Fast channel (max speed)	-	3.5	5.5	
			Differential	Slow channel (max speed)	-	3.5	5.5	
			Single	Fast channel (max speed)	-	1	4.5	
EO	Offset		ended	Slow channel (max speed)	-	1	5	
	error		Differential	Fast channel (max speed)	-	1.5	3	
			Dillerential	Slow channel (max speed)	-	1.5	3	
			Single	Fast channel (max speed)	-	2.5	6	
EG	Gain error		ended	Slow channel (max speed)	-	2.5	6	LSB
EG	Gairrenoi		Differential	Fast channel (max speed)	-	2.5	3.5	LOD
			Dillerential	Slow channel (max speed)	-	2.5	3.5	
			Single	Fast channel (max speed)	-	1	1.5	
ED	Differential		ended	Slow channel (max speed)	-	1	1.5	
ED linearity error	ADC clock frequency ≤	Differential	Fast channel (max speed)	-	1	1.2		
		80 MHz,	Dillerential	Slow channel (max speed)	-	1	1.2	
		Sampling rate ≤ 5.33 Msps,	Single	Fast channel (max speed)	-	1.5	3.5	
EL	Integral	2 V ≤ V _{DDA}	ended	Slow channel (max speed)	-	1.5	3.5	
	linearity error		Differential	Fast channel (max speed)	-	1	3	
			Dillerential	Slow channel (max speed)	-	1	2.5	
			Single	Fast channel (max speed)	10	10.5	-	
ENOB	Effective number of		ended	Slow channel (max speed)	10	10.5	-	bits
LINOB	bits		Differential	Fast channel (max speed)	10.7	10.9	-	טונס
			Dillerential	Slow channel (max speed)	10.7	10.9	-	
	Cianal to		Single	Fast channel (max speed)	62	65	-	
SINAD	Signal-to- noise and		ended	Slow channel (max speed)	62	65	-	
SINAD	distortion		Differential	Fast channel (max speed)	66	67.4	-	
	ratio	Dillerential	Slow channel (max speed)	66	67.4	-	٩D	
		Single	Fast channel (max speed)	64	66	1	dB	
SNR	Signal-to-	l en	Olligic	Slow channel (max speed)	64	66	-	
SINK	noise ratio	0	Differential	Fast channel (max speed)	66.5	68	1	
	Differentia	Dilletetilial	Slow channel (max speed)	66.5	68	-		

Table 79. ADC accuracy - limited test conditions $2^{(1)(2)(3)}$ (continued)

Sym- bol	Parameter	C	Conditions ⁽⁴⁾						
THD		ADC clock frequency ≤	Single	Fast channel (max speed)	-	-74	-65		
	Total	80 MHz,	ended	Slow channel (max speed)	-	-74	-67	dB	
	astortion	ion Sampling rate ≤ 5.33 Msps,	Differential	Fast channel (max speed)	-	-79	-70	иь	
		2 V ≤ V _{DDA} Differe		Slow channel (max speed)	-	-79	-71		

- 1. Guaranteed by design.
- 2. ADC DC accuracy values are measured after internal calibration.
- ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
 significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
 Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
- 4. The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4 V). It is disable when $V_{DDA} \ge 2.4$ V. No oversampling.

DS11585 Rev 9 185/272

Table 80. ADC accuracy - limited test conditions 3⁽¹⁾⁽²⁾⁽³⁾

Sym- bol	Parameter	(Conditions ⁽⁴⁾					
			Single	Fast channel (max speed)	-	5.5	7.5	
ET	Total		ended	Slow channel (max speed)	-	4.5	6.5	
	unadjusted error		Differential	Fast channel (max speed)	-	4.5	7.5	
			Dillerential	Slow channel (max speed)	-	4.5	5.5	
			Single	Fast channel (max speed)	-	2	5	
EO	Offset		ended	Slow channel (max speed)	-	2.5	5	
	error		Differential	Fast channel (max speed)	-	2	3.5	
			Dillerential	Slow channel (max speed)	-	2.5	3	
			Single	Fast channel (max speed)	-	4.5	7	
EG	Gain error		ended	Slow channel (max speed)	-	3.5	6	LSB
EG	Gain enoi		Differential	Fast channel (max speed)	-	3.5	4	LOD
			Dillerential	Slow channel (max speed)	-	3.5	5	
			Single	Fast channel (max speed)	-	1.2	1.5	
Differential linearity		ended	Slow channel (max speed)	-	1.2	1.5		
	ED linearity error	ADC clock frequency ≤ 80 MHz,	Differential	Fast channel (max speed)	-	1	1.2	
	enor	Sampling rate ≤ 5.33 Msps,	Dillerential	Slow channel (max speed)	-	1	1.2	
		$1.65 \text{ V} \le \text{V}_{\text{DDA}} = \text{V}_{\text{REF+}} \le 3.6 \text{ V},$	Single	Fast channel (max speed)	-	3	3.5	
EL	Integral linearity	Voltage scaling Range 1	ended	Slow channel (max speed)	-	2.5	3.5	
LL	error		Differential	Fast channel (max speed)	-	2	2.5	
			Dillerential	Slow channel (max speed)	-	2	2.5	
			Single	Fast channel (max speed)	10	10.4	•	
ENOB	Effective number of		ended	Slow channel (max speed)	10	10.4	ı	bits
LINOB	bits		Differential	Fast channel (max speed)	10.6	10.7	ı	Dita
			Dilicicida	Slow channel (max speed)	10.6	10.7	ı	
	Signal-to-		Single	Fast channel (max speed)	62	64	•	
SINAD	noise and		ended	Slow channel (max speed)	62	64	ı	
SINAD	distortion		Differential	Fast channel (max speed)	65	66	-	
	ratio		Dillerential	Slow channel (max speed)	65	66	-	dB
			Single	Fast channel (max speed)	63	65	-	ub
SNR	Signal-to-	en	ended	Slow channel (max speed)	63	65	-	
CIVIX	noise ratio		Differential	Fast channel (max speed)	66	67	-	
		Differential	Slow channel (max speed)	66	67	-		

Table 80. ADC accuracy - limited test conditions $3^{(1)(2)(3)}$ (continued)

Sym- bol	Parameter	C	Conditions ⁽⁴⁾							
		ADC clock frequency ≤	Single	Fast channel (max speed)	-	-69	-67			
	Total	80 MHz, Sampling rate ≤ 5.33 Msps,	ended	Slow channel (max speed)	1	-71	-67			
THD	harmonic distortion	irmonic 1.65 \/ < \/ < \/		Fast channel (max speed)	-	-72	-71	dB		
	distortion	3.6 V, Voltage scaling Range 1	Differential	Slow channel (max speed)	-	-72	-71			

- 1. Guaranteed by design.
- 2. ADC DC accuracy values are measured after internal calibration.
- ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
 significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
 Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
- 4. The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4 V). It is disable when $V_{DDA} \ge 2.4$ V. No oversampling.

DS11585 Rev 9 187/272

Table 81. ADC accuracy - limited test conditions 4⁽¹⁾⁽²⁾⁽³⁾

Sym- bol	Parameter		Conditions ⁽⁴)	Min	Тур	Max	Unit
			Single	Fast channel (max speed)	-	5	5.4	
	Total		ended	Slow channel (max speed)	-	4	5	
ET	unadjusted error		Differential	Fast channel (max speed)	-	4	5	
			Differential	Slow channel (max speed)	-	3.5	4.5	
			Single	Fast channel (max speed)	-	2	4	
EO	Offset		ended	Slow channel (max speed)	-	2	4	
EU	error		Differential	Fast channel (max speed)	-	2	3.5	
			Dillerential	Slow channel (max speed)	-	2	3.5	
			Single	Fast channel (max speed)	-	4	4.5	
EG	Gain error		ended	Slow channel (max speed)	-	4	4.5	LSB
EG	Gain enoi		Differential	Fast channel (max speed)	-	3	4	LOD
			Dillerential	Slow channel (max speed)	-	3	4	
			Single	Fast channel (max speed)	-	1	1.5	
ED	Differential ED linearity		ended	Slow channel (max speed)	-	1	1.5	
	ED linearity error	ADC clock frequency ≤	Differential	Fast channel (max speed)	-	1	1.2	
	EITOI	26 MHz, -1.65 V ≤ V _{DDA} = VREF+ ≤	Dillerential	Slow channel (max speed)	-	1	1.2	
		3.6 V,	Single	Fast channel (max speed)	-	2.5	3	
EL	Integral linearity	Voltage scaling Range 2	ended	Slow channel (max speed)	-	2.5	3	
LL	error		Differential	Fast channel (max speed)	-	2	2.5	
			Dillerential	Slow channel (max speed)	-	2	2.5	
			Single	Fast channel (max speed)	10.2	10.5	-	
ENOB	Effective number of		ended	Slow channel (max speed)	10.2	10.5	ı	bits
LINOD	bits		Differential	Fast channel (max speed)	10.6	10.7	1	Dita
			Dilicicitiai	Slow channel (max speed)	10.6	10.7	ı	
	Signal-to-		Single	Fast channel (max speed)	63	65	ı	
SINAD	noise and		ended	Slow channel (max speed)	63	65	ı	
SINAD	SINAD distortion ratio		Differential	Fast channel (max speed)	65	66	1	
	ratio		Dillerential	Slow channel (max speed)	65	66	ı	dB
		Single	Fast channel (max speed)	64	65	-	ub	
SNR	Signal-to-	enc	ended	Slow channel (max speed)	64	65	-	
OINIX	noise ratio	0	Differential	Fast channel (max speed)	66	67	-	
			Dillorential	Slow channel (max speed)	66	67	-	

Table 81. ADC accuracy - limited test conditions $4^{(1)(2)(3)}$ (continued)

Sym- bol	Parameter	C	Conditions ⁽⁴⁾							
		ADC clock frequency ≤	Single	Fast channel (max speed)	-	-71	-69			
THD	Total harmonic	26 MHz,	ended	Slow channel (max speed)	-	-71	-69	dB		
	distortion	tortion 36V	Differential	Fast channel (max speed)	-	-73	-72	uБ		
		Voltage scaling Range 2	Differential	Slow channel (max speed)	-	-73	-72			

- 1. Guaranteed by design.
- 2. ADC DC accuracy values are measured after internal calibration.
- ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
 significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
 Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
- 4. The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4 V). It is disable when $V_{DDA} \ge 2.4$ V. No oversampling.

DS11585 Rev 9 189/272

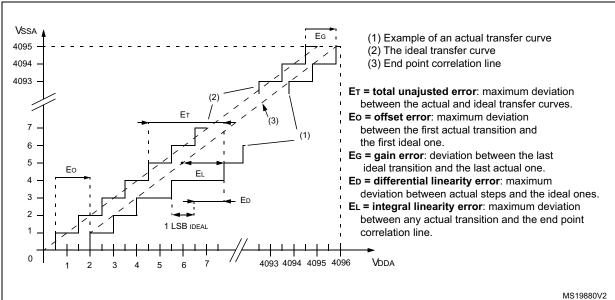
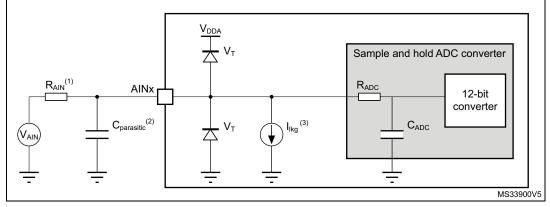



Figure 33. ADC accuracy characteristics

- Refer to Table 76: ADC characteristics for the values of R_{AIN} and C_{ADC}.
- $C_{parasitic}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (refer to *Table 70: I/O static characteristics* for the value of the pad capacitance). A high $C_{parasitic}$ value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.
- 3. Refer to Table 70: I/O static characteristics for the values of I_{lkq}.

General PCB design guidelines

Downloaded from Arrow.com.

Power supply decoupling should be performed as shown in Figure 20: Power supply scheme. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip.

DS11585 Rev 9 190/272

6.3.19 Digital-to-Analog converter characteristics

Table 82. DAC characteristics⁽¹⁾

Symbol	Parameter	Co	onditions	Min	Тур	Max	Unit
V_{DDA}	Analog supply voltage for DAC ON		ffer OFF (no resistive _OUTx pin or internal	1.71	-	3.6	
		Other modes		1.80	-		
V _{REF+}	Positive reference voltage		ffer OFF (no resistive _OUTx pin or internal	1.71	-	V _{DDA}	V
		Other modes		1.80	-		
V _{REF-}	Negative reference voltage		-		V_{SSA}		
	Resistive load	DAC output	connected to V _{SSA}	5	-	-	kΩ
R_L	Resistive load	buffer ON	connected to V _{DDA}	25	-	-	K22
R_{O}	Output Impedance	DAC output bu	ffer OFF	9.6	11.7	13.8	kΩ
Б	Output impedance sample	V _{DD} = 2.7 V		-	-	2	1.0
R_{BON}	and hold mode, output buffer ON	V _{DD} = 2.0 V		-	-	3.5	kΩ
_	Output impedance sample	V _{DD} = 2.7 V		-	-	16.5	
R_{BOFF}	and hold mode, output buffer OFF	V _{DD} = 2.0 V		-	-	18.0	kΩ
C _L	Consolting load	DAC output bu	ffer ON	-	-	50	pF
C _{SH}	Capacitive load	Sample and ho	old mode	-	0.1	1	μF
V _{DAC_OUT}	Voltage on DAC1_OUTx output	DAC output bu	ffer ON	0.2	-	V _{REF+} - 0.2	V
	Output	DAC output bu	ffer OFF	0	-	V _{REF+}	
			±0.5 LSB	-	1.7	3	
	Settling time (full scale: for a 12-bit code transition	Normal mode DAC output	±1 LSB	-	1.6	2.9	
	between the lowest and the	buffer ON	±2 LSB	-	1.55	2.85	
t _{SETTLING}	highest input codes when DAC1_OUTx reaches final	CL ≤ 50 pF, RL ≥ 5 kΩ	±4 LSB	-	1.48	2.8	μs
	value ±0.5LSB, ±1 LSB,		±8 LSB	-	1.4	2.75	
	±2 LSB, ±4 LSB, ±8 LSB)	Normal mode I OFF, ±1LSB, C	DAC output buffer CL = 10 pF	-	2	2.5	
. (2)	Wakeup time from off state (setting the ENx bit in the	Normal mode I CL ≤ 50 pF, RL	DAC output buffer ON . ≥ 5 kΩ	-	4.2	7.5	
t _{WAKEUP} ⁽²⁾	DAC Control register) until final value ±1 LSB	Normal mode I OFF, CL ≤ 10 p	DAC output buffer oF	-	2	5	μs
PSRR	V _{DDA} supply rejection ratio	Normal mode I CL ≤ 50 pF, RL	DAC output buffer ON $_{-}$ = 5 kΩ, DC	-	-80	-28	dB

DS11585 Rev 9 191/272

Table 82. DAC characteristics⁽¹⁾ (continued)

Symbol	Parameter	Co	onditions	Min	Тур	Max	Unit
T _{W_to_W}	Minimal time between two consecutive writes into the DAC_DORx register to guarantee a correct DAC1_OUTx for a small variation of the input code (1 LSB) DAC_MCR:MODEx[2:0] = 000 or 001 DAC_MCR:MODEx[2:0] = 010 or 011	CL ≤ 50 pF, RL CL ≤ 10 pF	. ≥ 5 kΩ	1	-	-	μs
		DAC1_OUTx	DAC output buffer ON, C _{SH} = 100 nF	-	0.7	3.5	me
	Sampling time in sample and hold mode (code transition between the	pin connected	DAC output buffer OFF, C _{SH} = 100 nF	-	10.5	18	ms
^t SAMP	lowest input code and the highest input code when DAC1_OUTx reaches final value ±1LSB)	DAC1_OUTx pin not connected (internal connection only)	DAC output buffer OFF	-	2	3.5	μs
I _{leak}	Output leakage current	Sample and ho DAC1_OUTx p		-	-	_(3)	nA
Cl _{int}	Internal sample and hold capacitor		-	5.2	7	8.8	pF
t _{TRIM}	Middle code offset trim time	DAC output bu	ffer ON	50	-	-	μs
V	Middle code offset for 1 trim	V _{REF+} = 3.6 V		-	1500	-	μV
V _{offset}	code step	V _{REF+} = 1.8 V		-	750	-	μν
		DAC output	No load, middle code (0x800)	-	315	500	
		buffer ON	No load, worst code (0xF1C)	-	450	670	
I _{DDA} (DAC)	DAC consumption from V _{DDA}	DAC output buffer OFF	No load, middle code (0x800)	-	-	0.2	μΑ
		Sample and ho	old mode, C _{SH} =	-	315 x Ton/(Ton +Toff) (4)	670 x Ton/(Ton +Toff) (4)	

Symbol	Parameter	DAC output buffer ON No load, middle code (0x800) No load, worst code (0xF1C) DAC output No load, middle		Min	Тур	Max	Unit
		DAC output	· ·	-	185	240	
		(0xF1C)	-	340	400		
			-	155	205		
I _{DDV} (DAC)	DAC consumption from V _{REF+}		Sample and hold mode, buffer ON, C _{SH} = 100 nF, worst case		185 _x Ton/(Ton +Toff) (4)	400 x Ton/(Ton +Toff) (4)	μА
		Sample and ho C _{SH} = 100 nF,	old mode, buffer OFF, worst case	-	155 _x Ton/(Ton +Toff) (4)	205 _x Ton/(Ton +Toff) (4)	

Table 82. DAC characteristics⁽¹⁾ (continued)

- 1. Guaranteed by design.
- 2. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).
- 3. Refer to Table 70: I/O static characteristics.
- 4. Ton is the Refresh phase duration. Toff is the Hold phase duration. Refer to RM0351 reference manual for more details.

