BAS16H, SBAS16H

Switching Diode

Features

- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Continuous Reverse Voltage	V _R	100	Vdc
Peak Forward Current	١ _F	200	mAdc
Non-Repetitive Peak Forward Surge Current, 60 Hz	I _{FSM(surge)}	500	mAdc
Repetitive Peak Forward Current (Note 2)	I _{FRM}	1.0	A
Non-Repetitive Peak Forward Current (Square Wave, $T_J = 25^{\circ}C$ prior to surge) $t = 1 \ \mu s$ $t = 10 \ \mu s$ $t = 100 \ \mu s$ $t = 1 \ ms$ $t = 1 \ s$	IFSM	36.0 18.0 6.0 3.0 0.7	A

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board (Note 1) $T_A = 25^{\circ}C$ Derate above 25°C	P _D	200 1.57	mW mW/°C
Thermal Resistance Junction to Ambient	$R_{\theta JA}$	635	°C/W
Junction and Storage Temperature	T _J , T _{stg}	–55 to 150	°C

1. FR-4 Minimum Pad.

2. Square Wave, f = 40 kHz, PW = 200 ns Test Duration = 60 s, T_J = 25°C prior to surge. ON

ON Semiconductor®

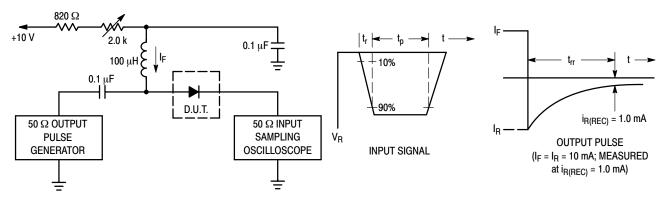
http://onsemi.com

MARKING DIAGRAM

A6 = Specific Device Code M = Date Code

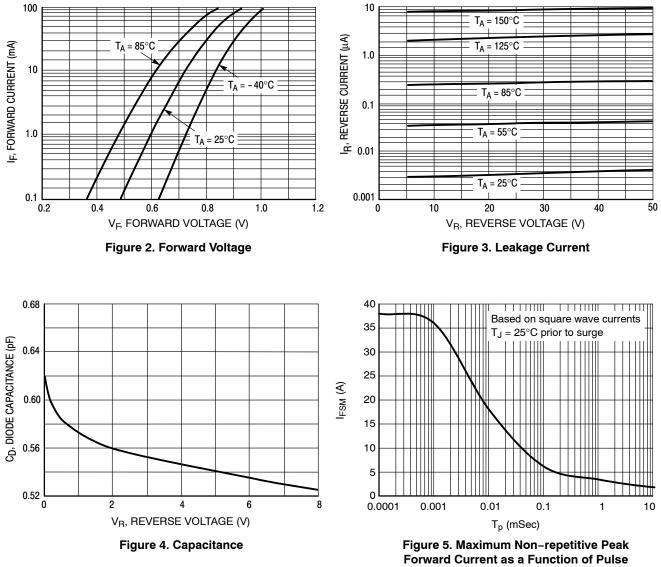
ORDERING INFORMATION

Device	Package	Shipping†
BAS16HT1G	SOD-323 (Pb-Free)	3000 / Tape & Reel
SBAS16HT1G	SOD-323 (Pb-Free)	3000 /T ape & Reel
SBAS16HT3G	SOD-323 (Pb-Free)	10000 / Tape & Reel

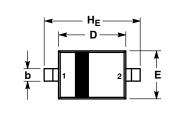

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

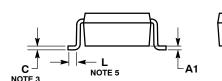
BAS16H, SBAS16H

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)


Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Reverse Voltage Leakage Current ($V_R = 100 \text{ Vdc}$) ($V_R = 75 \text{ Vdc}, T_J = 150^{\circ}\text{C}$) ($V_R = 25 \text{ Vdc}, T_J = 150^{\circ}\text{C}$)	I _R	- - -	1.0 50 30	μAdc
Reverse Breakdown Voltage (I _{BR} = 100 μAdc)	V _(BR)	100	-	Vdc
Forward Voltage $(I_F = 1.0 \text{ mAdc})$ $(I_F = 10 \text{ mAdc})$ $(I_F = 50 \text{ mAdc})$ $(I_F = 150 \text{ mAdc})$	VF	- - -	715 855 1000 1250	mV
Diode Capacitance ($V_R = 0, f = 1.0 \text{ MHz}$)	C _D	-	2.0	pF
Forward Recovery Voltage (I _F = 10 mAdc, t _r = 20 ns)	V _{FR}	-	1.75	Vdc
Reverse Recovery Time ($I_F = I_R = 10$ mAdc, $R_L = 50 \Omega$)	t _{rr}	-	6.0	ns
Stored Charge $(I_F = 10 \text{ mAdc to } V_R = 5.0 \text{ Vdc}, R_L = 500 \Omega)$	Q _S	-	45	рС

BAS16H, SBAS16H

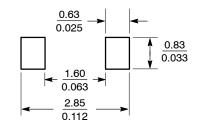

Notes: 1. A 2.0 k Ω variable resistor adjusted for a Forward Current (I_F) of 10 mA. 2. Input pulse is adjusted so I_{R(peak)} is equal to 10 mA. 3. t_p » t_{rr}



PACKAGE DIMENSIONS

SOD-323 CASE 477-02 ISSUE H

NOTES:


- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETERS.
 LEAD THICKNESS SPECIFIED PER L/F DRAWING WITH SOLDER PLATING.
- 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
- 5. DIMENSION L IS MEASURED FROM END OF RADIUS.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.80	0.90	1.00	0.031	0.035	0.040
A1	0.00	0.05	0.10	0.000	0.002	0.004
A3	0.15 REF		0.006 REF			
b	0.25	0.32	0.4	0.010	0.012	0.016
С	0.089	0.12	0.177	0.003	0.005	0.007
D	1.60	1.70	1.80	0.062	0.066	0.070
E	1.15	1.25	1.35	0.045	0.049	0.053
L	0.08			0.003		
He	2.30	2.50	2.70	0.090	0.098	0.105

STYLE 1:

PIN 1. CATHODE (POLARITY BAND) 2. ANODE

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and a registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any dark associated with such unintended or unauthorized applicable copyright as medigine regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative