ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

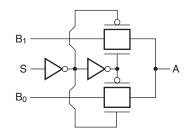
ON Semiconductor[®]

NC7SB3157, FSA3157 Low-Voltage SPDT Analog Switch or 2:1Multiplexer / De-multiplexer Bus Switch

Features

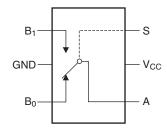
- Useful in Both Analog and Digital Applications
- Space-Saving, SC70 6-Lead Surface Mount Package
- Ultra-Small, MicroPak[™] Leadless Package
- \blacksquare Low On Resistance: <10 Ω on Typical at 3.3V V_{CC}
- Broad V_{CC} Operating Range: 1.65V to 5.5V
- Rail-to-Rail Signal Handling
- Power-Down, High-Impedance Control Input
- Over-Voltage Tolerance of Control Input to 7.0V
- Break-Before-Make Enable Circuitry
- 250MHz, 3dB Bandwidth

Description


The NC7SB3157 / FSA3157 is a high-performance, single-pole / double-throw (SPDT) analog switch or 2:1 multiplexer / de-multiplexer bus switch.

The device is fabricated with advanced sub-micron CMOS technology to achieve high-speed enable and disable times and low on resistance. The break-before-make select circuitry prevents disruption of signals on the B Port due to both switches temporarily being enabled during select pin switching. The device is specified to operate over the 1.65 to 5.5V V_{CC} operating range. The control input tolerates voltages up to 5.5V, independent of the V_{CC} operating range.

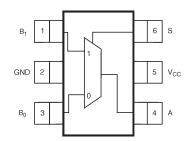
Part Number	Top Mark	Eco Status	Package Description	Packing Method
NC7SB3157P6X	B7A	RoHS	6-Lead, SC70, EIAJ SC88, 1.25mm Wide Package	3000 Units on Tape and Reel
NC7SB3157L6X	BB	RoHS	6-Lead, MicroPak 1.0mm Wide Package	5000 Units on Tape and Reel
FSA3157P6X	B7A	RoHS	6-Lead, SC70, EIAJ SC88, 1.25mm Wide Package	3000 Units on Tape and Reel
FSA3157L6X	BB	RoHS	6-Lead, MicroPak 1.0mm Wide Package	5000 Units on Tape and Reel


Ordering Information

Logic Symbol

Analog Symbol

Figure 3. Analog Symbol


Function Table

Input (S)	Function
Logic Level Low	B ₀ Connected to A
Logic Level High	B ₁ Connected to A

Pin Descriptions

Pin Names	Description
A, B ₀ , B ₁	Data Ports
S	Control Input

Connection Diagrams

2. Pin Assignments SC70

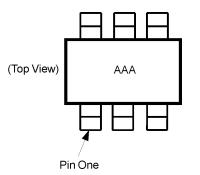


Figure 4. Pin One Orientation

Note:

Orientation of top mark determines pin one location. Read the top product code mark left to right and pin one is the lower left pin (see Figure 4).

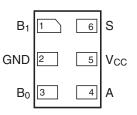


Figure 5. Pad Assignments for MicroPak™

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Supply Voltage	-0.5	+7.0	V
V _S	DC Switch Voltage ⁽¹⁾	-0.5	V _{CC} +0.5	V
V _{IN}	DC Input Voltage ⁽¹⁾	-0.5	+7.0	V
I _{IK}	DC Input Diode Current at V _{IN} < 0V		-50	mA
I _{OUT}	DC Output Current		128	mA
I _{CC} /I _{GND}	DC V _{CC} or Ground Current		±100	mA
T _{STG}	Storage Temperature Range	-65	+150	°C
Τ _J	Junction Temperature Under Bias		+150	°C
ΤL	Junction Lead Temperature (Soldering, 10 seconds)		+260	°C
MSL	Moisture Sensitivity Level (JEDEC J-STD-020A)		1	Level
PD	Power Dissipation at +85°C		180	mW
ESD	Human Body Model, JESD22-A114		4000	V

Note:

1. The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Para	Min.	Max.	Unit	
V _{CC}	Supply Voltage Operating	1.65	5.50	V	
V _{IN}	Control Input Voltage ⁽²⁾	0	V _{CC}	V	
V _{IN}	Switch Input Voltage ⁽²⁾	0	V _{CC}	V	
V _{OUT}	Output Voltage ⁽²⁾	0	V _{CC}	V	
T _A	Operating Temperature	-40	+85	°C	
t _r , t _f	Input Rise and Fall Time	Control Input V _{CC} = 2.3V–3.6V	0	10	ns/V
		Control Input V _{CC} = 4.5V–5.5V	0	5	ns/V
θ_{JA}	Thermal Resistance, SC70			270	°C/W