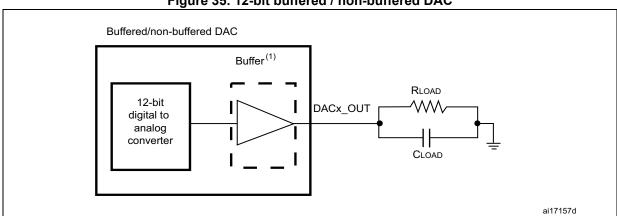


Figure 35. 12-bit buffered / non-buffered DAC

 The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

Table 83. DAC accuracy⁽¹⁾

Symbol	Parameter	Conditio	ns	Min	Тур	Max	Unit
DNII	Differential non	DAC output buffer ON		-	-	±2	
DNL	linearity (2)	DAC output buffer OFF		-	-	±2	
-	monotonicity	10 bits		,	guarantee	d	
INL	Integral non	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ		-	-	±4	
IINL	linearity ⁽³⁾	DAC output buffer OFF CL ≤ 50 pF, no RL		-	-	±4	
		DAC output buffer ON	V _{REF+} = 3.6 V	-	-	±12	1 OD
Offset	Offset error at code 0x800 ⁽³⁾	CL ≤ 50 pF, RL ≥ 5 kΩ	V _{REF+} = 1.8 V	-	-	±25	LSB
		DAC output buffer OFF CL ≤ 50 pF, no RL		-	-	±8	
Offset1	Offset error at code 0x001 ⁽⁴⁾	DAC output buffer OFF CL ≤ 50 pF, no RL		-	-	±5	
OffsetCal	Offset Error at	DAC output buffer ON	V _{REF+} = 3.6 V	-	-	±5	
OlisetGal	after calibration	CL ≤ 50 pF, RL ≥ 5 kΩ	V _{REF+} = 1.8 V	-	-	±7	
Coin	Gain error ⁽⁵⁾	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ		-	-	±0.5	%
Gain	Gain enor	DAC output buffer OFF CL ≤ 50 pF, no RL		-	-	±0.5	70
TUE	Total unadjusted	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ		-	-	±30	LSB
TOE	error	DAC output buffer OFF CL ≤ 50 pF, no RL		-	-	±12	LOD
TUECal	Total unadjusted error after calibration	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ		-	-	±23	LSB
SNR	Signal-to-noise	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ 1 kHz, BW 500 kHz		-	71.2	-	٩D
SINK	ratio	DAC output buffer OFF CL ≤ 50 pF, no RL, 1 kHz BW 500 kHz	:	-	71.6	-	dΒ
THD	Total harmonic	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ, 1	kHz	-	-78	-	dB
טווו	distortion	DAC output buffer OFF CL ≤ 50 pF, no RL, 1 kHz		-	-79	-	ub

Table 83. DAC accuracy⁽¹⁾ (continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Signal-to-noise SINAD and distortion ratio	Signal-to-noise	DAC output buffer ON CL \leq 50 pF, RL \geq 5 k Ω , 1 kHz	-	70.4	-	dB
		DAC output buffer OFF CL ≤ 50 pF, no RL, 1 kHz	-	71	-	ив
ENOD	Effective	DAC output buffer ON CL \leq 50 pF, RL \geq 5 k Ω , 1 kHz	-	11.4	-	bits
ENOB number of bits	DAC output buffer OFF CL ≤ 50 pF, no RL, 1 kHz	-	11.5	-	DILS	

- 1. Guaranteed by design.
- 2. Difference between two consecutive codes 1 LSB.
- 3. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095.
- 4. Difference between the value measured at Code (0x001) and the ideal value.
- Difference between ideal slope of the transfer function and measured slope computed from code 0x000 and 0xFFF when buffer is OFF, and from code giving 0.2 V and (V_{REF+} – 0.2) V when buffer is ON.

DS11585 Rev 9 195/272

6.3.20 Voltage reference buffer characteristics

Table 84. VREFBUF characteristics⁽¹⁾

Symbol	Parameter	Condition	ons	Min	Тур	Max	Unit	
		Normal made	V _{RS} = 0	2.4	-	3.6		
	Analog supply	Normal mode	V _{RS} = 1	2.8	-	3.6		
V_{DDA}	voltage	De ave de d ve e de (2)	V _{RS} = 0	1.65	-	2.4		
		Degraded mode ⁽²⁾	V _{RS} = 1	1.65	-	2.8	V	
		Normal made	V _{RS} = 0	2.046 ⁽³⁾	2.048	2.049 ⁽³⁾	V	
V _{REFBUF} _	Voltage reference	Normal mode	V _{RS} = 1	2.498 ⁽³⁾	2.5	2.502 ⁽³⁾		
OUT	output	Degraded mode ⁽²⁾	V _{RS} = 0	V _{DDA} -150 mV	-	V_{DDA}		
		Degraded mode.	V _{RS} = 1	V _{DDA} -150 mV	-	V_{DDA}		
TRIM	Trim step resolution			-	±0.05	±0.1	%	
CL	Load capacitor	-	-	0.5	1	1.5	μF	
esr	Equivalent Serial Resistor of Cload	-	-	-	-	2	Ω	
I _{load}	Static load current	-	-	-	-	4	mA	
_	l Line very detion	Line regulation	2.8 V ≤ V _{DDA} ≤ 3.6 V	I _{load} = 500 μA	-	200	1000	nnm/\/
I _{line_reg}	Line regulation	2.6 V \(\times \text{V}_{\text{DDA}} \(\times \text{3.0 V} \)	I _{load} = 4 mA	-	100	500	ppm/V	
I _{load_reg}	Load regulation	500 μA ≤ I _{load} ≤4 mA	Normal mode	-	50	500	ppm/mA	
т	Temperature	-40 °C < TJ < +125 °C		-	-	T _{coeff} _ vrefint +	ppm/ °C	
T _{Coeff}	coefficient	0 °C < TJ < +50 °C		-	- Vre		ррпи С	
PSRR	Power supply	DC		40	60	-	dB	
FORK	rejection	100 kHz		25	40	-	uБ	
		$CL = 0.5 \mu F^{(4)}$		-	300	350		
t _{START}	Start-up time	$CL = 1.1 \mu F^{(4)}$		-	500	650	μs	
	$CL = 1.5 \mu F^{(4)}$			-	650	800		
I _{INRUSH}	Control of maximum DC current drive on VREFBUF_ OUT during start-up phase (5)	-	-	-	8	-	mA	

Table 84. VREFBUF characteristics⁽¹⁾ (continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{DDA} (VREF consum	VREFBUF	I _{load} = 0 μA	-	16	25	
	consumption	I _{load} = 500 μA	-	18	30	μA
		I _{load} = 4 mA	-	35	50	

- 1. Guaranteed by design, unless otherwise specified.
- In degraded mode, the voltage reference buffer can not maintain accurately the output voltage which will follow (V_{DDA} drop voltage).
- 3. Guaranteed by test in production.
- 4. The capacitive load must include a 100 nF capacitor in order to cut-off the high frequency noise.
- 5. To correctly control the VREFBUF inrush current during start-up phase and scaling change, the V_{DDA} voltage should be in the range [2.4 V to 3.6 V] and [2.8 V to 3.6 V] respectively for V_{RS} = 0 and V_{RS} = 1.

DS11585 Rev 9 197/272

6.3.21 Comparator characteristics

Table 85. COMP characteristics⁽¹⁾

Symbol	Parameter	Co	onditions	Min	Тур	Max	Unit
V_{DDA}	Analog supply voltage		-	1.62	-	3.6	
V _{IN}	Comparator input voltage range		-	0	-	V_{DDA}	V
V _{BG} ⁽²⁾	Scaler input voltage		-		V _{REFINT}		1
V _{SC}	Scaler offset voltage		-	-	±5	±10	mV
I _{DDA} (SCALER)	Scaler static consumption B	BRG_EN=0 (br	BRG_EN=0 (bridge disable)		200	300	nA
IDDA(OCALLIN)	from V _{DDA}	BRG_EN=1 (br	ridge enable)	-	8.0	1	μΑ
t _{START_SCALER}	Scaler startup time		-	-	100	200	μs
		High-speed	V _{DDA} ≥ 2.7 V	-	-	5	
	Comparator startup time to	mode	V _{DDA} < 2.7 V	-	-	7	μs
t _{START}	reach propagation delay	Medium mode	V _{DDA} ≥ 2.7 V	-	-	15	
	specification		V _{DDA} < 2.7 V	-	-	25	
		Ultra-low-powe	r mode	-	-	80	
		High-speed	V _{DDA} ≥ 2.7 V	-	55	80	
	Propagation delay for	mode	V _{DDA} < 2.7 V	-	65	100	ns
t _D ⁽³⁾	200 mV step	Madium mada	V _{DDA} ≥ 2.7 V	-	0.55	0.9	μs
	with 100 mV overdrive	Medium mode	V _{DDA} < 2.7 V	-	0.65	1	
		Ultra-low-powe	r mode	-	5	12	
V _{offset}	Comparator offset error	Full common mode range	-	-	±5	±20	mV
		No hysteresis		-	0	-	
	0	Low hysteresis		-	8	-	mV
V _{hys}	Comparator hysteresis	Medium hysteresis		-	15	-	
		High hysteresis	High hysteresis		27	-	

I_{bias}

nΑ

Symbol Conditions Min Unit **Parameter** Тур Max 400 Static 600 -Ultra-low-With 50 kHz nΑ power mode ±100 mV overdrive 1200 square signal Static 5 7 -Comparator consumption With 50 kHz $I_{DDA}(COMP)$ Medium mode from V_{DDA} ±100 mV overdrive 6 square signal μΑ Static 70 100 High-speed With 50 kHz mode ±100 mV overdrive 75 square signal Comparator input bias _(4)

Table 85. COMP characteristics⁽¹⁾ (continued)

current

6.3.22 Operational amplifiers characteristics

Table 86. OPAMP characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V _{DDA}	Analog supply voltage	-	1.8	-	3.6	V	
CMIR	Common mode input range	-	0	-	V_{DDA}	V	
VI	Input offset	25 °C, No Load on output.	-	-	±1.5	mV	
VI _{OFFSET}	voltage	All voltage/Temp.	-	-	±3	IIIV	
A3./I	Input offset	Normal mode	-	±5	-	μV/°C	
ΔVI _{OFFSET}	voltage drift	Low-power mode	-	±10	-	μννο	
TRIMOFFSETP TRIMLPOFFSETP	Offset trim step at low common input voltage (0.1 x V _{DDA})	-	-	0.8	1.1	mV	
TRIMOFFSETN TRIMLPOFFSETN	Offset trim step at high common input voltage (0.9 x V _{DDA})	-	-	1	1.35	IIIV	

57/

DS11585 Rev 9 199/272

^{1.} Guaranteed by design, unless otherwise specified.

^{2.} Refer to Table 25: Embedded internal voltage reference.

^{3.} Guaranteed by characterization results.

^{4.} Mostly I/O leakage when used in analog mode. Refer to I_{lkg} parameter in *Table 70: I/O static characteristics*.

Table 86. OPAMP characteristics⁽¹⁾ (continued)

Symbol	Parameter	Con	ditions	Min	Тур	Max	Unit	
	Daine	Normal mode	V >0V	-	-	500		
I _{LOAD}	Drive current	Low-power mode	-V _{DDA} ≥2V	-	-	100		
	Drive current in	Normal mode	V > 0.V	-	-	450	μA	
I _{LOAD_} PGA	PGA mode	Low-power mode	- V _{DDA} ≥ 2 V	-	-	50		
R _{LOAD}	Resistive load (connected to	Normal mode	V _{DDA} < 2 V	4	-	-		
NLOAD	VSSA or to VDDA)	Low-power mode	VDDA 12 V	20	-	-	kΩ	
P	Resistive load in PGA mode (connected to	Normal mode	- V _{DDA} < 2 V	4.5	ı	ı		
R _{LOAD_PGA}	VSSA or to V _{DDA})	Low-power mode		40	-	-		
C _{LOAD}	Capacitive load		-	-	ı	50	pF	
CMRR	Common mode	Normal mode	rmal mode		-85	ı	dB	
OWINT	rejection ratio	Low-power mode		-	-90	ı	uБ	
PSRR	Power supply rejection ratio	Normal mode	$C_{LOAD} \le 50 \text{ pf},$ $R_{LOAD} \ge 4 \text{ k}\Omega \text{ DC}$	70	85	ı	dB	
1 OKK		tion ratio Low-power mode $C_{LOAD} \le 50 \text{ pf},$ $R_{LOAD} \ge 20 \text{ k}\Omega \text{ DC}$	72	90	-			
		Normal mode	V _{DDA} ≥ 2.4 V	550	1600	2200	- kHz	
GBW	Gain Bandwidth	Low-power mode	(OPA_RANGE = 1)	100	420	600		
GBVV	Product	Normal mode	V _{DDA} < 2.4 V	250	700	950		
		Low-power mode	(OPA_RANGE = 0)	40	180	280		
	Slew rate	Normal mode	- V _{DDA} ≥ 2.4 V	-	700	-		
SR ⁽²⁾	(from 10 and	Low-power mode	V _{DDA} = 2.4 V	-	180	-	V/ms	
JIV.	90% of output voltage)	Normal mode	V < 2.4.V	-	300	-	V/IIIS	
	voitage)	Low-power mode	- V _{DDA} < 2.4 V	-	80	-		
AO	Open loop gain	Normal mode		55	110	-	dB	
AO	Open loop gain	Low-power mode		45	110	-	uБ	
V _{OHSAT} ⁽²⁾	High saturation	Normal mode	I _{load} = max or R _{load} =	V _{DDA} - 100	-	-		
VOHSAT	voltage	Low-power mode	min Input at V _{DDA} .	V _{DDA} - 50	ı	ı	mV	
V (2)	Low saturation	Normal mode	I _{load} = max or R _{load} =	-	-	100	-	
V _{OLSAT} ⁽²⁾	voltage	Low-power mode	min Input at 0.	-	-	50		
	Normal mode		-	74	-	0		
Φ_{m}	Phase margin	Low-power mode		-	66	-		

Table 86. OPAMP characteristics⁽¹⁾ (continued)

Symbol	Parameter	Con	ditions	Min	Тур	Max	Unit
CM	Cain magnetic	Normal mode		-	13	-	40
GM	Gain margin	Low-power mode		-	20	-	dB
	Wake up time from OFF state.	Normal mode	$C_{LOAD} \le 50 \text{ pf},$ $R_{LOAD} \ge 4 \text{ k}\Omega$ follower configuration	-	5	10	
^t WAKEUP		Low-power mode	$\begin{array}{c c} C_{LOAD} \leq 50 \text{ pf,} \\ R_{LOAD} \geq 20 \text{ k}\Omega \\ \text{follower} \\ \text{configuration} \end{array} \text{-}$	10	30	- μs	
		General purpose in except UFBGA132	put (all packages and UFBGA169 only)	-	-	(3)	
	OPAMP input		T _J ≤ 75 °C	-	-	1	
I _{bias}	bias current	Dedicated input	T _J ≤ 85 °C	-	-	3	nA
		(UFBGA132 and UFBGA169 only)	T _J ≤ 105 °C	-	-	8	
			T _J ≤ 125 °C	-	-	15	
				-	2	-	
PGA gain ⁽²⁾	Non inverting gain value			-	4	-	
PGA gain 7			-	-	8	-	
				-	16	-	
		PGA Gain = 2		-	80/80	-	
	R2/R1 internal	PGA Gain = 4		ı	120/ 40	-	
R _{network}	resistance values in PGA mode ⁽⁴⁾	PGA Gain = 8		-	140/ 20	-	kΩ/kΩ
		PGA Gain = 16		-	150/ 10	-	
Delta R	Resistance variation (R1 or R2)		-	-15	-	15	%
PGA gain error	PGA gain error		-	-1	-	1	%
		Gain = 2	-	-	GBW/ 2	-	
DCA BW	PGA bandwidth for different non inverting gain	Gain = 4	-	-	GBW/ 4	-	MI-
PGA BW		Gain = 8	-	-	GBW/ 8	-	- MHz
		Gain = 16	-	-	GBW/ 16	-	

Table 86. OPAMP characteristics⁽¹⁾ (continued)

Symbol	Parameter	Con	Min	Тур	Max	Unit	
en	Voltage noise density	Normal mode	at 1 kHz, Output loaded with 4 kΩ	-	500	-	
		Low-power mode	at 1 kHz, Output loaded with 20 kΩ	-	600	-	nV/√Hz
		Normal mode	at 10 kHz, Output loaded with 4 kΩ	-	180	-	110/ 1112
		Low-power mode	at 10 kHz, Output loaded with 20 kΩ	-	290	-	
I _{DDA} (OPAMP) ⁽²⁾	OPAMP	Normal mode	no Load, quiescent	-	120	260	
	consumption from V _{DDA}	Low-power mode	mada	-	45	100	μΑ

- 1. Guaranteed by design, unless otherwise specified.
- 2. Guaranteed by characterization results.
- 3. Mostly I/O leakage, when used in analog mode. Refer to I_{lkg} parameter in *Table 70: I/O static characteristics*.
- 4. R2 is the internal resistance between OPAMP output and OPAMP inverting input. R1 is the internal resistance between OPAMP inverting input and ground. The PGA gain =1+R2/R1

6.3.23 Temperature sensor characteristics

Table 87. TS characteristics

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{TS} linearity with temperature	-	±1	±2	°C
Avg_Slope ⁽²⁾	Average slope	2.3	2.5	2.7	mV/°C
V ₃₀	Voltage at 30°C (±5 °C) ⁽³⁾	0.742	0.76	0.785	V
t _{START} (TS_BUF) ⁽¹⁾	Sensor Buffer Start-up time in continuous mode ⁽⁴⁾	-	8	15	μs
t _{START} (1)	Start-up time when entering in continuous mode ⁽⁴⁾	-	70	120	μs
t _{S_temp} ⁽¹⁾	ADC sampling time when reading the temperature	5	-	-	μs
I _{DD} (TS) ⁽¹⁾	Temperature sensor consumption from V_{DD} , when selected by ADC	-	4.7	7	μΑ

^{1.} Guaranteed by design.

6.3.24 V_{BAT} monitoring characteristics

Table 88. V_{BAT} monitoring characteristics

Symbol	Parameter	Min	Тур	Max	Unit
R	Resistor bridge for V _{BAT}	-	39	-	kΩ
Q	Ratio on V _{BAT} measurement	-	3	-	-
Er ⁽¹⁾	Error on Q	-10	-	10	%
t _{S_vbat} ⁽¹⁾	ADC sampling time when reading the VBAT	12	-	-	μs

^{1.} Guaranteed by design.

Table 89. V_{BAT} charging characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
	Battery	VBRS = 0	-	5	-	kΩ	
R _{BC}	charging resistor	VBRS = 1	-	1.5	-		

^{2.} Guaranteed by characterization results.

Measured at V_{DDA} = 3.0 V ±10 mV. The V₃₀ ADC conversion result is stored in the TS_CAL1 byte. Refer to Table 8: Temperature sensor calibration values.

^{4.} Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes.

6.3.25 LCD controller characteristics

The devices embed a built-in step-up converter to provide a constant LCD reference voltage independently from the V_{DD} voltage. An external capacitor C_{ext} must be connected to the VLCD pin to decouple this converter.

Table 90. LCD controller characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{LCD}	LCD external voltage		-	-	3.6	
V _{LCD0}	LCD internal reference volta	ge 0	-	2.62	-	
V _{LCD1}	LCD internal reference voltage 1			2.76	-	
V _{LCD2}	LCD internal reference volta	ge 2	-	2.89	-	
V _{LCD3}	LCD internal reference volta	ge 3	-	3.04	-	V
V _{LCD4}	LCD internal reference volta	ge 4	-	3.19	-	
V _{LCD5}	LCD internal reference volta	ge 5	-	3.32	-	
V _{LCD6}	LCD internal reference volta	LCD internal reference voltage 6		3.46	-	
V _{LCD7}	LCD internal reference volta	ge 7	-	3.62	-	
	V system of conscitones	Buffer OFF (BUFEN=0 is LCD_CR register)	0.2	-	2	μF
C _{ext}	V _{LCD} external capacitance	Buffer ON (BUFEN=1 is LCD_CR register)	1	-	2	μ'
(2)	Supply current from V _{DD} at V _{DD} = 2.2 V	Buffer OFF (BUFEN=0 is LCD_CR register)	-	3	-	
I _{LCD} ⁽²⁾	Supply current from V _{DD} at V _{DD} = 3.0 V	Buffer OFF (BUFEN=0 is LCD_CR register)	-	1.5	-	μA
		Buffer OFF (BUFFEN = 0, PON = 0)	-	0.5	-	
	Supply current from V _{LCD}	Buffer ON (BUFFEN = 1, 1/2 Bias)	-	0.6	-	
lvlcd	(V _{LCD} = 3 V)	Buffer ON (BUFFEN = 1, 1/3 Bias)	-	0.8	-	μA
		Buffer ON (BUFFEN = 1, 1/4 Bias)	-	1	-	
R _{HN}	Total High Resistor value for Low drive resistive network			5.5	-	ΜΩ
R _{LN}	Total Low Resistor value for	High drive resistive network	-	240	-	kΩ

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V ₄₄	Segment/Common highest le	evel voltage	-	V_{LCD}	-	
V ₃₄	Segment/Common 3/4 level voltage		-	3/4 V _{LCD}	-	
V ₂₃	Segment/Common 2/3 level	voltage	-	2/3 V _{LCD}	-	
V ₁₂	Segment/Common 1/2 level	voltage	-	1/2 V _{LCD}	-	V
V ₁₃	Segment/Common 1/3 level	Segment/Common 1/3 level voltage		1/3 V _{LCD}	-	
V ₁₄	Segment/Common 1/4 level voltage		-	1/4 V _{LCD}	-	
V ₀	Segment/Common lowest le	vel voltage	-	0	-	

Table 90. LCD controller characteristics⁽¹⁾ (continued)

6.3.26 DFSDM characteristics

Unless otherwise specified, the parameters given in *Table 91* for DFSDM are derived from tests performed under the ambient temperature, f_{APB2} frequency and V_{DD} supply voltage conditions summarized in *Table 22: General operating conditions*.

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 x VDD

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (DFSDM1_CKINy, DFSDM1_DATINy, DFSDM1_CKOUT for DFSDM).

Table 91. DFSDM characteristics⁽¹⁾

Symbol	Parameter Conditions		Min	Тур	Max	Unit
f _{DFSDMCLK}	DFSDM clock	-	-	-	f _{SYSCLK}	
f _{CKIN} (1/T _{CKIN})	Input clock frequency	SPI mode (SITP[1:0] = 01)	1	1	20 (f _{DFSDMCLK} /4)	MHz
f _{CKOUT}	Output clock frequency	-	-	-	20	MHz
DuCy _{CKOUT}	Output clock frequency duty cycle	-	45	50	55	%

^{1.} Guaranteed by design.

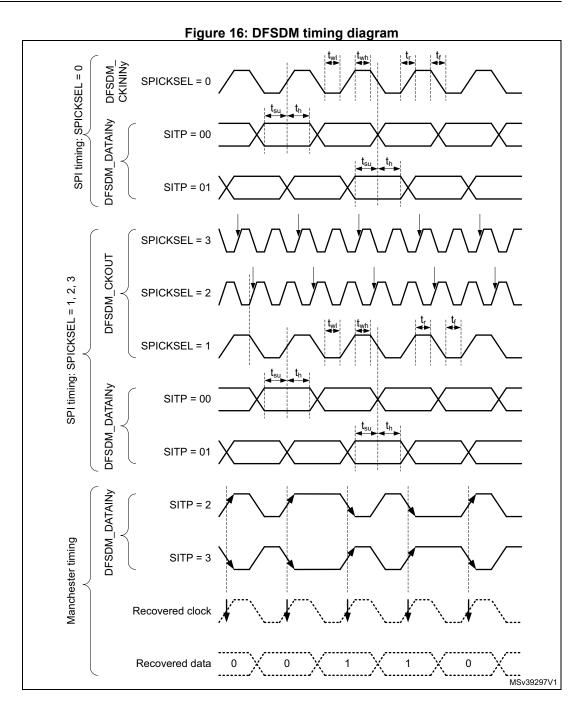

^{2.} LCD enabled with 3 V internal step-up active, 1/8 duty, 1/4 bias, division ratio= 64, all pixels active, no LCD connected.

Table 91. DFSDM characteristics⁽¹⁾ (continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{wh(CKIN)} t _{wl(CKIN)}	Input clock high and low time	SPI mode (SITP[1:0] = 01), External clock mode (SPICKSEL[1:0] = 0)	T _{CKIN} /2-0.5	T _{CKIN} /2	-	
t _{su}	Data input setup time	SPI mode (SITP[1:0]=01), External clock mode (SPICKSEL[1:0] = 0)	2	-	-	
t _h	Data input hold time	SPI mode (SITP[1:0]=01), External clock mode (SPICKSEL[1:0] = 0)	0	-	-	ns
T _{Manchester}	Manchester data period (recovered clock period)	Manchester mode (SITP[1:0] = 10 or 11), Internal clock mode (SPICKSEL[1:0] ≠ 0)	(CKOUT DIV+1) x T _{DFSDMCLK}	-	(2 x CKOUTDIV) x T _{DFSDMCLK}	

^{1.} Data based on characterization results, not tested in production.

6.3.27 Timer characteristics

The parameters given in the following tables are guaranteed by design.

Refer to *Section 6.3.14: I/O port characteristics* for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

577

DS11585 Rev 9 207/272

Table 92. TIMx⁽¹⁾ characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
t	Timer resolution time	-	1	-	t _{TIMxCLK}
t _{res(TIM)}	Timer resolution time	f _{TIMxCLK} = 80 MHz	12.5	-	ns
f	Timer external clock	-	0	f _{TIMxCLK} /2	MHz
f _{EXT}	frequency on CH1 to CH4	f _{TIMxCLK} = 80 MHz	0	40	MHz
Res _{TIM}	Timer resolution	TIMx (except TIM2 and TIM5)	-	16	bit
		TIM2 and TIM5	-	32	
+	16-bit counter clock	-	1	65536	t _{TIMxCLK}
tCOUNTER	period	f _{TIMxCLK} = 80 MHz	0.0125	819.2	μs
t	Maximum possible count	-	-	65536 × 65536	t _{TIMxCLK}
^t MAX_COUNT	with 32-bit counter	f _{TIMxCLK} = 80 MHz	-	53.68	s

^{1.} TIMx is used as a general term in which x stands for 1,2,3,4,5,6,7,8,15,16 or 17.

Table 93. IWDG min/max timeout period at 32 kHz (LSI)⁽¹⁾

Prescaler divider	PR[2:0] bits	Min timeout RL[11:0]= 0x000	Max timeout RL[11:0]= 0xFFF	Unit
/4	0	0.125	512	
/8	1	0.250	1024	
/16	2	0.500	2048	
/32	3	1.0	4096	ms
/64	4	2.0	8192	
/128	5	4.0	16384	
/256	6 or 7	8.0	32768	

The exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.

Table 94. WWDG min/max timeout value at 80 MHz (PCLK)

Prescaler	WDGTB	Min timeout value	Max timeout value	Unit
1	0	0.0512	3.2768	
2	1	0.1024	6.5536	me
4	2	0.2048	13.1072	ms
8	3	0.4096	26.2144	

6.3.28 Communication interfaces characteristics

I²C interface characteristics

The I2C interface meets the timings requirements of the I²C-bus specification and user manual rev. 03 for:

- Standard-mode (Sm): with a bit rate up to 100 kbit/s
- Fast-mode (Fm): with a bit rate up to 400 kbit/s
- Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.

The I2C timings requirements are guaranteed by design when the I2C peripheral is properly configured (refer to RM0351 reference manual).

The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DDIOx} is disabled, but is still present. Only FT_f I/O pins support Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O port characteristics for the I2C I/Os characteristics.

All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics:

Table 95. I2C analog filter characteristics⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{AF}	Maximum pulse width of spikes that are suppressed by the analog filter	50 ⁽²⁾	260 ⁽³⁾	ns

- 1. Guaranteed by design.
- 2. Spikes with widths below $t_{\mathsf{AF}(\mathsf{min})}$ are filtered.
- 3. Spikes with widths above $t_{\text{AF}(\text{max})}$ are not filtered

SPI characteristics

Unless otherwise specified, the parameters given in *Table 96* for SPI are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and supply voltage conditions summarized in *Table 22: General operating conditions*.

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 x V_{DD}

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI).

Table 96. SPI characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Master mode receiver/full duplex 2.7 V < V _{DD} < 3.6 V Voltage Range 1			40	
		Master mode receiver/full duplex 1.71 V < V _{DD} < 3.6 V Voltage Range 1			16	
		Master mode transmitter 1.71 V < V _{DD} < 3.6 V Voltage Range 1			40	
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Slave mode receiver 1.71 V < V _{DD} < 3.6 V Voltage Range 1	-	-	40	MHz
		Slave mode transmitter/full duplex 2.7 V < V _{DD} < 3.6 V Voltage Range 1			31 ⁽²⁾	
		Slave mode transmitter/full duplex 1.71 V < V _{DD} < 3.6 V Voltage Range 1			18.5 ⁽²⁾	
		Voltage Range 2			13	
		1.08 V < V _{DDIO2} < 1.32 V ⁽³⁾			8	
t _{su(NSS)}	NSS setup time	Slave mode, SPI prescaler = 2	4 _x T _{PCLK}	-	-	ns
t _{h(NSS)}	NSS hold time	Slave mode, SPI prescaler = 2	2 _x T _{PCLK}	-	-	ns
$\begin{array}{c} t_{w(\text{SCKH})} \\ t_{w(\text{SCKL})} \end{array}$	SCK high and low time	Master mode	T _{PCLK} -2	T _{PCLK}	T _{PCLK} +2	ns
t _{su(MI)}	Data input setup time	Master mode	1	-	-	no
t _{su(SI)}	Data input setup time	Slave mode	1.5	-	-	ns
t _{h(MI)}	Data input hold time	Master mode	5	-	-	no
t _{h(SI)}	Data input hold time	Slave mode	1.5	ı	_	ns
t _{a(SO)}	Data output access time	Slave mode	9	-	34	ns
t _{dis(SO)}	Data output disable time	Slave mode	9	-	16	ns

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Data output valid time	Slave mode 2.7 V < V _{DD} < 3.6 V Voltage Range 1	-	13	15.5	
t _{v(SO)}		Slave mode 1.71 V < V _{DD} < 3.6 V Voltage Range 1	-	13	26.5	
		Slave mode 1.71 V < V _{DD} < 3.6 V Voltage Range 2	-	13	30	ns
-		Slave mode 1.08 V < V _{DDIO2} < 1.32 V ⁽³⁾	-	26	60	
t _{v(MO)}		Master mode	-	4.5	6	
t _{h(SO)}	Data output hold time	Slave mode 1.71 V < V _{DD} < 3.6 V	7	i	ı	
t _{h(MO)}	Data Gatpat Hold time	Master mode	0	-	-	

Table 96. SPI characteristics⁽¹⁾ (continued)

3. SPI mapped on Port G.

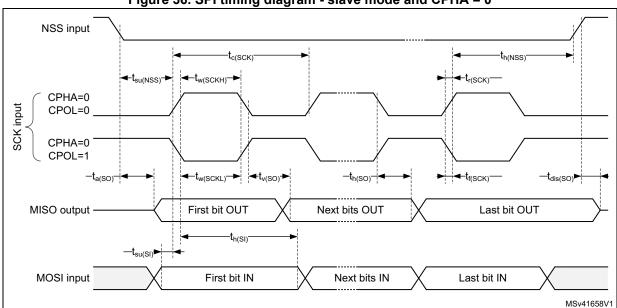


Figure 36. SPI timing diagram - slave mode and CPHA = 0

^{1.} Guaranteed by characterization results.

Maximum frequency in Slave transmitter mode is determined by the sum of t_{v(SO)} and t_{su(MI)} which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having t_{su(MI)} = 0 while Duty(SCK) = 50 %.

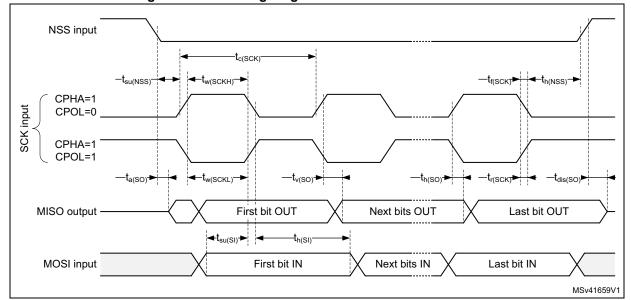


Figure 37. SPI timing diagram - slave mode and CPHA = 1

1. Measurement points are done at CMOS levels: 0.3 $\rm V_{DD}$ and 0.7 $\rm V_{DD}$.

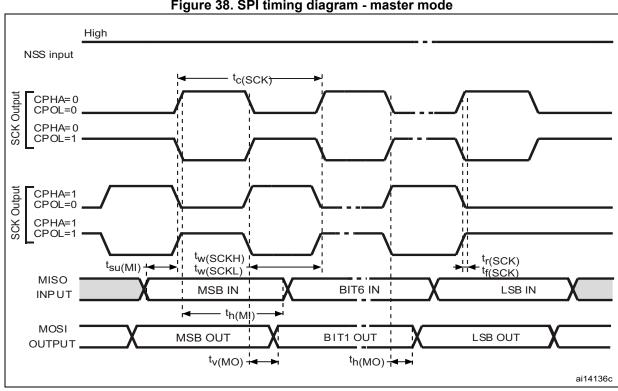


Figure 38. SPI timing diagram - master mode

1. Measurement points are done at CMOS levels: 0.3 $\rm V_{DD}$ and 0.7 $\rm V_{DD}$.

Quad SPI characteristics

Unless otherwise specified, the parameters given in *Table 97* and *Table 98* for Quad SPI are derived from tests performed under the ambient temperature, f_{AHB} frequency and V_{DD} supply voltage conditions summarized in *Table 22: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 15 or 20 pF
- Measurement points are done at CMOS levels: 0.5 x V_{DD}

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics.

Table 97. Quad SPI characteristics in SDR mode⁽¹⁾

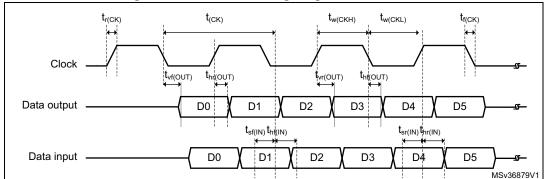
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		1.71 V < V _{DD} < 3.6 V, C _{LOAD} = 20 pF Voltage Range 1	-	-	40	
F _{CK}	Quad SPI clock	1.71 V < V _{DD} < 3.6 V, C _{LOAD} = 15 pF Voltage Range 1	-	-	48	MHz
1/t _(CK)	frequency	2.7 V < V _{DD} < 3.6 V, C _{LOAD} = 15 pF Voltage Range 1	-	-	60	IVIIIZ
		1.71 V < V _{DD} < 3.6 V C _{LOAD} = 20 pF Voltage Range 2	-	-	26	
t _{w(CKH)}	Quad SPI clock high and	f = 48 MHz presc=0	t _(CK) /2	ı	t _(CK) /2+1	
t _{w(CKL)}	low time	f _{AHBCLK} = 48 MHz, presc=0	t _(CK) /2-1	-	t _(CK) /2	
+	Data input setup time	Voltage Range 1	1.5	-	-	
t _{s(IN)}	Data input setup time	Voltage Range 2	3.5	-	-	
+	Data input hold time	Voltage Range 1	4	-	-	ns
t _{h(IN)}	Data input noid time	Voltage Range 2	6.5	-	-	115
	t _{v(OUT)} Data output valid time	Voltage Range 1	-	1	1.5	
v(OUT)		Voltage Range 2	-	3	5	
+	Data output hold time	Voltage Range 1	0	-	-	
t _{h(OUT)}	Data output hold time	Voltage Range 2	0	-	-	

^{1.} Guaranteed by characterization results.

DS11585 Rev 9 213/272

Table 98. QUADSPI characteristics in DDR mode⁽¹⁾

Symbol	Parameter	Conditio	ns	Min	Тур	Max	Unit
		1.71 V < V_{DD} < 3.6 V, C_{LOAD} = 20 pF Voltage Range 1		-	-	40	
F _{CK} 1/t _(CK)	Quad SPI clock	$2 \text{ V} < \text{V}_{\text{DD}} < 3.6 \text{ V},$ $\text{C}_{\text{LOAD}} = 20 \text{ pF}$ Voltage Range 1		-	-	48	MHz
	frequency	1.71 V < V _{DD} < 3.6 C _{LOAD} = 15 pF Voltage Range 1	V,	-	-	48	IVITZ
		1.71 V < V _{DD} < 3.6 C _{LOAD} = 20 pF Voltage Range 2	V	-	-	26	
t _{w(CKH)}	Quad SPI clock high	f _{AHBCLK} = 48 MHz,	presc= 1	t _(CK) /2	-	t _(CK) /2+1	
t _{w(CKL)}	and low time	TAHBCLK - 40 WIT12,	presc- i	t _(CK) /2-1	-	t _(CK) /2	
$t_{sf(IN)};t_{sr(IN)}$	Data input setup time	Voltage Range 1 a	nd O	3.5	-	-	
$t_{hf(IN)}$; $t_{hr(IN)}$	Data input hold time	Vollage Kange Ta	nu z	6.5	-	-	
		Voltage Range 1	DHHC = 0		4.5	5.5	
$t_{\text{vr}(\text{OUT})}$	Data output valid time on rise edge	Voltage (Vallge)	DHHC = 1	-	t _(CK) /2+1	t _(CK) /2+1.5	
	-	Voltage Range 2			9.5	14	
		Voltage Range 1	DHHC = 0		5	6	ns
$t_{vf(OUT)}$	Data output valid time on falling edge	Voltage Range 1	DHHC = 1	-	t _(CK) /2+1	t _(CK) /2+1.5	115
		Voltage Range 2			15	18	
		Voltage Bange 1	DHHC = 0	4	-	-	
t _{hr(OUT)}	Data output hold time on rise edge	Voltage Range 1	DHHC = 1	t _(CK) /2+0.5	-	-	
		Voltage Range 2		8	-	-	
		Voltage Pange 1	DHHC = 0	3.5	-	-	
$t_{\sf hf(OUT)}$	Data output hold time on falling edge	ta output hold time Voltage Range 1		t _(CK) /2+0.5	-	-	
	3 - 3 -	Voltage Range 2		13		-	


^{1.} Guaranteed by characterization results.

 $t_{\mathsf{r}(\mathsf{CK})}$ $t_{(CK)}$ $t_{\text{w}(\text{CKH})}$ $t_{\text{w}(\text{CKL})}$ $t_{\text{f}(\text{CK})}$ Clock t_{v(OUT)} $t_{h(OUT)} \\ \longleftrightarrow$ Data output D0 D1 D2 $t_{s(IN)}$ $t_{h(\text{IN})} \\$ Data input D0 D1 D2 MSv36878V1

Figure 39. Quad SPI timing diagram - SDR mode

DS11585 Rev 9 215/272

SAI characteristics

Unless otherwise specified, the parameters given in *Table 99* for SAI are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 22: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 x V_{DD}

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CK,SD,FS).

Table 99. SAI characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit	
f _{MCLK}	SAI Main clock output	-	-	50	MHz	
		Master transmitter $2.7 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}$ Voltage Range 1	2.7 V ≤ V _{DD} ≤ 3.6 V	-	21.5	
		Master transmitter 1.71 V ≤ V _{DD} ≤ 3.6 V Voltage Range 1	-	13.5		
		Master receiver Voltage Range 1	-	25		
f _{CK}	SAI clock frequency ⁽²⁾	Slave transmitter 2.7 V \leq V _{DD} \leq 3.6 V Voltage Range 1	-	20	MHz	
		Slave transmitter 1.71 V \leq V _{DD} \leq 3.6 V Voltage Range 1	- 13.5	13.5		
		Slave receiver Voltage Range 1	-	25		
		Voltage Range 2	-	13		
		1.08 V ≤ V _{DD} ≤ 1.32 V	-	7		
+	FS valid time	Master mode 2.7 V ≤ V _{DD} ≤ 3.6 V	-	22	ns	
$t_{V(FS)}$	r 3 valid time	Master mode 1.71 V \leq V _{DD} \leq 3.6 V	-	40	113	
t _{h(FS)}	FS hold time	Master mode	10	-	ns	
t _{su(FS)}	FS setup time	Slave mode	1	-	ns	
t _{h(FS)}	FS hold time	Slave mode	2	-	ns	
t _{su(SD_A_MR)}	Data input setup time	Master receiver	1	-	ns	
t _{su(SD_B_SR)}	Data input setup tillie	Slave receiver	1	-	113	
t _{h(SD_A_MR)}	Data input hold time	Master receiver	5	-	ns	
t _{h(SD_B_SR)}	Data input noid time	Slave receiver	2	-	113	

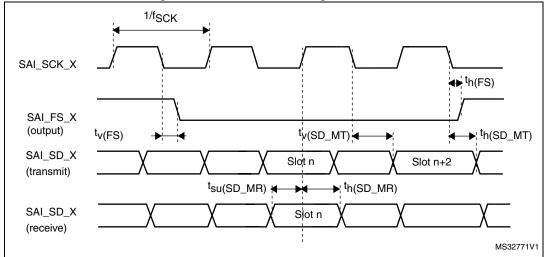


Table 99. SAI characteristics ⁽¹⁾ (continued)
--	------------

Symbol	Parameter	Conditions	Min	Max	Unit
		Slave transmitter (after enable edge) 2.7 V \leq V _{DD} \leq 3.6 V	-	25	
t _{v(SD_B_ST)}	Data output valid time	Slave transmitter (after enable edge) 1.71 V \leq V _{DD} \leq 3.6 V	-	36	ns
		Slave transmitter (after enable edge) 1.8 V < V _{DD} <1.32 V	-	68	
t _{h(SD_B_ST)}	Data output hold time	Slave transmitter (after enable edge)	10	-	ns
4	Data output valid timo	Master transmitter (after enable edge) 2.7 V \leq V _{DD} \leq 3.6 V	-	23	
t _v (SD_A_MT)	Data output valid time	Master transmitter (after enable edge) 1.71 V \leq V _{DD} \leq 3.6 V	-	35	ns
		Master transmitter (after enable edge) 1.08 V \leq V _{DD} \leq 1.32 V	-	70	
t _{h(SD_A_MT)}	Data output hold time	Master transmitter (after enable edge)	10	-	ns

- 1. Guaranteed by characterization results.
- 2. APB clock frequency must be at least twice SAI clock frequency.

Figure 41. SAI master timing waveforms

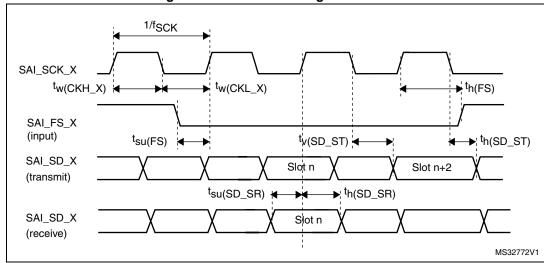


Figure 42. SAI slave timing waveforms

SDMMC characteristics

Unless otherwise specified, the parameters given in *Table 100* for SDIO are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 22: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 x V_{DD}

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output characteristics.

Table 100. SD / MMC dynamic characteristics, V_{DD} =2.7 V to 3.6 $V^{(1)}$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
f _{PP}	Clock frequency in data transfer mode	-	0	-	50	MHz			
-	SDIO_CK/fPCLK2 frequency ratio	-	-	-	4/3	-			
t _{W(CKL)}	Clock low time	f _{PP} = 50 MHz	8	10	-	ns			
t _{W(CKH)}	Clock high time	f _{PP} = 50 MHz	8	10	-	ns			
CMD, D input	ts (referenced to CK) in MMC and SD H	S mode							
t _{ISU}	Input setup time HS	f _{PP} = 50 MHz	2.5	-	-	ns			
t _{IH}	Input hold time HS	f _{PP} = 50 MHz	2.5	-	-	ns			
CMD, D outp	uts (referenced to CK) in MMC and SD	HS mode							
t _{OV}	Output valid time HS	f _{PP} = 50 MHz	-	12	13	ns			
t _{OH}	Output hold time HS	f _{PP} = 50 MHz	10	-	-	ns			
CMD, D input	CMD, D inputs (referenced to CK) in SD default mode								
t _{ISUD}	Input setup time SD	f _{PP} = 25 MHz	3.5	-	-	ns			
t _{IHD}	Input hold time SD	f _{PP} = 25 MHz	3.5	-	-	ns			

Table 100. SD / MMC dynamic characteristics, V_{DD} =2.7 V to 3.6 $V^{(1)}$ (continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
CMD, D outputs (referenced to CK) in SD default mode							
t _{OVD}	Output valid default time SD	f _{PP} = 25 MHz	-	3	5	ns	
t _{OHD}	Output hold default time SD	f _{PP} = 25 MHz	0	-	-	ns	

^{1.} Guaranteed by characterization results.

Table 101. eMMC dynamic characteristics, V_{DD} = 1.71 V to 1.9 $V^{(1)(2)}$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{PP}	Clock frequency in data transfer mode	-	0	-	50	MHz
-	SDIO_CK/f _{PCLK2} frequency ratio	-	-	-	4/3	-
t _{W(CKL)}	Clock low time	f _{PP} = 50 MHz	8	10	-	ns
t _{W(CKH)}	Clock high time	f _{PP} = 50 MHz	8	10	-	ns
CMD, D input	ts (referenced to CK) in eMMC mode					
t _{ISU}	Input setup time HS	f _{PP} = 50 MHz	2.5	-	-	ns
t _{IH}	Input hold time HS	f _{PP} = 50 MHz	2.5	-	-	ns
CMD, D outp	uts (referenced to CK) in eMMC mode					
t _{OV}	Output valid time HS	f _{PP} = 50 MHz	ı	13.5	16.5	ns
t _{OH}	Output hold time HS	f _{PP} = 50 MHz	9	-	-	ns

^{1.} Guaranteed by characterization results.

Figure 43. SDIO high-speed mode tW(CKH) tW(CKL) CK tov D, CMD (output) tisu D, CMD (input) ai14887

DS11585 Rev 9 219/272

^{2.} $C_{LOAD} = 20pF$.

D, CMD (output)

Figure 44. SD default mode

USB OTG full speed (FS) characteristics

The STM32L496xx USB interface is fully compliant with the USB specification version 2.0 and is USB-IF certified (for Full-speed device operation).

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
V _{DDUSB}	USB OTG full speed transceiver operating voltage	-	3.0 ⁽²⁾	-	3.6	V
V _{DI} ⁽³⁾	Differential input sensitivity	Over VCM range	0.2	-	-	
V _{CM} ⁽³⁾	Differential input common mode range	Includes V _{DI} range	0.8	-	2.5	٧
V _{SE} ⁽³⁾	Single ended receiver input threshold	-	0.8	-	2.0	
V _{OL}	Static output level low	R_L of 1.5 k Ω to 3.6 $V^{(4)}$	-	-	0.3	V
V _{OH}	Static output level high	R_L of 15 k Ω to $V_{SS}^{(4)}$	2.8	-	3.6	·
R _{PD} ⁽³⁾	Pull down resistor on PA11, PA12 (USB_FS_DP/DM)	$V_{IN} = V_{DD}$	14.25	1	24.8	kΩ
	Pull Up Resistor on PA12 (USB_FS_DP)	V _{IN} = V _{SS} , during idle	0.9	1.25	1.575	kΩ
R _{PU} ⁽³⁾	Pull Up Resistor on PA12 (USB_FS_DP)	V _{IN} = V _{SS} during reception	1.425	2.25	3.09	kΩ
	Pull Up Resistor on PA10 (OTG_FS_ID)	-	-	-	14.5	kΩ

Table 102. USB OTG DC electrical characteristics

- 1. All the voltages are measured from the local ground potential.
- 2. The USB OTG full speed transceiver functionality is ensured down to 2.7 V but not the full USB full speed electrical characteristics which are degraded in the 2.7-to-3.0 V $V_{\rm DD}$ voltage range.
- 3. Guaranteed by design.
- 4. R_L is the load connected on the USB OTG full speed drivers.

Note:

When VBUS sensing feature is enabled, PA9 should be left at its default state (floating input), not as alternate function. A typical 200 μ A current consumption of the sensing block (current to voltage conversion to determine the different sessions) can be observed on PA9 when the feature is enabled.

220/272 DS11585 Rev 9

ai14888

Differential data lines

VCRS

VSS

tr

tr

ai14137b

Figure 45. USB OTG timings – definition of data signal rise and fall time

Table 103. USB OTG electrical characteristics⁽¹⁾

	Driver characteristics								
Symbol	Parameter	Conditions	Min	Max	Unit				
t_{rLS}	Rise time in LS ⁽²⁾	C _L = 200 to 600 pF	75	300	ns				
t _{fLS}	Fall time in LS ⁽²⁾	C _L = 200 to 600 pF	75	300	ns				
t _{rfmLS}	Rise/ fall time matching in LS	t _r /t _f	80	125	%				
t _{rFS}	Rise time in FS ⁽²⁾	C _L = 50 pF	4	20	ns				
t _{fFS}	Fall time in FS ⁽²⁾	C _L = 50 pF	4	20	ns				
t _{rfmFS}	Rise/ fall time matching in FS	t _r /t _f	90	111	%				
V _{CRS}	Output signal crossover voltage (LS/FS)	-	1.3	2.0	V				
Z _{DRV}	Output driver impedance ⁽³⁾	Driving high or low	28	44	Ω				

^{1.} Guaranteed by design.

Table 104. USB BCD DC electrical characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
I _{DD(USBBCD)}	Primary detection mode consumption	-	ı	-	300	μА
	Secondary detection mode consumption	-	-	-	300	μА
RDAT_LKG	Data line leakage resistance	-	300	-	-	kΩ
VDAT_LKG	Data line leakage voltage	-	0.0	-	3.6	V
RDCP_DAT	Dedicated charging port resistance across D+/D-	-	-	-	200	Ω
VLGC_HI	Logic high	-	2.0	-	3.6	V
VLGC_LOW	Logic low	-	-	-	0.8	V
VLGC	Logic threshold	-	0.8		2.0	V

DS11585 Rev 9 221/272

Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0).

No external termination series resistors are required on DP (D+) and DM (D-) pins since the matching impedance is included in the embedded driver.

Table 104. USB BCD DC electrical characteristics⁽¹⁾ (continued)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
VDAT_REF	Data detect voltage	-	0.25	-	0.4	V
VDP_SRC	D+ source voltage	-	0.5	-	0.7	٧
VDM_SRC	D- source voltage	-	0.5	-	0.7	V
IDP_SINK	D+ sink current	-	25	-	175	μA
IDM_SINK	D- sink current	-	25	-	175	μA

^{1.} Guaranteed by design.

CAN (controller area network) interface

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX).

6.3.29 FSMC characteristics

Unless otherwise specified, the parameters given in *Table 105* to *Table 118* for the FMC interface are derived from tests performed under the ambient temperature, f_{HCLK} frequency and V_{DD} supply voltage conditions summarized in *Table 22*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to *Section 6.3.14: I/O port characteristics* for more details on the input/output characteristics.

Asynchronous waveforms and timings

Figure 46 through Figure 49 represent asynchronous waveforms and Table 105 through Table 112 provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

- AddressSetupTime = 0x1
- AddressHoldTime = 0x1
- DataSetupTime = 0x1 (except for asynchronous NWAIT mode, DataSetupTime = 0x5)
- BusTurnAroundDuration = 0x0

In all timing tables, the THCLK is the HCLK clock period.

DS11585 Rev 9 223/272

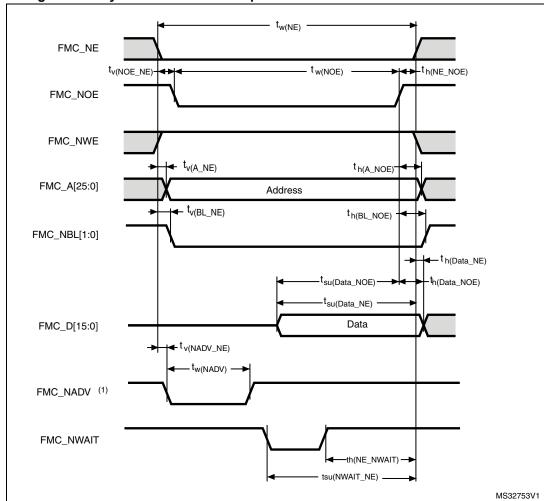


Figure 46. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms

Table 105. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	2T _{HCLK} -1	2T _{HCLK} +1	
t _{v(NOE_NE)}	FMC_NEx low to FMC_NOE low	0	0.5	
t _{w(NOE)}	FMC_NOE low time	2T _{HCLK} -1	2T _{HCLK} +1	
t _{h(NE_NOE)}	FMC_NOE high to FMC_NE high hold time	0	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	0.5	
t _{h(A_NOE)}	Address hold time after FMC_NOE high	0	-	
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	0.5	ns -
t _{h(BL_NOE)}	FMC_BL hold time after FMC_NOE high	0	-	113
t _{su(Data_NE)}	Data to FMC_NEx high setup time	T _{HCLK} -1	-	
t _{su(Data_NOE)}	Data to FMC_NOEx high setup time	T _{HCLK} -1	-	
t _{h(Data_NOE)}	Data hold time after FMC_NOE high	0	-	
t _{h(Data_NE)}	Data hold time after FMC_NEx high	0	-	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	-	0	
t _{w(NADV)}	FMC_NADV low time	-	T _{HCLK} +1	

^{1.} CL = 30 pF.

Table 106. Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	7T _{HCLK} -1	7T _{HCLK} +1	
t _{w(NOE)}	FMC_NWE low time	5T _{HCLK} -1	5T _{HCLK} +1	
t _{w(NWAIT)}	FMC_NWAIT low time	T _{HCLK} -0.5	-	ns
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	5T _{HCLK} +1.5	-	
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} +1	-	

^{1.} CL = 30 pF.

^{2.} Guaranteed by characterization results.

^{2.} Guaranteed by characterization results.

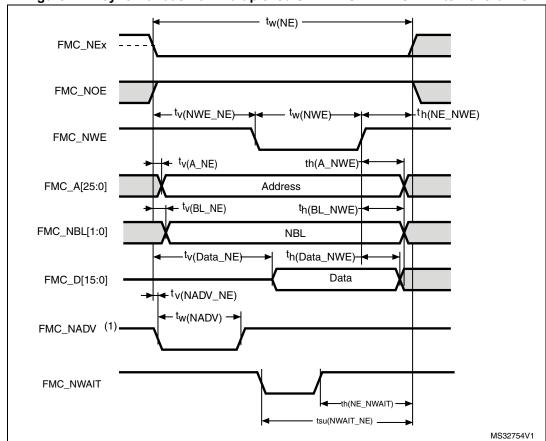


Figure 47. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms

Table 107. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	3T _{HCLK} -1	3T _{HCLK} +1	
t _{v(NWE_NE)}	FMC_NEx low to FMC_NWE low	T _{HCLK} -1	T _{HCLK} +1	
t _{w(NWE)}	FMC_NWE low time	T _{HCLK} -1.5	T _{HCLK} + 0.5	
t _{h(NE_NWE)}	FMC_NWE high to FMC_NE high hold time	T _{HCLK}	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	0	
t _{h(A_NWE)}	Address hold time after FMC_NWE high	T _{HCLK} -0.5	-	ns
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	0.5	115
t _{h(BL_NWE)}	FMC_BL hold time after FMC_NWE high	T _{HCLK} -0.5	-	
t _{v(Data_NE)}	Data to FMC_NEx low to Data valid	-	T _{HCLK} +3	
t _{h(Data_NWE)}	Data hold time after FMC_NWE high	T _{HCLK} +0.5	-	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	-	0	
t _{w(NADV)}	FMC_NADV low time	-	T _{HCLK} +1	

^{1.} CL = 30 pF.

^{2.} Guaranteed by characterization results.

Table 108. Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	8T _{HCLK} -1	8T _{HCLK} +1	
t _{w(NWE)}	FMC_NWE low time	6T _{HCLK} -1.5	6T _{HCLK} +0.5	ne
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	6T _{HCLK} -1	-	ns
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} +2	-	

- 1. CL = 30 pF.
- 2. Guaranteed by characterization results.

Figure 48. Asynchronous multiplexed PSRAM/NOR read waveforms

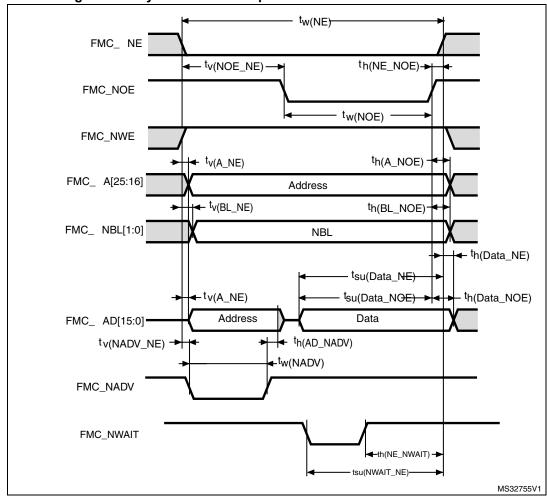


Table 109. Asynchronous multiplexed PSRAM/NOR read timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	3T _{HCLK} -1	3T _{HCLK} +1	
t _{v(NOE_NE)}	FMC_NEx low to FMC_NOE low	2T _{HCLK}	2T _{HCLK} +0.5	
t _{w(NOE)}	FMC_NOE low time	T _{HCLK} - 1	T _{HCLK} +1	
t _{h(NE_NOE)}	FMC_NOE high to FMC_NE high hold time	0	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	0.5	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	0	0.5	
t _{w(NADV)}	FMC_NADV low time	T _{HCLK} - 0.5	T _{HCLK} +1	
t _{h(AD_NADV)}	FMC_AD(address) valid hold time after FMC_NADV high	T _{HCLK} + 0.5	-	ns
t _{h(A_NOE)}	Address hold time after FMC_NOE high	T _{HCLK} - 0.5	-	
t _{h(BL_NOE)}	FMC_BL time after FMC_NOE high	0	-	
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	0.5	
t _{su(Data_NE)}	Data to FMC_NEx high setup time	T _{HCLK} -1	-	
t _{su(Data_NOE)}	Data to FMC_NOE high setup time	T _{HCLK} -1	-	
t _{h(Data_NE)}	Data hold time after FMC_NEx high	0	-	
t _{h(Data_NOE)}	Data hold time after FMC_NOE high	0	-	

^{1.} CL = 30 pF.

Table 110. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	8T _{HCLK} + 1	8T _{HCLK} + 1	
t _{w(NOE)}	FMC_NWE low time	5T _{HCLK} - 1.5	5T _{HCLK} + 0.5	ns
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	5T _{HCLK} +0.5	-	113
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} +1	-	

^{1.} CL = 30 pF.

DS11585 Rev 9

228/272

^{2.} Guaranteed by characterization results.

^{2.} Guaranteed by characterization results.

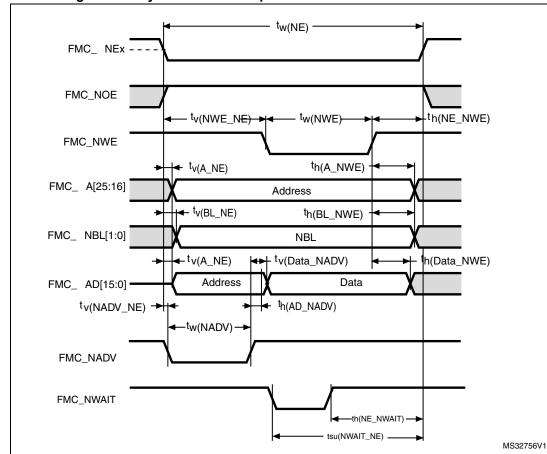


Figure 49. Asynchronous multiplexed PSRAM/NOR write waveforms

Table 111. Asynchronous multiplexed PSRAM/NOR write timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	4T _{HCLK} -1	4T _{HCLK} +1	
t _{v(NWE_NE)}	FMC_NEx low to FMC_NWE low	T _{HCLK} -1	T _{HCLK} +1	
t _{w(NWE)}	FMC_NWE low time	2xT _{HCLK} -0.5	2xT _{HCLK} + 0.5	
t _{h(NE_NWE)}	FMC_NWE high to FMC_NE high hold time	T _{HCLK} -0.5	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	0	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	0	0.5	
t _{w(NADV)}	FMC_NADV low time	T _{HCLK}	T _{HCLK} +1	ns
t _{h(AD_NADV)}	FMC_AD(adress) valid hold time after FMC_NADV high	T _{HCLK} + 0.5	-	
t _{h(A_NWE)}	Address hold time after FMC_NWE high	T _{HCLK} + 0.5	-	
t _{h(BL_NWE)}	FMC_BL hold time after FMC_NWE high	T _{HCLK} - 0.5	-	
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	0.5	
t _{v(Data_NADV)}	FMC_NADV high to Data valid	-	T _{HCLK} +3	
t _{h(Data_NWE)}	Data hold time after FMC_NWE high	T _{HCLK} +0.5	-	

DS11585 Rev 9 229/272

- 1. CL = 30 pF.
- 2. Guaranteed by characterization results.

Table 112. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	9T _{HCLK} - 1	9T _{HCLK} + 1	
t _{w(NWE)}	FMC_NWE low time	7T _{HCLK} - 0.5	7T _{HCLK} + 0.5	ns
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	6T _{HCLK} + 2	-	
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} - 1	-	

^{1.} CL = 30 pF.

Synchronous waveforms and timings

Figure 50 through Figure 53 represent synchronous waveforms and Table 113 through Table 116 provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

- BurstAccessMode = FMC_BurstAccessMode_Enable
- MemoryType = FMC_MemoryType_CRAM
- WriteBurst = FMC_WriteBurst_Enable
- CLKDivision = 1
- DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM In all timing tables, the T_{HCLK} is the HCLK clock period.

^{2.} Guaranteed by characterization results.

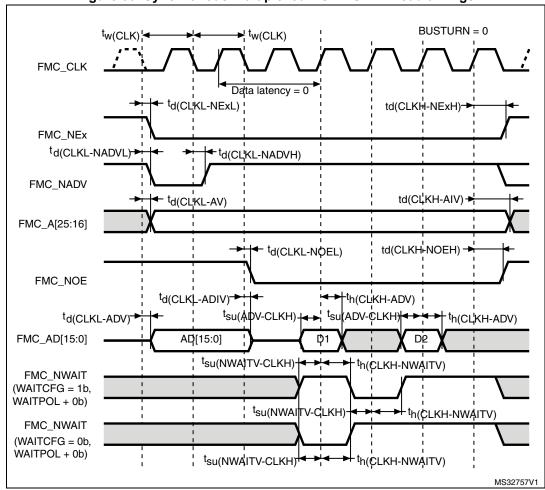


Figure 50. Synchronous multiplexed NOR/PSRAM read timings

DS11585 Rev 9 231/272

Table 113. Synchronous multiplexed NOR/PSRAM read timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FMC_CLK period	2T _{HCLK} -0.5	-	
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	2	
t _{d(CLKH_NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	T _{HCLK} +0.5	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	1	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	4.5	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	T _{HCLK}	-	
t _{d(CLKL-NOEL)}	FMC_CLK low to FMC_NOE low	-	1.5	ns
t _{d(CLKH-NOEH)}	FMC_CLK high to FMC_NOE high	T _{HCLK} +0.5	-	
t _{d(CLKL-ADV)}	FMC_CLK low to FMC_AD[15:0] valid	-	3	
t _{d(CLKL-ADIV)}	FMC_CLK low to FMC_AD[15:0] invalid	0	-	
t _{su(ADV-CLKH)}	FMC_A/D[15:0] valid data before FMC_CLK high	1	-	
t _{h(CLKH-ADV)}	FMC_A/D[15:0] valid data after FMC_CLK high	3.5	-	
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	2	-	
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	3.5	-	

^{1.} CL = 30 pF.

47/

^{2.} Guaranteed by characterization results.

Figure 51. Synchronous multiplexed PSRAM write timings

Table 114. Synchronous multiplexed PSRAM write timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FMC_CLK period	2T _{HCLK} - 0.5	-	
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	2	
t _{d(CLKH-NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	T _{HCLK} + 0.5	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	1	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	4.5	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	T _{HCLK}	-	
t _{d(CLKL-NWEL)}	FMC_CLK low to FMC_NWE low	-	1.5	ns
t _{d(CLKH-NWEH)}	FMC_CLK high to FMC_NWE high	T _{HCLK} + 0.5	-	115
t _{d(CLKL-ADV)}	FMC_CLK low to FMC_AD[15:0] valid	-	3	
t _{d(CLKL-ADIV)}	FMC_CLK low to FMC_AD[15:0] invalid	0	-	
t _{d(CLKL-DATA)}	FMC_A/D[15:0] valid data after FMC_CLK low	-	3.5	
t _{d(CLKL-NBLL)}	FMC_CLK low to FMC_NBL low	-	2	
t _{d(CLKH-NBLH)}	FMC_CLK high to FMC_NBL high	T _{HCLK} + 0.5	-	
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	2	-	
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	3.5	-	

^{1.} CL = 30 pF.

^{2.} Guaranteed by characterization results.

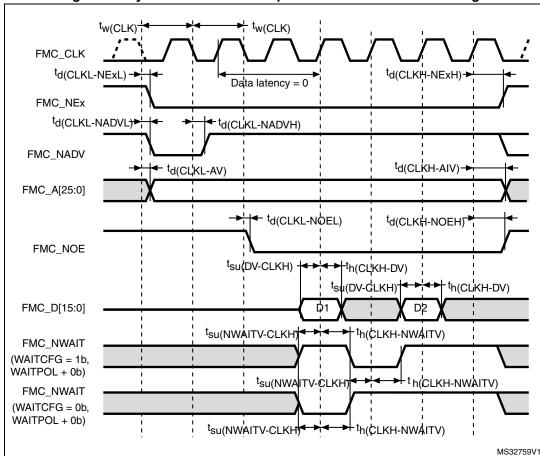


Figure 52. Synchronous non-multiplexed NOR/PSRAM read timings

Table 115. Synchronous non-multiplexed NOR/PSRAM read timings $^{(1)(2)}$

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FMC_CLK period	2T _{HCLK} - 0.5	-	
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	2	
t _{d(CLKH-NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	T _{HCLK} +0.5	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	0.5	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	4	ns
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	T _{HCLK}	-	
t _{d(CLKL-NOEL)}	FMC_CLK low to FMC_NOE low	-	1.5	
t _{d(CLKH-NOEH)}	FMC_CLK high to FMC_NOE high	T _{HCLK} -0.5	-	
t _{su(DV-CLKH)}	FMC_D[15:0] valid data before FMC_CLK high	1	-	
t _{h(CLKH-DV)}	FMC_D[15:0] valid data after FMC_CLK high	3.5	-	

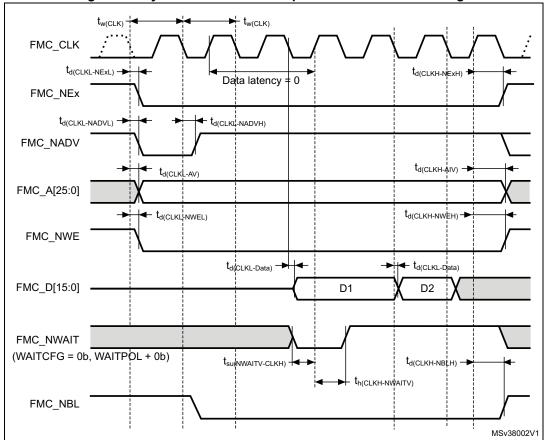

DS11585 Rev 9 235/272

Table 115. Synchronous non-multiplexed NOR/PSRAM read timings⁽¹⁾⁽²⁾ (continued)

Symbol	Parameter	Min	Max	Unit
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	2	-	ns
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	3.5	1	113

^{1.} CL = 30 pF.

Figure 53. Synchronous non-multiplexed PSRAM write timings

577

^{2.} Guaranteed by characterization results.

Symbol Parameter Min Max Unit FMC CLK period 2T_{HCLK}-0.5 t_{w(CLK)} FMC CLK low to FMC NEx low (x=0..2) 2 t_{d(CLKL-NExL)} FMC CLK high to FMC NEx high (x = 0...2)T_{HCLK}+0.5 t_{d(CLKH-NExH)} FMC CLK low to FMC NADV low 0.5 t_{d(CLKL-NADVL)} FMC_CLK low to FMC_NADV high 0 t_{d(CLKL-NADVH)} FMC_CLK low to FMC_Ax valid (x=16...25) 4 t_{d(CLKL-AV)} FMC CLK high to FMC Ax invalid (x=16...25) 0 t_{d(CLKH-AIV)} ns FMC_CLK low to FMC_NWE low 1.5 t_d(CLKL-NWEL) FMC CLK high to FMC NWE high T_{HCLK}+1 t_{d(CLKH-NWEH)} t_{d(CLKL-Data)} FMC_D[15:0] valid data after FMC_CLK low 3 FMC_CLK low to FMC_NBL low 1.5 t_{d(CLKL-NBLL)} FMC_CLK high to FMC_NBL high t_{d(CLKH-NBLH)} T_{HCLK}+0.5 FMC NWAIT valid before FMC CLK high 2 t_{su(NWAIT-CLKH)} FMC_NWAIT valid after FMC_CLK high 3.5 t_{h(CLKH-NWAIT)}

Table 116. Synchronous non-multiplexed PSRAM write timings⁽¹⁾⁽²⁾

NAND controller waveforms and timings

Figure 54 through Figure 57 represent synchronous waveforms, and Table 117 and Table 118 provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

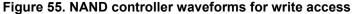
- COM.FMC_SetupTime = 0x01
- COM.FMC_WaitSetupTime = 0x03
- COM.FMC HoldSetupTime = 0x02
- COM.FMC_HiZSetupTime = 0x01
- ATT.FMC_SetupTime = 0x01
- ATT.FMC WaitSetupTime = 0x03
- ATT.FMC_HoldSetupTime = 0x02
- ATT.FMC HiZSetupTime = 0x01
- Bank = FMC_Bank_NAND
- MemoryDataWidth = FMC_MemoryDataWidth_16b
- ECC = FMC_ECC_Enable
- ECCPageSize = FMC_ECCPageSize_512Bytes
- TCLRSetupTime = 0
- TARSetupTime = 0

In all timing tables, the T_{HCLK} is the HCLK clock period.

DS11585 Rev 9 237/272

^{1.} CL = 30 pF.

^{2.} Guaranteed by characterization results.


FMC_NCEX

ALE (FMC_A17)
CLE (FMC_A16)

FMC_NWE

This is a second of the content of the content

Figure 54. NAND controller waveforms for read access

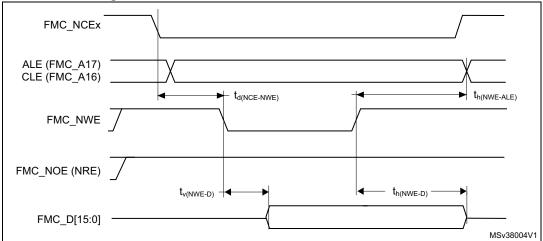
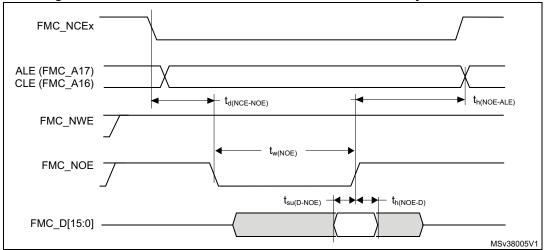



Figure 56. NAND controller waveforms for common memory read access

57

MSv38003V1



Figure 57. NAND controller waveforms for common memory write access

Table 117. Switching characteristics for NAND Flash read cycles⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
T _{w(N0E)}	FMC_NOE low width	4T _{HCLK} -0.5	4T _{HCLK} +0.5	
T _{su(D-NOE)}	FMC_D[15-0] valid data before FMC_NOE high	12	-	
T _{h(NOE-D)}	FMC_D[15-0] valid data after FMC_NOE high	0	-	ns
T _{d(NCE-NOE)}	FMC_NCE valid before FMC_NOE low	-	3T _{HCLK} +1	
T _{h(NOE-ALE)}	FMC_NOE high to FMC_ALE invalid	4T _{HCLK} -2	-	

^{1.} CL = 30 pF.

Table 118. Switching characteristics for NAND Flash write cycles⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
T _{w(NWE)}	FMC_NWE low width	4T _{HCLK} -0.5	4T _{HCLK} +0.5	
$T_{v(NWE-D)}$	FMC_NWE low to FMC_D[15-0] valid	5	-	
T _{h(NWE-D)}	FMC_NWE high to FMC_D[15-0] invalid	2T _{HCLK} -1	-	ns
T _{d(D-NWE)}	FMC_D[15-0] valid before FMC_NWE high	5T _{HCLK} -1	-	115
T _{d(NCE_NWE)}	FMC_NCE valid before FMC_NWE low	-	3T _{HCLK} +1	
T _{h(NWE-ALE)}	FMC_NWE high to FMC_ALE invalid	2T _{HCLK} -2	-	

^{1.} CL = 30 pF.

6.3.30 Camera interface (DCMI) timing specifications

Unless otherwise specified, the parameters given in *Table 119* for DCMI are derived from tests performed under the ambient temperature, f_{HCLK} frequency and V_{DD} supply voltage

577

DS11585 Rev 9 239/272

^{2.} Guaranteed by characterization results.

^{2.} Guaranteed by characterization results.

summarized in *Table 21*, with the following configuration:

• DCMI_PIXCLK polarity: falling

DCMI_VSYNC and DCMI_HSYNC polarity: high

Data format: 14 bitsCapacitive load C=30pF

Figure 58. DCMI timing diagram

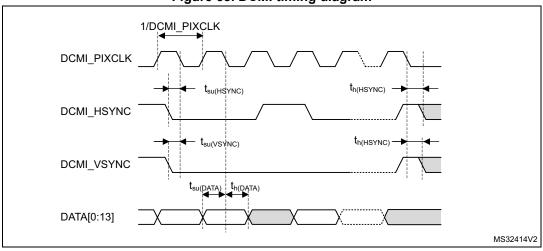


Table 119. DCMI characteristics⁽¹⁾

Symbol	Parameter	Min	Max	Unit
	Frequency ratio DCMI_PIXCLK/f _{HCLK}	-	0.4	
DCMI_PIXCLK	Pixel clock input	-	32	MHz
D _{pixel}	Pixel clock input duty cycle	30	70	%
t _{su(DATA)}	Data input setup time	4	-	
t _{h(DATA)}	Data hold time	5	-	
t _{su(HSYNC)} , t _{su(VSYNC)}	DCMI_HSYNC/DCMI_VSYNC input setup time	3	-	ns
$\begin{bmatrix} t_{h(HSYNC)}, \\ t_{h(VSYNC)} \end{bmatrix}$	DCMI_HSYNC/DCMI_VSYNC input hold time	3	-	

^{1.} Data based on characterization results, not tested in production.

T

6.3.31 SWPMI characteristics

The Single Wire Protocol Master Interface (SWPMI) and the associated SWPMI_IO transceiver are compliant with the ETSI TS 102 613 technical specification.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{SWPSTART}	SWPMI regulator startup time	SWP Class B 2.7 V ≤ V _{DD} ≤ 3,3V	-	-	300	μs
t	SWP bit duration	V _{CORE} voltage range 1	500	ı	-	ns
^I SWPBIT		V _{CORE} voltage range 2	620	-	-	115

Table 120. SWPMI electrical characteristics

6.3.32 SD/SDIO MMC card host interface (SDIO) characteristics

Unless otherwise specified, the parameters given in *Table 121* for the SDIO/MMC interface are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DD} supply voltage conditions summarized in *Table 22*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output characteristics.

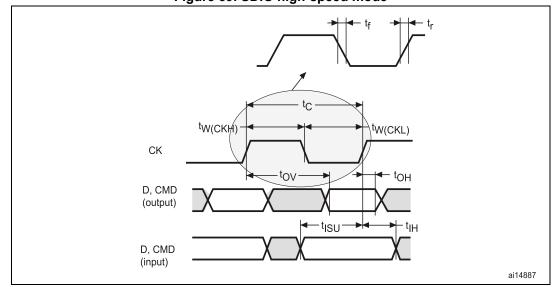


Figure 59. SDIO high-speed mode

STM32L496xx **Electrical characteristics**

CK + tovd **←** tohd D, CMD (output) ai14888

Figure 60. SD default mode

Table 121. SD / MMC dynamic characteristics, V_{DD} =2.7 V to 3.6 $V^{(1)}$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{PP}	Clock frequency in data transfer mode		0		50	MHz
-	SDIO_CK/fPCLK2 frequency ratio		-	-	4/3	-
t _{W(CKL)}	Clock low time	fpp =50 MHz	8	10	-	ns
t _{W(CKH)}	Clock high time	fpp =50 MHz	8	10	-	115
CMD, D inp	outs (referenced to CK) in MMC and SE	O HS mode				
t _{ISU}	Input setup time HS	fpp =50 MHz	2.5	-	-	1
t _{IH}	Input hold time HS	fpp =50 MHz	2.5	-	-	ns
CMD, D ou	tputs (referenced to CK) in MMC and S	SD HS mode				
t _{OV}	Output valid time HS	fpp =50 MHz	-	12	13	ns
t _{OH}	Output hold time HS	fpp =50 MHz	10	-		
CMD, D inp	outs (referenced to CK) in SD default n	node				
tISUD	Input setup time SD	fpp =25 MHz	3.5	-	-	
tIHD	Input hold time SD	fpp =25 MHz	3	-	-	ns
CMD, D ou	tputs (referenced to CK) in SD default	mode		•		•
tOVD	Output valid default time SD	fpp =25 MHz	-	3	5	
tOHD	Output hold default time SD	fpp =25 MHz	0	-	-	ns

^{1.} Guaranteed by characterization results.

Table 122. SD / MMC dynamic characteristics, V_{DD} =1.71 V to 1.9 $V^{(1)}$

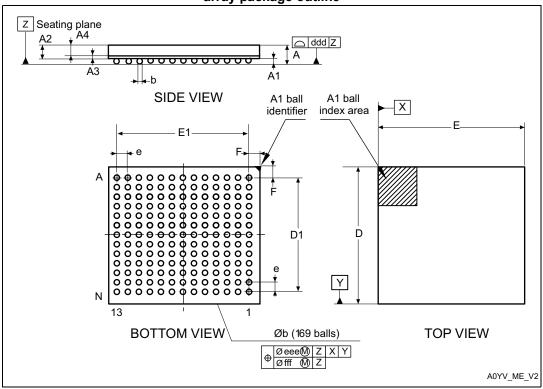
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{PP}	Clock frequency in data transfer mode	-	0	-	50	MHz
-	SDIO_CK/fPCLK2 frequency ratio	-	-	-	4/3	-
t _{W(CKL)}	Clock low time	f _{PP} = 50 MHz	8	10	-	ns
t _{W(CKH)}	Clock high time	f _{PP} = 50 MHz	8	10	-	ns

Table 122. SD / MMC dynamic characteristics, V_{DD} =1.71 V to 1.9 $V^{(1)}$ (continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
CMD, D inputs (referenced to CK) in MMC and SD HS mode									
t _{ISU}	Input setup time HS	f _{PP} = 50 MHz	2.5	-	-	ns			
t _{IH}	Input hold time HS	f _{PP} = 50 MHz	2.5 -		-	ns			
CMD, D output	CMD, D outputs (referenced to CK) in MMC and SD HS mode								
t _{OV}	Output valid time HS	f _{PP} = 50 MHz	-	13.5	16.5	ns			
t _{OH}	Output hold time HS	f _{PP} = 50 MHz	9	-	-	ns			
CMD, D inputs	(referenced to CK) in SD default mode								
t _{ISUD}	Input setup time SD	f _{PP} = 50 MHz	2	-	-	ns			
t _{IHD}	Input hold time SD	f _{PP} = 50 MHz	4.5	-	-	ns			
CMD, D output	CMD, D outputs (referenced to CK) in SD default mode								
t _{OVD}	Output valid default time SD	f _{PP} = 50 MHz	-	4.5	5	ns			
t _{OHD}	Output hold default time SD	f _{PP} = 50 MHz	0	-	ı	ns			

^{1.} Guaranteed by characterization results.

DS11585 Rev 9 243/272


Package information STM32L496xx

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

7.1 UFBGA169 package information

Figure 61. UFBGA169 - 169-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package outline

1. Drawing is not to scale.

Table 123. UFBGA169 - 169-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package mechanical data

Symbol		millimeters			inches ⁽¹⁾			
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.		
Α	0.460	0.530	0.600	0.0181	0.0209	0.0236		
A1	0.050	0.080	0.110	0.0020	0.0031	0.0043		
A2	0.400	0.450	0.500	0.0157	0.0177	0.0197		
A3	-	0.130	-	-	0.0051	-		
A4	0.270	0.320	0.370	0.0106	0.0126	0.0146		

STM32L496xx Package information

Table 123. UFBGA169 - 169-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package mechanical data (continued)

O	millimeters			inches ⁽¹⁾			
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	
b	0.230	0.280	0.330	0.0091	0.0110	0.0130	
D	6.950	7.000	7.050	0.2736	0.2756	0.2776	
D1	5.950	6.000	6.050	0.2343	0.2362	0.2382	
E	6.950	7.000	7.050	0.2736	0.2756	0.2776	
E1	5.950	6.000	6.050	0.2343	0.2362	0.2382	
е	-	0.500	-	-	0.0197	-	
F	0.450	0.500	0.550	0.0177	0.0197	0.0217	
ddd	-	-	0.100	-	-	0.0039	
eee	-	-	0.150	-	-	0.0059	
fff	-	-	0.050	-	-	0.0020	

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 62. UFBGA169 - 169-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array recommended footprint

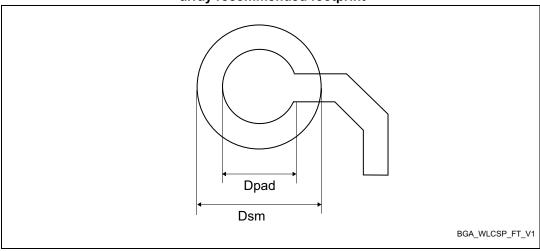
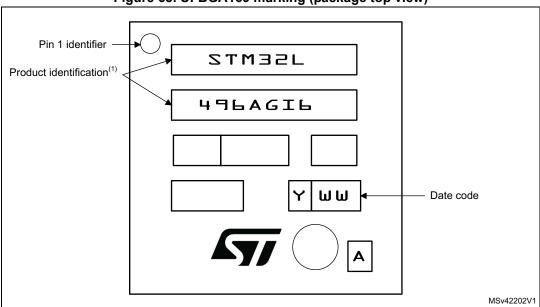


Table 124. UFBGA169 recommended PCB design rules (0.5 mm pitch BGA)

Dimension	Recommended values			
Pitch	0.5 mm			
Dpad	0.27 mm			
Dsm	0.35 mm typ. (depends on the soldermask registration tolerance)			
Solder paste	0.27 mm aperture diameter.			

Note: Non-solder mask defined (NSMD) pads are recommended.

Package information STM32L496xx


Note: 4 to 6 mils solder paste screen printing process.

Device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 63. UFBGA169 marking (package top view)

Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.

STM32L496xx Package information

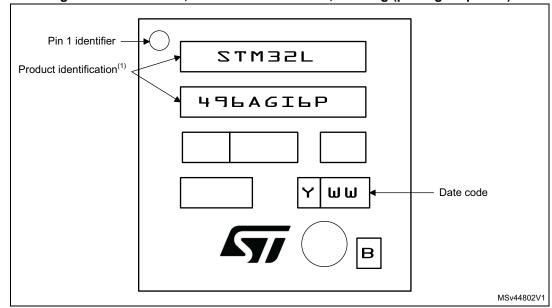


Figure 64. UFBGA169, external SMPS device, marking (package top view)

- Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.
- 2. SMPS package version only available for 1M Flash devices STM32L496xG.

DS11585 Rev 9 247/272

Package information STM32L496xx

7.2 LQFP144 package information

SEATING P<u>LAN</u>E С 0.25 mm □ ccc C GAUGE PLANE D D1 D3 E3 П Ш 37 PIN 1 **IDENTIFICATION**

Figure 65. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline

1. Drawing is not to scale.

1A_ME_V4

STM32L496xx Package information

Table 125. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package mechanical data

Symbol	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Max	
Α	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	
D	21.800	22.000	22.200	0.8583	0.8661	0.8740	
D1	19.800	20.000	20.200	0.7795	0.7874	0.7953	
D3	-	17.500	-	-	0.6890	-	
E	21.800	22.000	22.200	0.8583	0.8661	0.8740	
E1	19.800	20.000	20.200	0.7795	0.7874	0.7953	
E3	-	17.500	-	-	0.6890	-	
е	-	0.500	-	-	0.0197	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0°	3.5°	7°	0°	3.5°	7°	
CCC	-	-	0.080	-	-	0.0031	

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

DS11585 Rev 9 249/272

Package information STM32L496xx

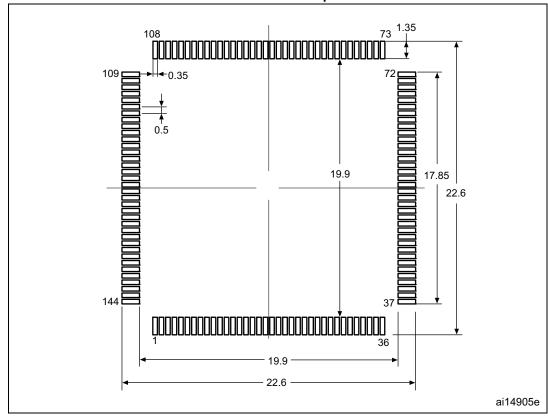


Figure 66. LQFP144 - 144-pin,20 x 20 mm low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

57/

STM32L496xx Package information

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

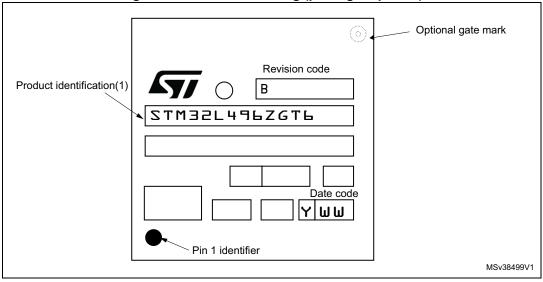


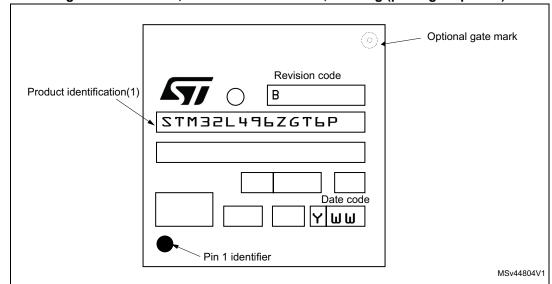
Figure 67. LQFP144 marking (package top view)

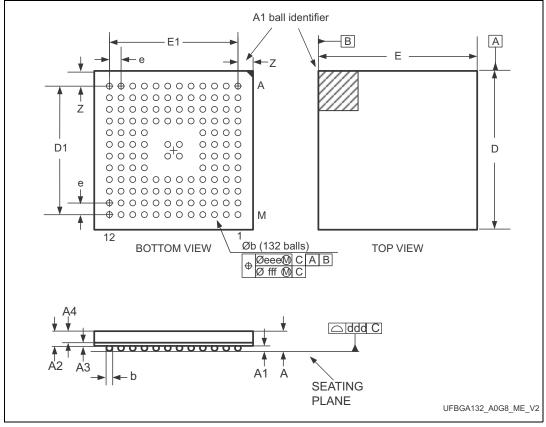
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

57/

DS11585 Rev 9 251/272

Package information STM32L496xx




Figure 68. LQFP144, external SMPS device, marking (package top view)

- 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.
- 2. SMPS package version only available for 1M Flash devices STM32L496xG

57

7.3 **UFBGA132** package information

Figure 69. UFBGA132 - 132-ball, 7 x 7 mm ultra thin fine pitch ball grid array package outline A1 ball identifier

1. Drawing is not to scale.

Table 126. UFBGA132 - 132-ball, 7 x 7 mm ultra thin fine pitch ball grid array package mechanical data

Symbol	millimete		millimeters inc		inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Max
Α	-	-	0.600	-	-	0.0236
A1	-	-	0.110	-	-	0.0043
A2	-	0.450	-	-	0.0177	-
A3	-	0.130	-	-	0.0051	-
A4	-	0.320	-	-	0.0126	-
b	0.240	0.290	0.340	0.0094	0.0114	0.0134
D	6.850	7.000	7.150	0.2697	0.2756	0.2815
D1	-	5.500	-	-	0.2165	-
Е	6.850	7.000	7.150	0.2697	0.2756	0.2815
E1	-	5.500	-	-	0.2165	-

577

DS11585 Rev 9 253/272

Table 126. UFBGA132 - 132-ball, 7 x 7 mm ultra thin fine pitch ball grid array
package mechanical data (continued)

Symbol		millimeters	inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Max
е	-	0.500	-	-	0.0197	-
Z	-	0.750	-	-	0.0295	-
ddd	-	0.080	-	-	0.0031	-
eee	-	0.150	-	-	0.0059	-
fff	-	0.050	-	-	0.0020	-

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 70. UFBGA132 - 132-ball, 7 x 7 mm ultra thin fine pitch ball grid array package recommended footprint

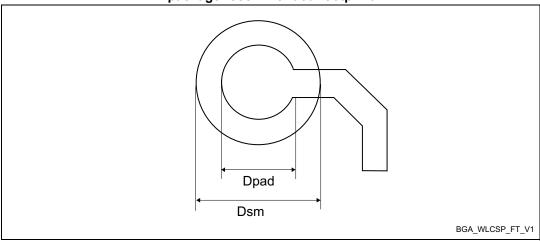


Table 127. UFBGA132 recommended PCB design rules (0.5 mm pitch BGA)

Dimension	Recommended values
Pitch	0.5 mm
Dpad	0.280 mm
Dsm	0.370 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.280 mm
Stencil thickness	Between 0.100 mm and 0.125 mm
Pad trace width	0.100 mm
Ball diameter	0.280 mm

Device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

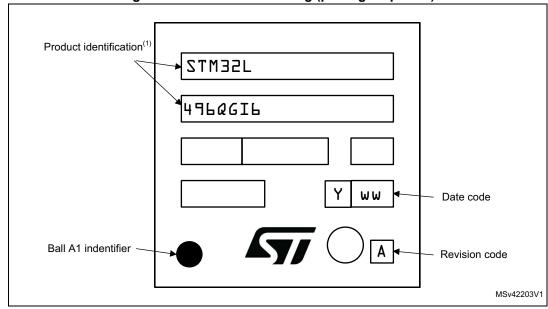


Figure 71. UFBGA132 marking (package top view)

1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

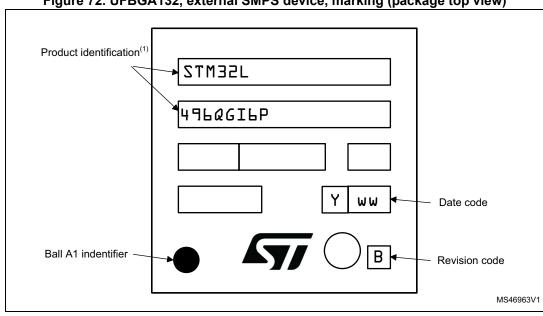
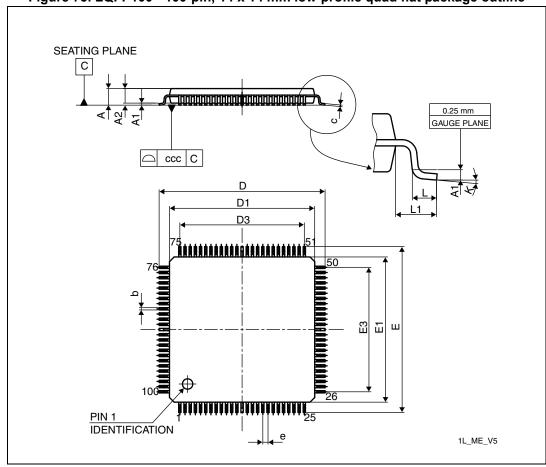


Figure 72. UFBGA132, external SMPS device, marking (package top view)


1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

57

DS11585 Rev 9 255/272

7.4 LQFP100 package information

Figure 73. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline

1. Drawing is not to scale.

Table 128. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package mechanical data

Cumbal		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	15.800	16.000	16.200	0.6220	0.6299	0.6378
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591
D3	-	12.000	-	-	0.4724	-
Е	15.800	16.000	16.200	0.6220	0.6299	0.6378

inches⁽¹⁾ millimeters **Symbol** Min Тур Max Min Тур Max E1 14.000 14.200 0.5433 0.5512 13.800 0.5591 E3 12.000 0.4724 е 0.500 0.0197 L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 1.000 0.0394 k 0.0° 3.5° 7.0° 0.0° 3.5° 7.0° CCC 0.080 0.0031

Table 128. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package mechanical data (continued)

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

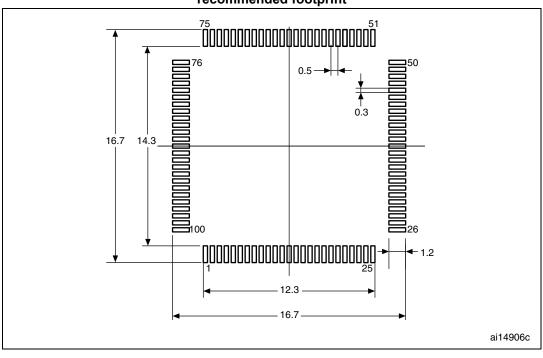


Figure 74. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat recommended footprint

1. Dimensions are expressed in millimeters.

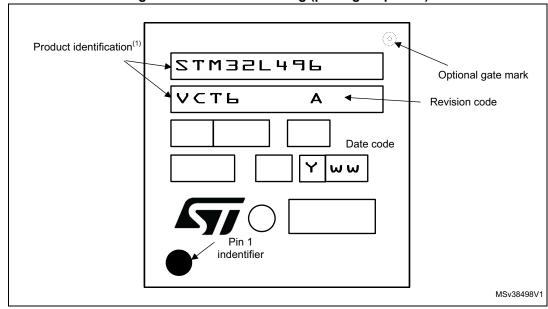
Device marking

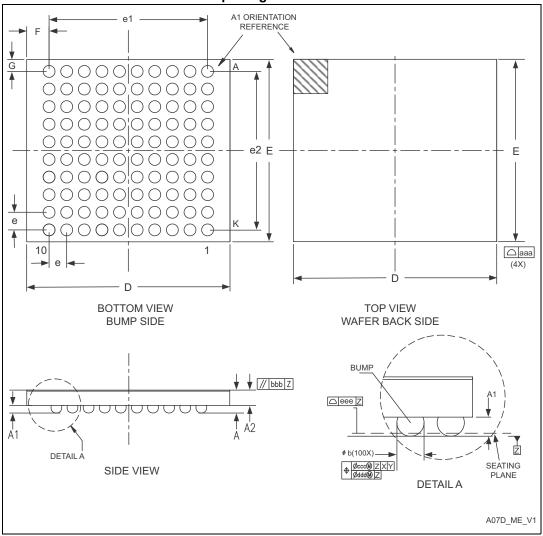
The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

577

DS11585 Rev 9 257/272




Figure 75. LQFP100 marking (package top view)

1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

577

7.5 WLCSP100 package information

Figure 76.WLCSP – 100 ball, 4.618 x 4.142 mm, 0.4 mm pitch wafer level chip scale package outline

- 1. Drawing is not to scale.
- 2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
- 3. Primary datum Z and seating plane are defined by the spherical crowns of the bump.
- 4. Bump position designation per JESD 95-1, SPP-010.

DS11585 Rev 9 259/272

Table 129. WLCSP – 100 ball, 4.618 x 4.142 mm, 0.4 mm pitch wafer level chip scale package mechanical data

Symbol		millimeters	jo moonamo		inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Max
Α	0.525	0.555	0.585	0.0207	0.0219	0.0230
A1	-	0.175	-	-	0.0069	-
A2	-	0.380	-	-	0.0150	-
A3 ⁽²⁾	-	0.025	-	-	0.0010	-
Ø b ⁽³⁾	0.220	0.250	0.280	0.0087	0.0098	0.0110
D	4.583	4.618	4.653	0.1804	0.1818	0.1832
E	4.107	4.142	4.177	0.1617	0.1631	0.1644
е	-	0.400	-	-	0.0157	-
e1	-	3.600	-	-	0.1417	-
e2	-	3.600	-	-	0.1417	-
F	-	0.509	-	-	0.0200	-
G	-	0.271	-	-	0.0107	-
aaa	-	0.100	-	-	0.0039	-
bbb	-	0.100	-	-	0.0039	-
ccc	-	0.100	-	-	0.0039	-
ddd	-	0.050	-	-	0.0020	-
eee	-	0.050	-		0.0020	-

- 1. Values in inches are converted from mm and rounded to 4 decimal digits.
- 2. Back side coating.
- 3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

Figure 77. WLCSP – 100 ball, 4.166 x 4.628 mm 0.4 mm pitch wafer level chip scale package recommended footprint

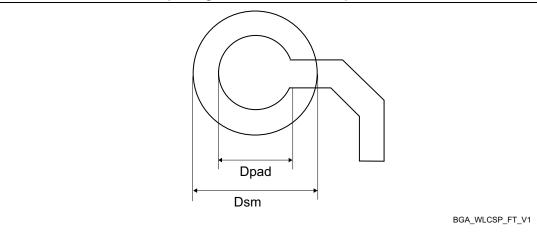
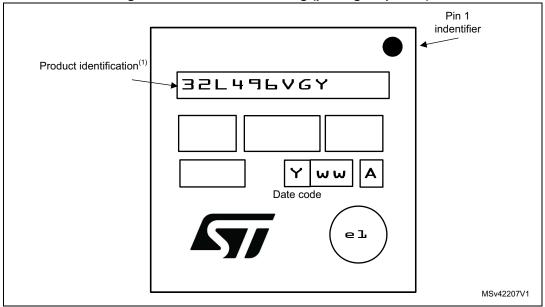



Table 130. WLCSP100 recommended PCB design rules (0.4 mm pitch)

Dimension	Recommended values
Pitch	0.4 mm
Dpad	0.225 mm
Dsm	0.290 mm
Stencil thickness	0.1 mm

Figure 78. WLCSP100 marking (package top view)

1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

5

DS11585 Rev 9 261/272

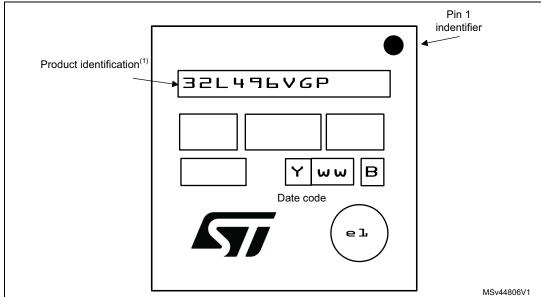


Figure 79. WLCSP100, external SMPS device, marking (package top view)

- Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.
- 2. SMPS package version only available for 1M Flash devices STM32L496xG

7.6 LQFP64 package information

Figure 80. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline

1. Drawing is not to scale.

Table 131. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data

Symbol		millimeters			inches ⁽¹⁾	
Syllibol	Min	Тур	Max	Min	Тур	Max
Α	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	-	12.000	-	-	0.4724	-
D1	-	10.000	-	-	0.3937	-
D3	-	7.500	-	-	0.2953	-
E	-	12.000	-	-	0.4724	-
E1	-	10.000	-	-	0.3937	-

DS11585 Rev 9 263/272

		millimeters		ers inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
E3	-	7.500	-	-	0.2953	-
е	-	0.500	-	-	0.0197	-
K	0°	3.5°	7°	0°	3.5°	7°
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
CCC	-	-	0.080	-	-	0.0031

Table 131. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data (continued)

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

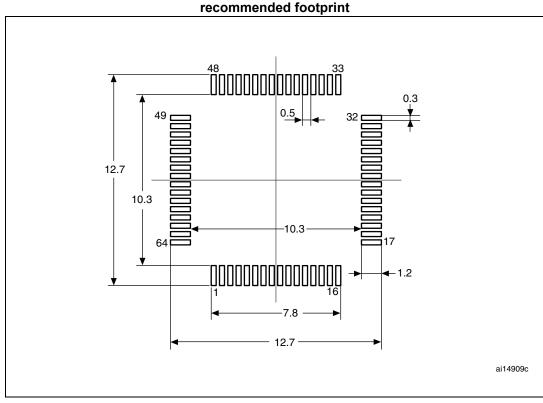


Figure 81. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

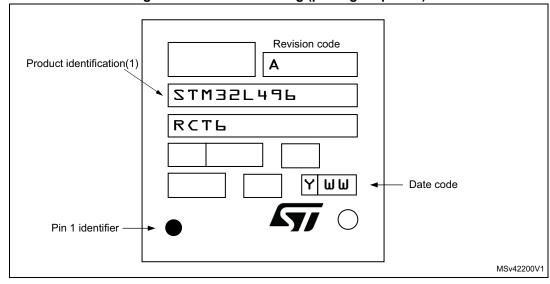


Figure 82. LQFP64 marking (package top view)

Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.

DS11585 Rev 9 265/272

7.7 Thermal characteristics

The maximum chip-junction temperature, T_J max, in degrees Celsius, may be calculated using the following equation:

$$T_{J} \max = T_{A} \max + (P_{D} \max x \Theta_{JA})$$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and $P_{I/O}$ max (P_D max = P_{INT} max + $P_{I/O}$ max),
- P_{INT} max is the product of all I_{DDXXX} and V_{DDXXX}, expressed in Watts. This is the maximum chip internal power.

P_{I/O} max represents the maximum power dissipation on output pins where:

$$P_{I/O}$$
 max = $\Sigma (V_{OL} \times I_{OL}) + \Sigma ((V_{DDIOx} - V_{OH}) \times I_{OH})$,

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
	Thermal resistance junction-ambient UFBGA169 - 7 × 7 mm	52	
	Thermal resistance junction-ambient LQFP144 - 20 × 20 mm	32	
Θ_{JA}	Thermal resistance junction-ambient UFBGA132 - 7 × 7 mm	55	°C/W
	Thermal resistance junction-ambient WLCSP100	35.8	
	Thermal resistance junction-ambient LQFP100 - 14 × 14mm	42	
	Thermal resistance junction-ambient LQFP64	45	

Table 132. Package thermal characteristics

7.7.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org

7.7.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Section 8: Ordering information*.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

As applications do not commonly use the STM32L496xx at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application.

The following examples show how to calculate the temperature range needed for a given application.

Example 1: High-performance application

Assuming the following application conditions:

Maximum ambient temperature T_{Amax} = 82 °C (measured according to JESD51-2), I_{DDmax} = 50 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL} = 0.4 V and maximum 8 I/Os used at the same time in output at low level with I_{OL} = 20 mA, V_{OL} = 1.3 V

 P_{INTmax} = 50 mA × 3.5 V= 175 mW

 $P_{IOmax} = 20 \times 8 \text{ mA} \times 0.4 \text{ V} + 8 \times 20 \text{ mA} \times 1.3 \text{ V} = 272 \text{ mW}$

This gives: P_{INTmax} = 175 mW and P_{IOmax} = 272 mW:

 $P_{Dmax} = 175 + 272 = 447 \text{ mW}$

Using the values obtained in Table 132 T_{Jmax} is calculated as follows:

For LQFP100, 42 °C/W

 T_{Jmax} = 82 °C + (42 °C/W × 447 mW) = 82 °C + 18.774 °C = 100.774 °C

This is within the range of the suffix 6 version parts ($-40 < T_J < 105$ °C) see Section 8: Ordering information.

In this case, parts must be ordered at least with the temperature range suffix 6 (see Part numbering).

Note:

With this given P_{Dmax} we can find the T_{Amax} allowed for a given device temperature range (order code suffix 6 or 3).

Suffix 6:
$$T_{Amax} = T_{Jmax}$$
 - $(42^{\circ}\text{C/W} \times 447 \text{ mW}) = 105\text{-}18.774 = 86.226 ^{\circ}\text{C}$
Suffix 3: $T_{Amax} = T_{Jmax}$ - $(42^{\circ}\text{C/W} \times 447 \text{ mW}) = 130\text{-}18.774 = 111.226 ^{\circ}\text{C}$

Example 2: High-temperature application

Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature T_J remains within the specified range.

Assuming the following application conditions:

Maximum ambient temperature T_{Amax} = 100 °C (measured according to JESD51-2), I_{DDmax} = 20 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL} = 0.4 V

 P_{INTmax} = 20 mA × 3.5 V= 70 mW

 $P_{IOmax} = 20 \times 8 \text{ mA} \times 0.4 \text{ V} = 64 \text{ mW}$

This gives: P_{INTmax} = 70 mW and P_{IOmax} = 64 mW:

 $P_{Dmax} = 70 + 64 = 134 \text{ mW}$

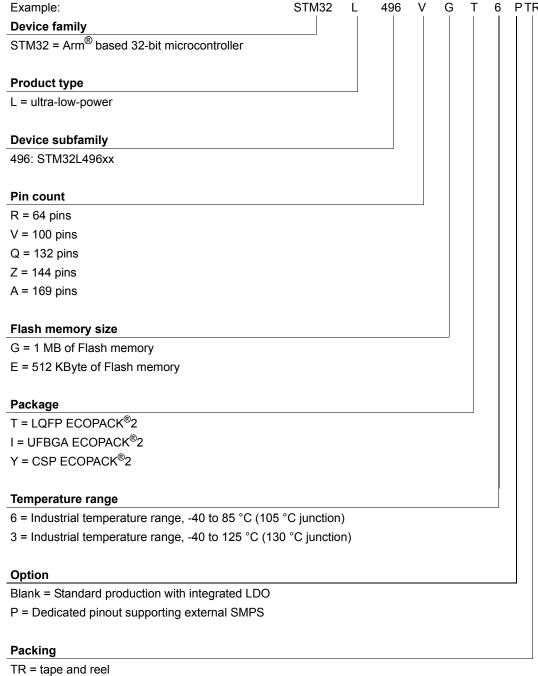
Thus: P_{Dmax} = 134 mW

Using the values obtained in *Table 132* T_{Jmax} is calculated as follows:

For LQFP100, 42 °C/W

 T_{Jmax} = 100 °C + (42 °C/W × 134 mW) = 100 °C + 5.628 °C = 105.628 °C

This is above the range of the suffix 6 version parts ($-40 < T_{.l} < 105$ °C).


DS11585 Rev 9 267/272

In this case, parts must be ordered at least with the temperature range suffix 3 (see *Section 8: Ordering information*) unless we reduce the power dissipation in order to be able to use suffix 6 parts.

Ordering information 8

Table 133. STM32L496xx ordering information scheme

xxx = programmed parts

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

DS11585 Rev 9 269/272 Revision history STM32L496xx

9 Revision history

Table 134. Document revision history

Date	Revision	Changes
22-Feb-2017	1	Initial release.
		Updated: - Features in cover page, Section 2: Description, Section 6.1.7: Current consumption measurement, Section 6.3.18: Analog-to-Digital converter characteristics, Section 7.7: Thermal characteristics, Section 7.7.2: Selecting the product temperature range - Table 2: STM32L496xx family device features and
02-May-2017	2	peripheral counts, Table 22: General operating conditions, Table 44: Current consumption in Stop 2 mode, Table 45: Current consumption in Standby mode, Table 47: Current consumption in Standby mode, Table 48: Current consumption in Shutdown mode, Table 51: Low-power mode wakeup timings, Table 61: LSI oscillator characteristics, Table 82: DAC characteristics, Table 133: STM32L496xx ordering information scheme – note 1. on Figure 34
21-Jun-2017	3	Added note on: Figure 63: UFBGA169 marking (package top view), Figure 68: LQFP144, external SMPS device, marking (package top view), Figure 79: WLCSP100, external SMPS device, marking (package top view). Updated Table 70: I/O static characteristics. Updated product maturity information from "preliminary data" to "production data".
04-Jul-2017	4	Updated Section 3.37: Universal serial bus on-the-go full-speed (OTG_FS)
18-Dec-2017	5	Updated Features, Section 3.12: Clocks and startup, Table 15: STM32L496xx pin definitions, Table 66: EMI characteristics, Table 53: Wakeup time using USART/LPUART, Table 70: I/O static characteristics, Table 76: ADC characteristics Added Figure 12: STM32L496Qx, external SMPS device, UFBGA132 ballout, Section 6.3.16: Extended interrupt and event controller input (EXTI) characteristics, USB OTG full speed (FS) characteristics, Figure 72: UFBGA132, external SMPS device, marking (package top view)
10-Jan-2018	6	Updated Table 15: STM32L496xx pin definitions
14-Feb-2018	7	Updated Table 8: Temperature sensor calibration values

STM32L496xx Revision history

Table 134. Document revision history (continued)

Date	Revision	Changes
15-May-2018	8	Updated: Figure 1: STM32L496xx block diagram, Figure 5: Clock tree, Section 3.10.1: Power supply schemes, Table 5: Functionalities depending on the working mode, , Table 19: Voltage characteristics, Table 18: STM32L496xx memory map and peripheral register boundary addresses, Section 3.17: Analog to digital converter (ADC), Section 6.3.2: Operating conditions at power-up / power-down, Table 82: DAC characteristics, Table 86: OPAMP characteristics Added: Figure 4: Power-up/down sequence
16-Jul-2018	9	Updated Figure 14: STM32L496Vx WLCSP100 pinout ⁽¹⁾ , Figure 15: STM32L496Vx, external SMPS device, WLCSP100 pinout ⁽¹⁾ , Table 15: STM32L496xx pin definitions, Figure 70: UFBGA132 - 132-ball, 7 x 7 mm ultra thin fine pitch ball grid array package recommended footprint, Figure 77: WLCSP – 100 ball, 4.166 x 4.628 mm 0.4 mm pitch wafer level chip scale package recommended footprint

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics - All rights reserved