Note:

2. Control input must be held HIGH or LOW; it must not float.

Symbol	Parameter	Conditions	V _{CC} (V)	T _A = +25°C			T _A = -4 +8	Units	
				Min.	Тур.	Max.	Min.	Max.	
	High Level		1.65 – 1.95	0.75 V _{CC}			0.75 V _{CC}		
V _{IH}	Input Voltage		2.3 – 5.5	0.7 V _{CC}			0.7 V _{CC}		V
V	Low Level Input Voltage		1.65 – 1.95			0.25 V _{CC}		0.25 V _{CC}	v
V_{IL}			2.3 – 5.5			0.3 V _{CC}		0.3 V _{CC}	v
I _{IN}	Input Leakage Current	$0 \leq V_{IN} \leq 5.5 V$	0 – 5.5		±0.05	±0.1		±1	μA
I _{OFF}	Off State Leakage Current	$0 \le A, B \le V_{CC}$	1.65 – 5.5		±0.05	±0.1		±1	μA
		V _{IN} = 0V, I _O = 30mA	4.5		3.0	7.0		7.0	
		V _{IN} = 2.4V, I _O = -30mA			5.0	12.0		12.0	Ω
		V _{IN} = 4.5V, I _O = -30mA			7.0	15.0		15.0	
	Switch On Resistance ⁽³⁾	V _{IN} = 0V, I _O = 24mA	3.0		4.0	9.0		9.0	
R _{ON}		V _{IN} = 3V, I _O = -24mA			10.0	20.0		20.0	
		V _{IN} = 0V, I _O = 8mA	2.3		5.0	12.0		12.0	
		V _{IN} = 2.3V, I _O = -8mA			13.0	30.0		30.0	
		V _{IN} = 0V, I _O = 4mA	1.65		6.5	20.0		20.0	
		V _{IN} = 1.65V, I _O = -4mA			17.0	50.0			
I _{CC}	Quiescent Supply Current; All Channels On or Off	V _{IN} = V _{CC} or GND I _{OUT} = 0	5.5			1		10	μA
	Analog Signal Range		V _{CC}	0		V _{CC}	0	V _{CC}	V
		I_A = -30mA, 0 \leq V _{Bn} \leq V _{CC}	4.5					25.0	
D		$I_{A} = -24mA, \ 0 \leq V_{Bn} \leq V_{CC}$	3.0					50.0	1
R _{RANGE}	Signal Range ^(3, 7)	I_A = -8mA, 0 \leq V _{Bn} \leq V _{CC}	2.3					100	Ω
		I_A = -4mA, 0 \leq V _{Bn} \leq V _{CC}	1.65					300	
		I _A = –30mA, V _{Bn} = 3.15	4.5		0.15				
	On Resistance	I _A = –24mA, V _{Bn} 2.1	3.0		0.2				Ω
ΔR_{ON}	Match Between- Channels ^(3, 4, 5)	I _A = –8mA, V _{Bn} = 1.6	2.3		0.5				
		I _A = –4mA, V _{Bn} = 1.15	1.65		0.50				
		$I_A = -30 \text{mA}, 0 \le V_{Bn} \le V_{CC}$	5.0		6.0				
D	On Resistance	I_A = -24mA, 0 \leq V _{Bn} \leq V _{CC}	3.3		12.0				
R _{flat}	Flatness ^(3, 4, 6)	I_A = -8mA, $0 \le V_{Bn} \le V_{CC}$	2.5		28.0				Ω
		$I_A = -4mA$, $0 \le V_{Bn} \le V_{CC}$	1.8		125				1

NC7SB3157, FSA3157 — Low-Voltage SPDT Analog Switch or 2:1 Multiplexer / De-multiplexer Bus Switch

Notes:

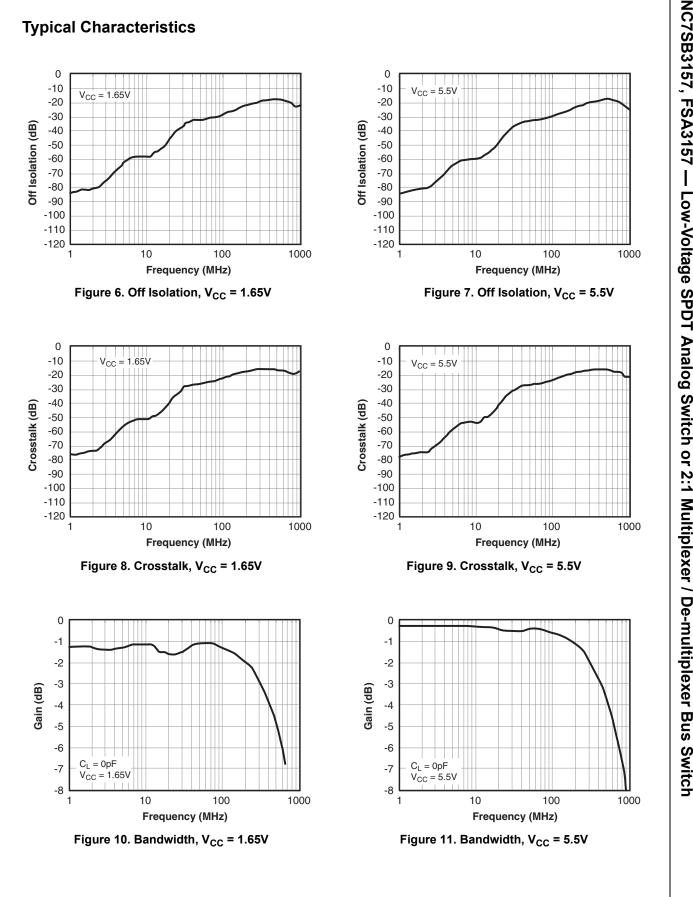
3. Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B Ports).

- 4. Parameter is characterized, but not tested in production.
- 5. $\Delta R_{ON} = R_{ON} \max R_{ON} \min \max$ measured at identical V_{CC}, temperature, and voltage levels.
- 6. Flatness is defined as the difference between the maximum and minimum value of on resistance over the specified range of conditions.
- 7. Guaranteed by design.

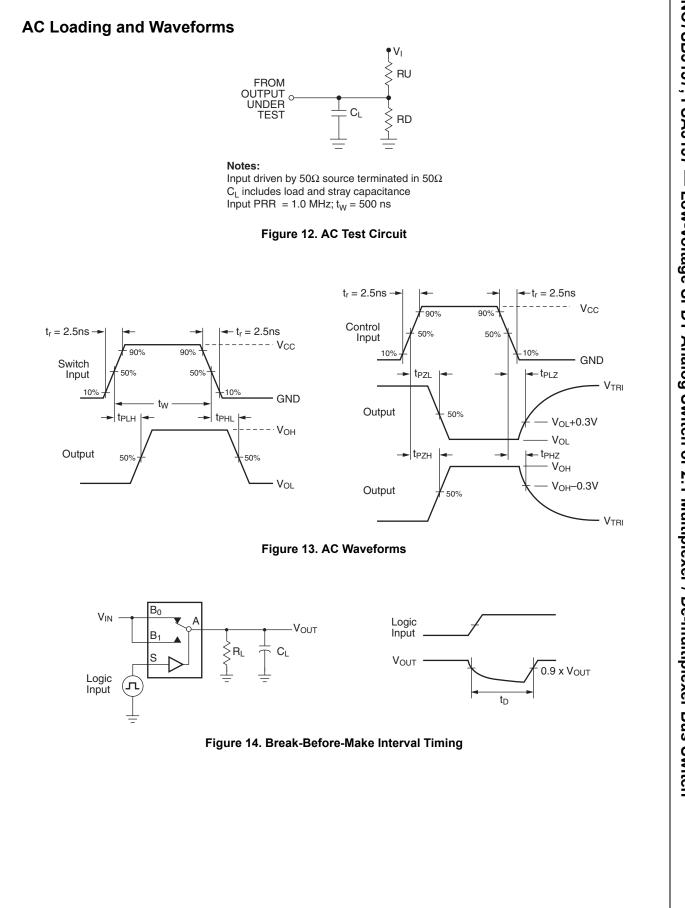
Symbol	Parameter	Conditions	V _{cc} (V)	T _A = +25°C			T _A = -40°C to +85°C		Units	Figure Number
				Min.	Тур.	Max.	Min.	Max.		Number
			1.65 – 1.95			3.5		3.5		Figure 12 Figure 13
t _{PHL} ,	Propagation Delay	V _I = OPEN	2.3 – 2.7			1.2		1.2	ns	
t _{PLH}	Bus-to-Bus ⁽⁸⁾	V _I = OPEN	3.0 – 3.6			0.8		0.8		
			4.5 – 5.5			0.3		0.3		
			1.65 – 1.95	7.0		23.0	7.0	24.0		
t _{PZL} ,	Output Enable Time Turn-On Time (A to B _n)	$V_I = 2 \times V_{CC}$ for t_{PZL} $V_I = 0V$ for t_{PZH}	2.3 – 2.7	3.5		13.0	3.5	14.0	- ns	Figure 12 Figure 13
t _{PZH}			3.0 – 3.6	2.5		6.9	2.5	7.6		
			4.5 – 5.5	1.7		5.2	1.7	5.7		
	Output Disable Time Turn-Off Time (A Port to B Port)	$V_I = 2 \times V_{CC}$ for t_{PLZ} $V_I = 0V$ for t_{PHZ}	1.65 – 1.95	3.0		12.5	3.0	13.0	- ns	Figure 12 Figure 13
t _{PLZ} ,			2.3 – 2.7	2.0		7.0	2.0	7.5		
t _{PHZ}			3.0 - 3.6	1.5		5.0	1.5	5.3		
	(4.5 – 5.5	0.8		3.5	0.8	3.8		
			1.65 –1.95	0.5			0.5		-	
	Break-Before-Make		2.3 – 2.7	0.5			0.5			E inun 44
t _{B-M}	Time ⁽⁹⁾		3.0 – 3.6	0.5			0.5		ns	Figure 14
			4.5 – 5.5	0.5			0.5			
2	QL L · · · · (9)	C _L = 0.1nF, V _{GEN} = 0V,	5.0		7.0				_	_: 4=
Q	Charge Injection ⁽⁹⁾	$R_{GEN} = 0\Omega$	3.3		3.0				рС	Figure 15
OIRR	Off Isolation ⁽¹⁰⁾	R _L = 50Ω, f = 10MHz	1.65 – 5.5		-57.0				dB	Figure 16
Xtalk	Crosstalk	R _L = 50Ω, f = 10MHz	1.65 – 5.5		-54.0				dB	Figure 17
BW	-3dB Bandwidth	R _L = 50Ω	1.65 – 5.5		250				MHz	Figure 20
THD	Total Harmonic Distortion ⁽⁹⁾	R _L = 600Ω, 0.5 V _{PP} , f = 600 Hz to 20 KHz	5.0		.011				%	

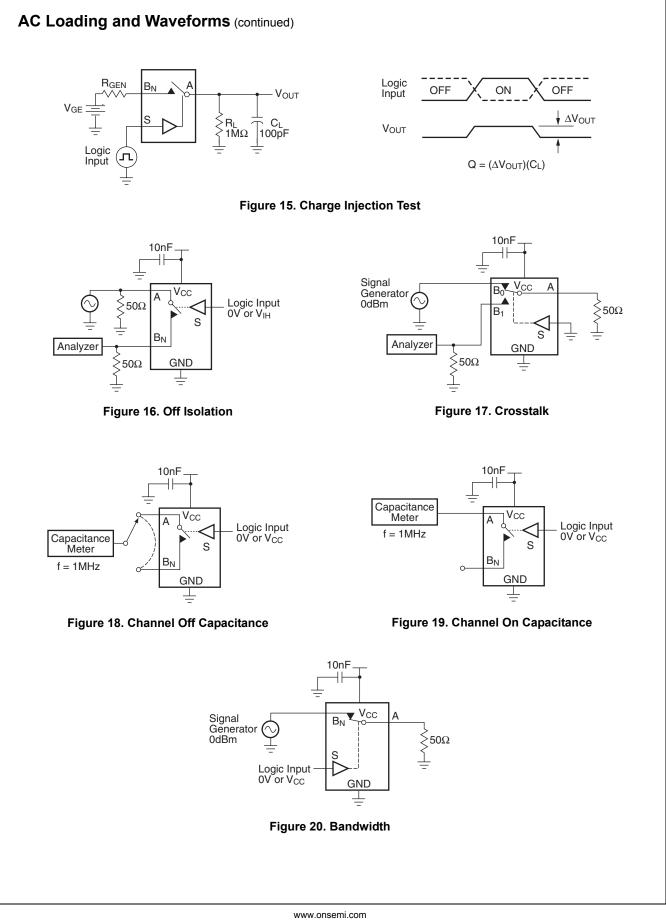
Notes:

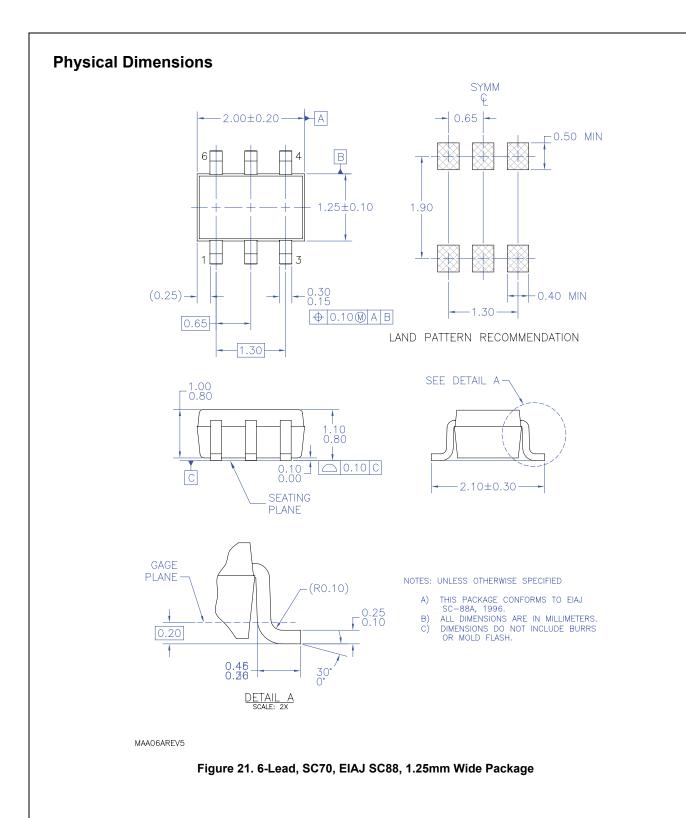
8. This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the on resistance of the switch and the 50pF load capacitance, when driven by an ideal voltage source (zero output impedance).

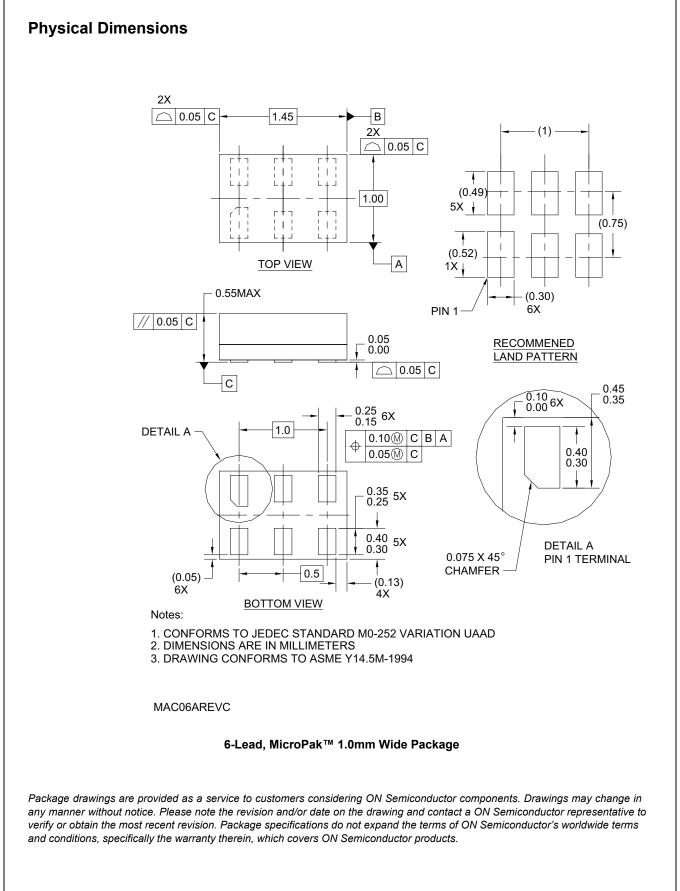

9. Guaranteed by design.

10. Off Isolation = 20 $\log_{10} [V_A / V_{Bn}]$.


Capacitance


 T_A = +25°C, f = 1MHz. Capacitance is characterized, but not tested in production.


Symbol	Parameter	Conditions	Тур.	Max.	Units	Figure Number
C _{IN}	Control Pin Input Capacitance	$V_{\rm CC} = 0V$	2.3		pF	
C _{IO-B}	B Port Off Capacitance	V _{CC} = 5.0V	6.5		pF	Figure 18
C _{IOA-ON}	A Port Capacitance When Switch Is Enabled	V _{CC} = 5.0V	18.5		pF	Figure 19


NC7SB3157, FSA3157 — Low-Voltage SPDT Analog Switch or 2:1 Multiplexer / De-multiplexer Bus Switch

Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a ON Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of ON Semiconductor's worldwide terms and conditions, specifically the warranty therein, which covers ON Semiconductor products.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative