

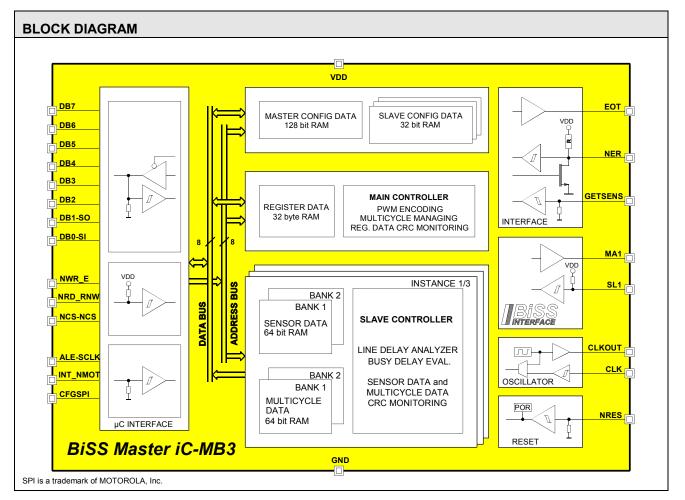
Rev B2, Page 1/27

FEATURES

- Bidirectional *BiSS* sensor communication with up to 3 slaves
- Supports SSI protocol for unidirectional communication
- Synchronous sensor data acquisition with cyclic transfer at data rates of up to 10 Mbit/s
- Command and slave register operations during cyclic data transfers
- Data lengths of up to 64 bits for sensor data and multicycle data, independently scalable for each slave
- Automatic compensation of line delays, measurement and conversion times
- Data verification by CRC polynomials of up to 8 bits, adjustable per slave and data area
- Separate memory banks enable free controller access during BiSS sensor data transfers
- 32 bytes of intermediate memory to ease bidirectional slave register communications
- Parallel controller interface with an 8-bit data/address bus services Intel and Motorola devices
- ◆ Serial controller communication by SPI[™]-compatible mode
- Single 3 to 5V supply, industrial temperature range

Bidirectional device communi-

cation in multisensor systems


Position measurement with

linear or angular encoders

APPLICATIONS

٠

٠

Copyright © 2003, iC-Haus

Rev B2, Page 2/27

DESCRIPTION

iC-MB3 is a single-chip *BiSS/SSI* interface controller featuring an 8-bit bus interface to industrial standard microcontrollers. An additional SPI interface mode also enables serial communication between iC-MB3 and the connected microcontroller.

One to three *BiSS* devices can be attached to the sensor side of the device. These are connected up to clock line MA1 and data return line SL1 using RS422 transceivers (Figure 1). The *BiSS* devices can be connected directly in noise-free environments.

A maximum of three *BiSS* slaves is supported, each with their own independently scalable data sections encompassing:

- 1) Sensor data from 0 to 64 bits (for measurement data, alarms and warnings)
- 2) Multicycle data from 0 to 64 bits (for additional measurement data)
- Register data with 128 bytes per slave ID (e.g. for device parameters).

For both sensor and multicycle data iC-MB3 provides dual RAM memory banks for each slave, enabling flexible access to the microcontroller while new sensor data is being read in. A 32-byte intermediate memory supports register transfers.

Sensor data acquisition is started by a microcontroller command or via pin GETSENS. Alternatively, iC-MB3 can also read in new sensor data automatically; the cycle time in this instance can be set as required.

The end of sensor data acquisition and readin is signaled at pin EOT by a high; if faults occur during transmission pin NER signals a low. Errors in communication can be verified by the microcontroller via a status register; a system error message can also enter this register if bidirectional message pin NER is kept low by external intervention.

iC-MB3 generates a clock signal for sensor communication using an internal 20 MHz oscillator. The clock can also be supplied externally.

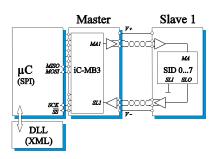


Figure 1: Point-to-point connection of iC-MB3 and one bus subscriber. This can use 1 to 8 slave IDs (SID).

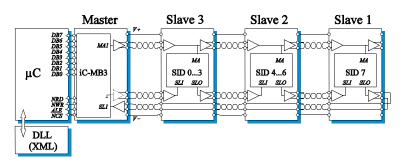
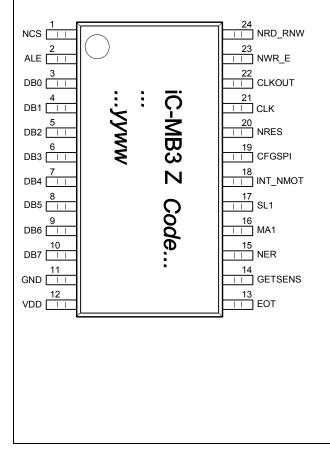


Figure 2: Example network of iC-MB3 and three subscribers. All 8 possible slave IDs (SIDs) are used distributed.

iC-MB3 *BiSS INTERFACE MASTER*, 1-Chan./3-Slaves


Rev B2, Page 3/27

CHaus

PACKAGES TSSOP24 to JEDEC Standard

PIN CONFIGURATION

TSSOP24 4.4 mm, lead pitch 0.65 mm (top view)

PIN FUNCTIONS Function No. Name NCS Chip Select Input, low active 1 ALE-SCLK 2 Address Latch Enable Input 3 Data Bus DB0 4 DB1 Data Bus 5 DB2 Data Bus 6 DB3 Data Bus 7 DB4 Data Bus 8 DB5 Data Bus 9 DB6 Data Bus 10 Data Bus DB7 11 GND Ground +3.3 ... +5V Supply Voltage 12 VDD End-Of-Transmission Output 13 EOT GETSENS 14 Sensor Data Request Input NER Error Message Input/Output, low active 15 BiSS Clock/Data Line Output 16 MA1 17 SL1 **BiSS** Data Line Input 18 INT_NMOT Mode Select (Intel = 1, Motorola = 0)* 19 CFGSPI Serial/Parallel Mode Select Input (serial SPI = 1, parallel = 0) 20 NRES Reset Input, low active 21 CLK External Clock Input CLKOUT** Clock Output 22 23 NWR_E Write Input, low active (Intel) Enable Input, high active (Motorola) 24 NRD_RNW Read Input, low active (Intel) Read/Not-Write Select Input (Motorola) Serial SPI Communication Mode (CFGSPI = 1): NCS Chip Select Input, low active 1 2 SCLK SPI Clock Input 3 SI SPI Serial Data Input SPI Serial Data Output 4 SO * only when CLKENI = 1 else no signal

** on SPI no effect

Rev B2, Page 4/27

ABSOLUTE MAXIMUM RATINGS

ltem	Symbol	Parameter	Conditions	Fig.			Unit
					Min.	Max.	
G001	VDD	Supply Voltage VDD			-0.3	6	V
G002	I(VDD)	Current in VDD			-20	30	mA
G003	V()	Voltage at all pins, excluding VDD and GND	V()≤ VDD + 0.3 V		-0.3	6	V
G004	I()	Current in all pins excluding VDD and GND			-10	10	mA
E001	Vesd()	ESD Susceptibility at all pins	MIL-STD-883, Method 3015, HBM 100 pF discharged through 1.5 k Ω			2	kV
TG1	Tj	Operating Junction Temperature			-40	150	°C
TG2	Ts	Storage Temperature Range			-40	150	°C

THERMAL DATA

Operating Conditions: VDD = 3 ... 5 V

ltem	Symbol	Parameter	Conditions	Fig.				Unit
					Min.	Тур.	Max.	
T1	Та	Operating Ambient Temperature Range			-25		85	°C
		(extended range to -25 °C is available on request)						

Rev B2, Page 5/27

ELECTRICAL CHARACTERISTICS

ltem	Symbol	Parameter	Conditions	⊺j °C	Fig.	Min.	Тур.	Max.	Unit
Total	Device								
001	VDD	Permissible Supply Voltage				3		5.5	V
002	I(VDD)	Supply Current in VDD	outputs not loaded, f(CLK) = 20 MHz					20	mA
003	Vc()hi	Clamp Voltage hi at all pins excluding VDD, GND	Vc()hi = V() - VDD, I() = 1 mA; outputs tristate			0.3		1.6	V
004	Vc()lo Clamp Voltage lo at all pins excluding VDD, GND		I() = -1mA; outputs tristate			-1.6		-0.3	V
Cont	rol Interface	EOT, NER, GETSENS	•						
201	Vs()hi	Saturation Voltage hi at EOT	Vs()hi = VDD - V(); I() = -4 mA					400	mV
202	Vs()lo	Saturation Voltage lo at EOT, NER	l() = 4 mA					420	mV
203	Vt()hi	Threshold Voltage hi at NER, GETSENS						2	V
204	Vt()lo	Threshold Voltage lo at NER, GETSENS				0.8			V
205	Vt()hys	Threshold Voltage Hysteresis at NER, GETSENS				300	500		mV
206	lpu()	Pull-Up Current at NER vs. VDD	V() = 0 VDD - 1.5 V			-600	-300	-60	μA
207	lpd()	Pull-Down Current at GETSENS vs. GND	V() = 1.5 V VDD			4	35	70	μA
BiSS	Interface: N	MA1, SL1							
301	Vs(MA1)hi	Saturation Voltage hi	Vs()hi = VDD - V(); I() = -4 mA					400	mV
302	Vs(MA1)lo	Saturation Voltage lo	l() = 4 mA					420	mV
303	Vt(SL1)hi	Threshold Voltage hi						2	V
304	Vt(SL1)lo	Threshold Voltage lo				0.8			V
305	Vt(SL1)hys	Threshold Voltage Hysteresis				300	500		mV
306	Ipu(SL1)	Pull-Up Strom vs. VDD	V() = 0 VDD - 1.5 V			-70	-35	-5	μA
	iterface: bid INT_NMOT,	lirectional data bus DB7 0, Inj CFGSPI	outs NWR_E, NRD_RNW, NCS,						
401	Vs()hi	Saturation Voltage hi at DB70	Vs()hi = VDD - V(); I() = -4 mA					400	mV
402	Vs()lo	Saturation Voltage lo at DB70	l() = 4 mA					420	mV
403	Vt()hi	Threshold Voltage hi						2	V
404	Vt()lo	Threshold Voltage lo				0.8			V
405	Vt()hys	Threshold Voltage Hysteresis				300	500		mV
406	lpd()	Pull-Down Current at DB70, ALE, CFGSPI, INT_NMOT to GND	V() = 1.5 V VDD			4	35	70	μA
407	lpu()	Pull-Up Current at NRD_RNW, NWR_E, NCS vs.VDD	V() = 0 VDD-1.5 V			-70	-35	-4	μA

Rev B2, Page 6/27

ELECTRICAL CHARACTERISTICS

Operating Conditions: VDD = 3 5.5 V,	Γj = -25 +125 °C, unless otherwise noted
--------------------------------------	--

ltem	Symbol	Parameter	Conditions	Tj	Fig.				Unit
				°C		Min.	Тур.	Max.	
Oscil	llator: CLK,	CLKOUT							
501	f(CLK)	Permissible Clock Rate at CLK					20	25	MHz
502	f(CLKOUT)	Oscillator Clock Frequency	VDD = 5 V, CLKENI = 1				20		MHz
503	Vt(CLK)hi	Threshold Voltage hi						2	V
504	Vt(CLK)lo	Threshold Voltage lo				0.8			V
505	Vt(CLK)hys	Threshold Voltage Hysteresis				300	500		mV
506	lpd()	Pull-Down Current at CLK	V() = 1.5 V VDD			4	35	70	μA
507	Vs()hi	Saturation Voltage hi at CLKOUT	Vs()hi = VDD- V(); I()= -4 mA					400	mV
508	Vs()lo	Saturation Voltage lo at CLKOUT	I()= 4 mA					420	mV
509	lsc()hi	Short-Circuit Current hi at CLKOUT	V() = 0			-30	-12	-4	mA
510	lsc()lo	Short-Circuit Current lo at CLKOUT	V() = VDD			5	23	50	mA
Rese	t: NRES								
601	VDDoff	Undervoltage Reset	VDD decreasing				1.6		V
602	VDDon	Undervoltage Release	VDD increasing				1.75		V
603	VDDhys	Undervoltage Hysteresis	VDDhys = VDDon - VDDoff				100		mV
604	Vt()hi	Threshold Voltage hi						2	V
605	Vt()lo	Threshold Voltage lo				0.8			V
606	Vt()hys	Threshold Voltage Hysteresis				300	500		mV
607	lpd()	Pull-Down Current	V() = 1.5 V VDD			4	35	70	μA
608	td()res	Required Reset Pulse Duration at NRES				250			ns

Rev B2, Page 7/27

OPERATING REQUIREMENTS: µC Interface, INTEL mode

Operating conditions: CFGSPI = 0, INT_NMOT = 1 VDD = 3 ... 5.5V, Ta = -25 ... 85 °C; input levels lo = 0 ... 0.45 V, hi = 2.4 V ... VDD

ltem	Symbol	Parameter	Conditions	Fig.			Unit
					Min.	Max.	
101	tsAA	Setup Time: Address stable before ALE hi⊸lo		3/4	15		ns
102	tAh	Signal Duration: ALE at high level		3/4	10		ns
103	tsCA	Setup Time: NCS hi⊣lo until ALE hi⊣lo		3/4	10		ns
104	thAA	Hold Time: Address stable after ALE hi⊸lo		3/4	15		ns
105	tsAW	Setup Time: ALE hi→lo until NWR_E hi→lo		3	0		ns
106	twi	Signal Duration: NWR_E at low level		3	10		ns
107	tsDW	Setup Time: Data stable before NWR_E lo⊸hi		3	15		ns
108	thWD	Hold Time: Data stable after NWR_E lo→hi		3	0		ns
109	thWC	Hold Time: NCS lo after NWR_E lo∽hi		3	0		ns
110	thWA thRA	Hold Time: ALE lo after NWR_E lo→hi	NCS = lo	3/4	15		ns
111	tsAR	Setup Time: ALE hi→lo until NRD_RNW hi→lo		4	0		ns
112	trı	Signal Duration: NRD_RNW at low level		4	70		ns
113	tpRD1	Propagation Delay: Data stable after NRD_RNW hi→lo		4	0	25	ns
114	tpRD2	Propagation Delay: Data Bus high impedance after NRD_RNW lo⊸hi		4	0	25	ns

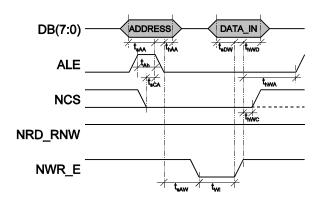
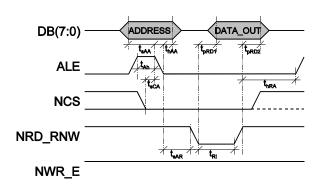
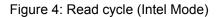




Figure 3: Write cycle (Intel Mode)

Rev B2, Page 8/27

OPERATING REQUIREMENTS: µC Interface, MOTOROLA mode

Operating conditions: CFGSPI = 0, INT_NMOT = 0

VDD = 3 ... 5.5V, Ta = -25 ... 85 °C; input levels lo = 0 ... 0.45 V, hi = 2.4 V ... VDD

ltem	Symbol	Parameter	Conditions	Fig.			Unit
					Min.	Max.	
120	tsAA	Setup Time: Address stable before ALE hi⊸lo		5/6	15		ns
121	tAh	Signal Duration: ALE at high level		5/6	10		ns
122	tsCA	Setup Time: NCS hi⊣lo until ALE hi⊣lo		5/6	10		ns
123	thAA	Hold Time: Address stable after ALE hi⊣lo		5/6	15		ns
124	tsAE	Setup Time: ALE hi⊸lo until NWR_E lo⊸hi		5/6	0		ns
125	tsRE	Setup Time: NRD_RNW lo→hi until NWR_E lo→hi		5/6	0		ns
126	tEh	Signal Duration: NWR_E at high level		5/6	10		ns
127	tsDE	Setup Time: Data stable before NWR_E hi⊸lo		5	15		ns
128	thED	Hold Time: Data stable before NWR_E hi⊸lo		5	0		ns
129	thEC	Hold Time: NCS lo after NWR_E hi⊣lo		5/6	0		ns
130	thER	Hold Time: NRD_RNW lo after NWR_E hi→lo		5/6	0		ns
131	tpED1	Propagation Delay: Data stable after NWR_E lo→hi		6	0	25	ns
132	tpED2	Propagation Delay: Data bus high impedance after NWR_E hi⊣lo		6	0	25	ns
133	thEA	Hold Time: NWR_E hi⊸lo before ALE lo⊸hi	NCS = Io	5/6	0		ns

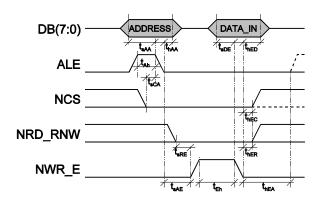


Figure 5: Write cycle (Motorola Mode)

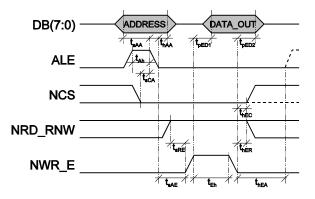


Figure 6: Read cycle (Motorola Mode)

Rev B2, Page 9/27

OPERATING REQUIREMENTS: µC Interface, SPI mode

Operating conditions: CFGSPI = 1

VDD = 3 ... 5.5V, Ta = -25 ... 85 °C; input levels lo = 0 ... 0.45 V, hi = 2.4 V ... VDD

ltem	Symbol	Parameter	Conditions	Fig.		_	Unit
					Min.	Max.	
140	tsCCL	Setup Time: NCS hi⊣lo until SCLK/ALE lo→hi		0.29	10		ns
141	tsDCL	Setup Time: SI/DB0 stable before SCLK/ALE lo-hi		0.29	15		ns
142	thDCL	Hold Time: SI/DB0 stable after SCLK/ALE lo⊸hi		0.29	0		ns
143	tCLh	Signal Duration SCLK/ALE hi		7a/b	10		ns
144	tc⊔	Signal Duration SCLK/ALE lo		7a/b	10		ns
145	thCLC	Hold Time: NCS lo after SCLK/ALE lo⊸hi		7a/b	0		ns
146	tCSh	Signal Duration NCS hi		7a/b	0		ns
147	tpCLD	Propagation Delay: SO/DB1 stable after SCLK/ALE hi⊸lo		7b	0	25	ns
148	tpCSD	Propagation Delay: SO/DB1 high impedance after NCS lo∽hi		7b	0	25	ns

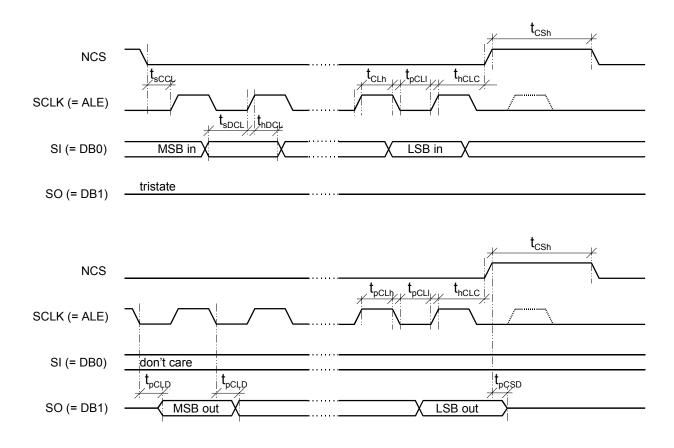


Figure 7: µC interface in SPI mode with write cycle (top) and read cycles (bottom).

Rev B2, Page 10/27

OPERATING REQUIREMENTS: BiSS Interface

Operating conditions: Register bit SELSSI = 0

VDD = 3 ... 5.5 V, Ta = -25 ... 85 °C; input levels lo = 0 ... 0.45 V, hi = 2.4 V ... VDD

ltem	Symbol	Parameter	Conditions	Fig.			Unit
					Min.	Max.	
Sens	or Mode						
160	TMAS	Clock Period	FreqSens via FREQ(4:0) selected in accordance with table on page 17	8	2	320	1/f(CLK)
161	tMASI	Clock Signal Lo Level Duration		8		50	% TMAS
162	tMASh	Clock Signal Hi Level Duration		8		50	% Tmas
163	tpLine	Permissible Line Delay		8	0	indefinite	
164	∆tpL	Permissible Propagation Delay of Subsequent Clock Cycles vs. 1 st Clock Cycle	∆tpL = max(tpLine - tpLx); x= 1 n	8		25	% Tmas
165	Ttos	Permissible Timeout (Slave)		8	55		% Tmas
Regis	ster Mode'	•					
165	Tmar	Clock Period	FreqReg via FREQ(7:5) selected in accordance with table on page 17	9	2	256	TMAS
166	t MA0h	"Logic 0" Hi Level Duration		9		25	% Tmar
167	tMA1h	"Logic 1" Hi Level Duration		9		75	% Tmar
168	t MAth	Clock Signal Hi Level Duration	register data readout	9		50	% Tmar
169	tsSL	Setup Time: SL1 stable before MA1 lo⊸hi		9	30		ns
170	thSL	Hold Time: SL1 stable before MA1 lo⊸hi		9	20		ns
171	Ttor	Permissible Timeout (Slave)		9	80		% Tmar

*) For clocking to occur in register mode the slaves must have signaled that they are ready for register mode communication (see page 17).

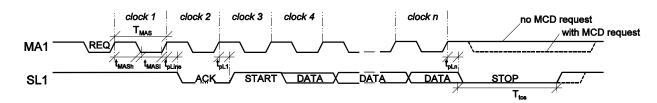


Figure 8: Timing diagram of sensor mode

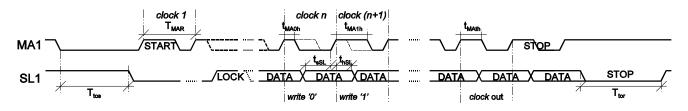


Figure 9: Timing diagram of register mode

Evaluating SL1 Signals

In *BiSS* mode delay times of longer than one clock cycle are permissible, with the result that line delays during communication are negligible. Evaluation of the sensor response is delayed until the first falling edge at SL1 while at MA1 the clock signal continues to be output.

Within one MA1 clock cycle four equally distributed sampling instances are available. Following the falling edge at SL1, the slave's acknowledge signal, the SL1 level is evaluated two sampling instances on, close to the center of the transmitted bit.

Rev B2, Page 11/27

OPERATING REQUIREMENTS: BiSS Interface (SSI mode)

Operating conditions: Register bit SELSSI = 1;

VDD = 3 ... 5.5 V, Ta = -25 ... 85 °C; input levels lo = 0 ... 0.45 V, hi = 2.4 V ... VDD

Item	Symbol	Parameter	Conditions	Fig.			Unit
					Min.	Max.	
180	TMAS	Clock Period	FreqSens über FREQ(4:0) selected in accordance with table on page 17	10	2 320		1/f(CLK)
181	tMASh	Clock Signal Hi Level Duration		10	50		%Tмаs
182	tMASI	Clock Signal Lo Level Duration		10	50		%Tмаs
183	tsDC	Setup Time: SL1 stable before MA1 lo⊸hi		10	30		ns
183	thDC	Hold Time: SL1 stable before MA1 lo⊸hi		10	10		ns

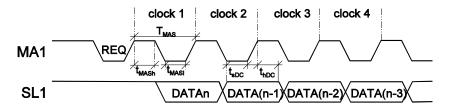


Figure 10: Timing diagram of SSI mode.

Evaluating SL1 Signals

In *BiSS* interface SSI mode SL1 values are sampled with the rising edge at MA1. An overall delay of the sensor response to the clock at MA1, caused by process times in the sensor or transmission times, is permissible up to the length of one clock cycle.

Rev B2, Page 12/27

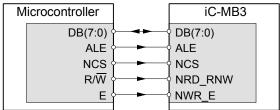
DESCRIPTION OF FUNCTIONS

iC-MB3 must be configured in accordance with the sensors connected to it; to this end a special area of memory has been included in the device. The other memory banks are used for the interim storage of incoming slave data or of slave data yet to be transmitted.

iC-MB3's second main component is its logic blocks which enable communication with the controller and generate the *BiSS* interface protocol on the slave side of the chip.

Microcontroller Interface

Via pins CFGSPI and INT_NMOT iC-MB3 can be configured for operation with an SPI-competent microcontroller, an Intel 8051 controller or a 68HC11 Motorola controller.


Here, 8-bit multiplex mode is used, in which the bidirectional data bus alternately transmits addresses and data in blocks of 8 bits (see Figures 3 to 6).

Communication Modes						
CFGSPI	INT_NMOT	Mode				
0	0	Motorola 68HC11				
0	1	Intel 8051				
1	-	SPI (polarity= 0, phase= 0)				

Intel mode

Microcontroller		iC-MB3
DB(7:0)	→→	DB(7:0)
ALE		ALE
NCS C	→→→	NCS
NRD 🤇		NRD_RNW
NWR		NWR_E

SPI mode

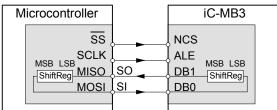


Figure 11: Wiring diagram for the microcontroller and iC- MB3.

When operated in conjunction with an SPI controller pin ALE is used as a clock input (SCK) and pin NCS as an enable input (NCS), with DB0 as the data input (SI) and DB1 as the data output (SO). Data is transmitted serially in successive blocks of 8 bits (command, address and data).

Four commands are available. These are WriteData (0000 0010b), ReadData (0000 0011b), ReadStatus (0000 0101b) and WriteInstruction (0000 0111b). The first two commands can be used to write data to or read data from iC-MB3's registers. The latter two commands are truncated write and read commands where the start address is fixed (namely that of the command register to address 244 and that of the status register to address 240). This means that it is not necessary to give an address, with the data directly adhering to the command.

With all commands it is possible to transmit several bytes of data consecutively if the NCS signal is not reset and ALE/SCK continues to be clocked. The address transmitted (240 for ReadStatus and 244 for WriteInstruction) is then the start address which is internally increased by 1 following each transmitted byte.

Rev B2, Page 13/27

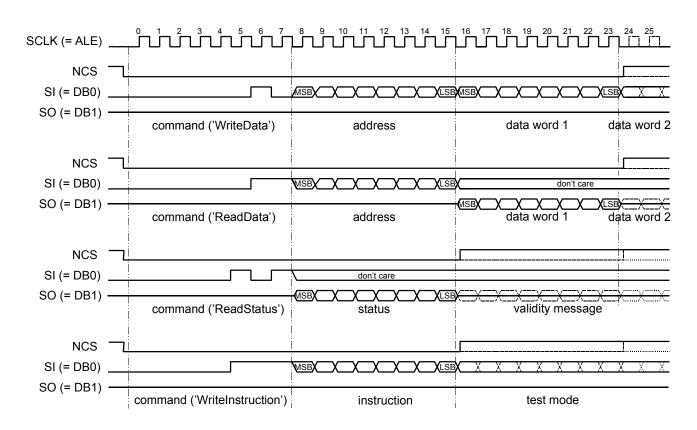


Figure 12: SPI transmission protocol (polarity 0, phase 0)

iC-MB3 target specification BiSS INTERFACE MASTER, 1-Chan./3-Slaves

Rev B2, Page 14/27

BiSS(SSI) Interface Configurations

Device Regi	sters				
Address ¹⁾	Description				Dir. ²⁾
00 63	Sensor Data - 64 bits per Slave				in/out
	Slave 1 Addresses 0700; Iowest byte in Adr. 00	Slave 2 Addresses 1508; lowest byte in Adr. 08	Slave 3 Addresses 2316; lowest byte in Adr. 16	Adr. 6324 reserved for slaves 48	
64 127	64 127 Multicycle Data (MCD) - 64 bits per Slave				in/out
128 191		Slave 2 Addresses 7972; lowest byte in Adr. 72 ata (32 bytes)	Slave 3 Addresses 8780; Iowest byte in Adr. 80	Adr. 12788 reserved for slaves 48	bidir
		or additional register dat	a		
192 223	Slave Configuration Da	ata - 32 bits per Slave			in
	Slave 1 Addresses 195192	Slave 2 Addresses 199196	Slave 3 Addresses 203200	Adr. 223204 reserved for slaves 48	
224 229	Configuration of Register Communication				
230 239	Configuration of Master				
240 255	Status information and	command register			in/out

¹⁾ All addresses are decimals unless otherwise stated.

 $^{2)}\,$ Direction $\,$ in: $\,$ Can only be written to by the μC

out: Can be read out only by the μ C

in/out: Sections can be written to by the μ C in part and only be read out in part

bidir: Can be written to and read out by the μ C

Reserved address range for other master devices.

Rev B2, Page 15/27

Sens	Sensor Data, Multicycle Data and Slave Configuration										
A	Address										
SL1	SL2	SL3	Description								
07	15	23									
 00	 08	 16	Sensor Data - S	ensor Data - SDATA(630)							
71	79	87									
			Multicycle Data	- MCData(6	30)						
64	72	80					1	1	[
			Configuration	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
192	196	200	Sensor Data	Sensor Data ACTnSENS ENSENS SDLEN(5:0)							
193	197	201	Sensor CRC	Sensor CRC INVCRCS SENSCRCPOLY(7:1)							
194	198	202	Multicycle Data	Multicycle Data GRAY ENMCD MCDLEN(5:0)							
195	199	203	MCD CRC	INVCRCM			MCDCF	RCPOLY(7	:1)		

Key to the configuration bits:

_	ACTnSENS ENSENS: SDLEN: INVCRCS: SENSCRCPOLY:	Access to slave data: Read (0), Write (1) Adaptation to slave sensor data: available (1), not available (0) Bit length of sensor data ¹⁾ Transmission of CRC bits for sensor data: inverted (1), not inverted (0) CRC polynomial for verification of sensor data ²⁾
_	GRAY	Gray/binary data conversion of sensor and multicycle data: active (1, required with SSI encoders), not active (0)
	ENMCD: MCDLEN: INVCRCM: MCDCRCPOLY:	Adaptation to slave multicycle data: available (1), not available (0) Bit length of multicycle data ¹⁾ Transmission of CRC bits for multicycle data: inverted (1), not inverted (0) CRC polynomial for verification of multicycle data ²⁾

- ¹⁾ The length of the data should be given minus 1, i.e. for 64 data bits enter 63.
- ²⁾ If 0000 0000b is entered as the CRC polynomial, no cyclic redundancy check is carried out. As the last bit of a CRC polynomial is always 1 this is not entered in the polynomial register but added in the master. A CRC polynomial of up to 8 bits is thus possible. Should the full polynomial length not be required, the polynomial (minus its final 1) must be justified right and the spaces before it filled with zeros. For example, CRC polynomial 10 0011b is stored as 001 0001b.

Rev B2, Page 16/27

Configur	ation Register Co	ommunic	ation						
Address	Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
224	Not used	-	-	-	-	-	-	-	-
225	Not used	-	-	-	-	-	-	-	-
226	Start Address	WNR			F	REGADR(6:0)		
227	Count Of Bytes	-	-	REGNUM(5)		F	REGNUM(4:0)	
228	Channel Select		CHSEL(8:1)						
229	SlaveID	-	REGVERS	S	SLAVEID(2:0)	-	-	-

Configur	ation Master								
Address	Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
230	Frequency Division				FRE	Q(7:0)			
231	Not used	-	-	-	-	-	-	-	-
232	Frequency Division AutoGetsens				FREQA	GS(7:0)			
233	Not used	-	-	-	-	-	-	-	-
Device ID)								
234	Revision	0	0	0	0	0	0	0	1
235	Туре				1000	0011b			
Configur	ation Channel								
236	Slave Location				SLAVEL	_OC(8:1)			

236	Slave Location				SLAVEL	.OC(8:1)			
237	Mode of Operation	SELSSI4	BiSSMOD4	SELSSI3	BiSSMOD3	SELSSI2	BiSSMOD2	SELSSI1	BiSSMOD1
238	Mode of Operation	SELSSI8	BiSSMOD8	SELSSI7	BiSSMOD7	SELSSI6	BiSSMOD6	SELSSI5	BiSSMOD5
239	Not used	-	-	-	-	-	-	-	-

Key to the configuration bits: - SELSSI:

BISSMOD:

Type of protocol: *Bi*SS (0), SSI (1) *Bi*SS protocol model: BiSS model A or B (0), BiSS-A/S (1)

Status Inf	Status Information and Command Register								
Address	Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
240	Status Information	nERR	nWDERR	nMCDERR	nSENSERR	nREGERR	REGEND	MCDEND	EOT
241	Validity Messages 1,2)	SVALID4	MVALID4	SVALID3	MVALID3	SVALID2	MVALID2	SVALID1	MVALID1
242	Validity Messages 1,2)	SVALID8	MVALID8	SVALID7	MVALID7	SVALID6	MVALID6	SVALID5	MVALID5
243	Register Messages	MCD- TIMEOUT	REG ^{2, 4)}	REG- BYTES(5)	REGBYTES(4:0)				
244	Command Register	BREAK	UCREAD- SENS	SWRAM- BANK	INIT	REGCMD	GETSENS0	GETSENS1	AGS
245	Control Flages	MAv0	MAf0	MAvS	MAfS	reserved	IDDQ 3)	IFTEST 3)	CLKENI
246	Not used	-	-	-	-	-	-	-	-
247	Not used	-	-	-	-	-	-	-	-
248	Channel Status	REG4	SL4	REG3	SL3	REG2	SL2	REG1	SL1
249	Channel Status	REG8	SL8	REG7	SL7	REG6	SL6	REG5	SL5
250	MCD bits 2)	MCD8	MCD7	MCD6	MCD5	MCD4	MCD3 ²⁾	MCD2 ²⁾	MCD1 ²⁾
251255	Not used	-	-	-	-	-	-	-	-

Reserved addresses for master devices featuring a higher slave or channel count, or more memory for register data. Any attempt to write to this register sets register values to 0. Two memory banks available. iC-Haus device test only, set to 0. For iC-MB3 the register bit REG is equal to REG1.

Rev B2, Page 17/27

Configuration - Master

Master Clock

The master clock, either generated by the basic clock of the internal 20 MHz oscillator (CLKENI = 1) or by an external clock oscillator (CLKENI = 0) which supplies pin CLK, is set with the aid of the frequency division register (address 230).

The clock frequency for both *BiSS* sensor and SSI modes is set via FREQ(4:0) in accordance with the table on the top right. With an external clock pulse of f_{CLK} = 20 MHz clock frequencies ranging from 62.5 kHz to 10 MHz can thus be selected for sensor data transmission.

Both *BiSS* and SSI devices recognize an idle bus at the end of a transmission cycle via a monoflop timeout elapsing (timeoutSENS, see *BiSS* protocol). The choice of possible clock frequency is thus limited as the duration of both the high and low level may not exceed the shortest timeout of all of the connected subscribers (slaves).

BiSS devices switch to register mode on recognizing that the bus is idle after a high-low transition at the clock input and signal this state back to the master on the data line.

The clock frequency in *BiSS* register mode is set via FREQ(7:5) and can lie within a range of ca. 244 Hz to 5 MHz. Here selection is also limited as with the above; a different monoflop timeout now recognizes the idle bus at the end of the cycle (timeoutREG, see *BiSS* protocol).

Additionally, *BiSS* devices generally only permit a lower clock frequency (such as 250 kHz maximum, for example) because the clock form has to be evaluated as a PWM signal.

Automatic request for sensor data

The frequency with which new requests for sensor data are sent to the slaves is set using FREQAGS according to the table on the right. With an external clock of 20 MHz sensor data request cycles ranging from 1 μ s to 4 ms are possible.

FREQAGS must be set in such a way that the distance between two requests for data is greater than a complete cycle; this consists of the transmission of a request, an acknowledge signal (including any line delays), a start bit (including process times), a register bit (optional), the sensor, CRC and MCD bits of each slave and the longest sensor timeout of all the slaves.

(FreqSens)		
FREQ(3:0)	FREQ(4) = 0	FREQ(4) = 1
0	f _{clk} /2	not permitted
1	f _{cLκ} /4	f _{ськ} /40
2	f _{ськ} /6	f _{ськ} /60
3	f _{cLK} ∕8	f _{CLK} /80
4	f _{ськ} /10	f _{CLK} /100
5	f _{ськ} /12	f _{CLK} /120
6	f _{CLK} 14	f _{ськ} 140
7	f _{ськ} /16	f _{CLK} /160
8	f _{CLK} /18	f _{CLK} /180
9	f _{ськ} /20	f _{стк} /200
10	f _{сі к} /22	f _{стк} /220
11	f _{CLK} /24	f _{CLK} /240
12	f _{ськ} /26	f _{CLK} /260
13	f _{ськ} /28	f _{cur} /280
14	f _{CLK} /30	f _{cur} /300
15	f _{ськ} /32	f _{с∟к} /320

Master Clock for BiSS Sensor Mode and SSI

A combination of FREQ(4) = 1 and FREQ(3:0) = 0 is not permitted; for a clock frequency of $f_{CLK}/20$ FREQ(4) = 0 and FREQ(3:0) = 9 must be set.

Master Clock for <i>Bi</i> SS Register Mode (FreqReg)			
FREQ(7:5)	FreqReg		
0 1	FreqSens/2 FreqSens/4		
2	FreqSens/8		
3	FreqSens/16		
4	FreqSens/32		
5	FreqSens/64		
6	FreqSens/128		
7	FreqSens/256		

Automatic Sensor Data Request (FreqAGS)					
FREQAGS(6:0)	FREQAGS(7)= 0	FREQAGS(7)= 1			
0	f _{сLK} /20	f _{ськ} /625			
1	f _{сLK} /40	f _{ськ} /1250			
2	f _{сLK} /60	f _{ськ} /1875			
125	f _{cLK} /2520	f _{cLk} /78750			
126	f _{CLK} /2540	f _{cLk} /79375			
127	f _{CLK} /2560	f _{cLk} /80000			

iC-MB3 BiSS INTERFACE MASTER, 1-Chan./3-Slaves

Rev B2, Page 18/27

DATA STORAGE - Sensor and Multicycle Data

So that new sensor data can be read in during controller accesses iC-MB3 has dual memory banks for sensor and multicycle data. While sensor data is being read into the first RAM, from the second RAM section the controller can read out the sensor data last read in. The relevant sensor data memory banks are swapped over at the end of the readin procedure; this can be prevented by the controller entering the command register bit UCREADSENS. The MCD memory banks are swapped once a complete MCD cycle has been transmitted if at the same time bit MCDEND changes to a 1 in the status register. In parallel with this the validity message register (address 241) and the bits REG and MCD (addresses 248 to 250) are also swapped.

Arrangement of sensor and multicycle data in the RAM

The sensor or multicycle data memory bank for each slave has 8 bytes of memory which can be interpreted as 64 bits of memory in the array xxxx111b to xxxxx000b. The sensor or multicycle data is written to memory area [SDLEN - 1:0] or [MCDLEN - 1:0], with SDLEN and MCDLEN marking the length of the relevant data. Should there be room in the available memory for the CRC bits, these are then also stored with the above data at positions [63:63 - (CRCLEN-1)].

Example Slave 2: 20 bits of sensor data, 6 bits of CRC 13 bit of multicycle data, 5 bits of CRC=> total length of 26 bits => total length of 18 bits						
Adr. 07 00: Adr. 15 08:	Sensor data Slave 1 Sensor data Slave 2 - Adr. 15: SensCRC(5:0), not defined, not defined Adr. 14: - not defined - Adr. 13: - not defined - Adr. 12: - not defined - Adr. 11: - not defined - Adr. 10: not defined, not defined, not defined, SensData(19:16)					
Adr. 23 16:	Adr. 9: SensData(15:8) Adr. 8: SensData(7:0) Sensor data Slave 3					
 Adr. 71 64: Adr. 79 72:	Multicycle data Slave 1 Multicycle data Slave 2 - Adr. 79: MCDCRC(4:0), not defined, not defined, not defined Adr. 78: - not defined - Adr. 77: - not defined - Adr. 76: - not defined - Adr. 75: - not defined - Adr. 74: - not defined - Adr. 73: not defined, not defined, MCD(12:8) Adr. 72: MCD(7:0)					
Adr. 87 80:	Multicycle data Slave 3					

DATA STORAGE - register data

For the interim storage of register information read out from or to be written to the slaves iC-MB3 has an individual storage area (addresses 128 to 159) which can temporarily store up to 32 bytes of data. With just one single command this is then transmitted to a slave selected using SLAVEID(2:0) or requested from it as register data. The transmission of register data takes longer than that of sensor data so that the content of the sensor data and MCD RAM is then often obsolete.

Rev B2, Page 19/27

STATUS INFORMATION and COMMAND REGISTER

Addres	Address 240: Status Messages							
Bit	Designation	Function	Remarks					
7	nERR	An error has occurred (low active), equivalent to the pin level at NER (see "Error messaging" on page 22)						
6	nWDERR	Watchdog error (low active) on - transmissions triggered by an automatic sensor data request - transmissions of register data	1					
5	nMCDERR	CRC error in the multicycle data (low active)	2					
4	nSENSERR	CRC error in the sensor data (low active)	2					
3	nREGERR	CRC error during the transmission of register data (low active)	3					
2	REGEND	End of register data transmission						
1	MCDEND	End of multicycle data transmission (cycle completed)						
0	EOT	End of transmission: signals the end of sensor or register data transmission before timed out						

- 1. A watchdog error is triggered during the automatic transmission of sensor data if no new cycle could be initiated; bit AGS in the command register is reset and the automatic request for sensor data aborted. During the transmission of register data a watchdog error is triggered if the slave shows no response, i.e. if it does not answer the first falling master edge with a low or fails to generate a start bit.
- 2. If a sensor data or MCD error is signaled the faulty sensor can be verified by reading out address 241 (validity message).
- 3. If a register data error is generated the number of bytes transmitted correctly before the error occurred can be determined by reading out the register message REGBYTES (address 243, bits 5...0). In the event of error the transmission of data is terminated.

Address 241: Validity Messages							
Bit	Designation	Function	Remarks				
7	MVALID4	Not used	1				
6	SVALID4	Not used	1				
5	MVALID3	Readout multicycle data from slave 3 valid	1				
4	SVALID3	Readout sensor data from slave 3 valid	1				
3	MVALID2	Readout multicycle data from slave 2 valid	1				
2	SVALID2	Readout sensor data from slave 2 valid	1				
1	MVALID1	Readout multicycle data from slave 1 valid	1				
0	SVALID1	Readout sensor data from slave 1 valid	1				

1. Any attempt to write to this register resets the validity messages.

Rev B2, Page 20/27

Address 243: Register Messages							
Bit	Designation	Function	Remarks				
7	MCDTIMEOUT	MCD timeout elapsed (1), not elapsed (0)	1				
6	REG	Current register data bit at the slave operating on <i>BiSS</i> model C	2				
5	REGBYTES(5)	Not used					
40	REGBYTES(4:0)	Number of register bytes transmitted correctly if an error occurs	3				

- 1. A new request for multicycle data can only be made once the MCD timeout has elapsed; if a new MCD request is issued before this time the slaves operating on *BiSS* protocol model C will treat this as a register data transmission (see "Register communication in sensor mode").
- 2. During the data transmission in *BiSS* protocol model C format, where register data is transmitted together with sensor and multicycle data, the current register data bit in bit REG can be read out. Similar to the sensor data this bit also has a second storage section which allows the readout of bits transmitted during the last cycle while a new cycle is running. A swap occurs in parallel with that of the sensor data banks.
- 3. If no errors occur during transmission these bits are set to 0. Otherwise the number of register bytes successfully transmitted without error is displayed.

Address 244: Command Register							
Bit	Designation	Function	Remarks				
7	BREAK	The current action is aborted (e.g. the clock at MA1 is stopped)					
6	UCREADSENS	RAM bank swapping is blocked					
5	SWRAMBANK	All RAM banks and the validity message register are forcibly swapped					
4	INIT	The sensor is initialized					
3	REGCMD	Executes transmissions of register data					
2	GETSENS0	Single request for sensor data with a high cycle termination (no refreshing of multicycle data)					
1	GETSENS1	Single request for sensor data with a low cycle termination (request to update multicycle data)					
0	AGS	Start of automatic sensor data requests (AutoGetSens)					

All bits with the exception of AGS, UCREADSENS and SWRAMBANK are independently deleted by the master once the command has been carried out.

All current actions can be aborted using the BREAK command so that a defined state can be resumed if one of the sensors proves faulty, for example.

During the readout of more than one sensor data register by the controller it is possible that the RAM banks in the master could be swapped over once a sensor data transmission is complete. So that the controller only reads related values bit UCREADSENS should be set at the start of the readout and returned at the end; this suppresses the RAM swap. With the start of a new sensor data cycle previous values are then overwritten by the new sensor data.

Each setting or deletion of bit SWRAMBANK forces the sensor data and MCD RAM banks to be swapped over. Data just input, for example, can then be read out if a cycle has ended during UCREADSENS = 1 (this is indicated by EOT in the status register switching to 1 during the suppression of the RAM swap).

Rev B2, Page 21/27

The sensor chain can be initiated using the command INIT. A set REG bit starts the transmission of register data between iC-MB3 and a sensor.

The transmission of sensor data can be triggered via bits GETSENS0 and GETSENS1. In both instances a new transmission process is initiated; the difference between the two commands lies in how the transmission cycle is ended. With GETSENS0 the cycle finishes with a high; GETSENS1 ends on a low which also files a request for multicycle data. In this case the previous MCD cycle must have ended (MCDEND = 1) and the multicycle data timeout must have elapsed (MCDTIMEOUT = 1).

When initializing the sensor data transmission via GETSENS0 = 1 and GETSENS1 = 1, the cycle finishes with a level determined by the REG bit entered (Address 243, bit 6), i.e. for REG = 0 with a high or for REG = 1 with a low. By this function register data can be transmitted to slaves operating on the *BiSS* protocol model C principle in parallel to the transmission of sensor data (see "Transmission of register data in sensor mode").

To enable the synchronized data conversion of several slaves at once, all of which have differing wake-up times (power save mode), a sensor data cycle which initially wakes all of the slaves can be started by explicitly setting the GETSENS1 bit. Once the slaves have confirmed their state of readiness by sending an MCD start bit, setting GETSENS1 a second time (following the end of the MCD timeout) forces the synchronous storage of multicycle data in all slaves (see general notes on the *BiSS* protocol).

If an AGS bit has been set sensor data is read in cyclically according to the cycle frequency set in register 232 (FREQAGS) without any further commands being issued by the controller. As soon as all of the slaves connected have finished transmitting multicycle data (MCDEND = 1, MCDTIMEOUT = 1) a new request for multicycle data is started automatically.

Registers start address (REGADR, address 226), number of bytes (REGNUM, address 227) and slave ID (SLAVEID, address 229) stipulate from which slave register address onwards how many bytes are to be written to or read out from which specific slave. A byte count of 0 entered for REGNUM signals the transmission of a single register value; a 31 indicates the transmission of 32 register values. In the register REGBYTES (address 243) a 0 is entered if communication has proved error free. In the event of error the number of registers correctly read or written is displayed.

iC-MB3 does not support autonomous register communication as with *BiSS* model C, thus it is imperative that address 229's bit REGVERS remain set to 0.

Rev B2, Page 22/27

Initialization

To initialize the bus subscribers and to allow them to find their position in the queue (and particularly so that the first slave recognizes its position as such) the master line must be set to 0 after a 1 period (longer than the longest sensor timeout). The slaves themselves signal that initialization has been successful with a 0 on line SL1.

During initialization internal counters and error flags in the master are deleted or set as appropriate. Should a slave prove faulty and not switch to 0 initialization must be aborted by a BREAK command.

Initialization ends when the MCD timeout flag is set (address 243); a request for multicycle data can thus be made in the next sensor data cycle.

Communication in sensor mode

The transmission of sensor data begins when at pin MA1 the master outputs the clock signal with the clock frequency selected by FREQ. The line delay, i.e. the transmission propagation until an acknowledgement is generated at SL1, is determined from the second falling edge onwards.

While the clock continues to be output at MA1 the master waits for the slaves' start bit (1) signaling the start of data transmission. Following this the actual clocking out of sensor data begins, i.e. the sensors place a new bit on the SL1 line with each rising edge on the MA1 line.

The sensor data being input into the master and the ensuing sets of CRC data are written to the appropriate sensor data RAM. At the same time the new CRC value is calculated in accordance with InvSensCRC and using the CRC polynomial stored in the configuration RAM. Should, after entry of the last CRC bit, the system ascertain that transmission was faulty the relevant validity message in address 241 is deleted and error message nSENSERR set in the status register at address 240. At the same time the sensor data RAM banks are swapped.

If the sensor is MCD competent the MCD bit following the sensor data CRC is stored in the appropriate position in the relevant RAM bank. If a CRC code is to be calculated this is done simultaneously – in accordance with InvMCDCRC and using the CRC polynomial stored in the configuration RAM – and also saved to the RAM. With the last multicycle data CRC bit read in the transmission is checked for errors; if any are determined the relevant validity message bit is deleted.

At the end of the sensor data cycle, when the last bit of the longest multicycle data from all the connected sensors has been read in, the terminated MCD transmission is signaled by flag MCDEND and the MCD RAM banks are swapped over. The controller can now read out the current MCD values.

Each sensor data cycle ending with a request for multicycle data resets the MCD timeout counter. Each cycle without an MCD request raises the counter by 1 until after 14 consecutive cycles the MCDTIMEOUT bit is set. This makes it possible to differentiate between an MCD request and a register bit sent by a slave operating on *BiSS* protocol model C (see "Register communication in sensor mode").

Communication in register mode

Once the slaves have signaled their readiness for register communication (SL1 = 0) the addressing sequence is compiled, consisting of a start bit (1), the slave ID, the register address, the write/read flag, the inverted CRC calculated from this and a stop bit (0). This sequence is then transmitted bit by bit.

At the same time the ID distribution among the slaves is checked; should none of the slaves react (should SL1 not signal a 1 after 9 clock pulses) communication is aborted and a register error message generated (nREGERR = 0). The same happens if the slave response is not 0 after the 17th rising edge at MA1.

If a register value is to be transmitted to a slave transmission of the new register value begins after 17 clock pulses (i.e. following the transmission of the start bit, slave ID, register address, WNR, CRC and stop bit). This new register value consists of a start bit (1), the new contents of the register, the inverted CRC code and a stop

iC-MB3 BiSS INTERFACE MASTER, 1-Chan./3-Slaves

Rev B2, Page 23/27

bit (0). At the same time the slave response (SL1) is checked. If the slave does not send a start bit for any reason (if the register addressed does not exist, for example, or access to a write protected register is attempted) communication is aborted after 4,096 MA1 clock pulses and the message nWDERR generated; a register error (nREGERR = 0) is signaled if the CRC proves faulty.

If transmission has proved free of error further register values are then compiled as needed and transmitted until communication with the register has ended. If no errors have occurred during communication register 243 then has a value of 0; in the event of error this value is the number of bytes transmitted correctly.

When reading out a register value from a slave, following a correct addressing sequence (see above) the system waits while the clock pulse continues to be output at MA1 until the addressed slave sends a start bit. During this waiting period a slave can read out a connected EEPROM, for example, and then transmit this value to the master. Once the slave's start bit has been entered into the master the actual data bits are stored and the CRC carried out on the fly. This cyclic redundancy check operates with the fixed polynomial 10011b and with inverted CRC bits. Should a CRC error occur during transmission this is signaled by a register error; the number of register values transmitted without error is stored in register 243 and further communication aborted.

If no errors occur during the transmission of data the next register values can be transmitted from the slave to the master by continued clock pulses at MA1. Register 243 contains a 0 if transmission has proved error free.

At the end of communication in register mode the MCD timeout flag is set (address 243); a request for multicycle data can then be issued during the following sensor data cycle.

Error messaging

In sensor mode the validity of data is stored separately for each slave in the validity message register (address 241). In the event of error the appropriate validity message is deleted and nSENSERR or nMCDERR set to 0 in the status register. The error is signaled at pin NER.

In register mode a register error (nREGERR = 0) or a slave start signal missed for at least 4,096 MA1 clock pulses results in an error message at NER. As following initialization no valid sensor data yet exists all the bits in the validity message (address 241) are deleted; no display is generated at pin NER, however.

A watchdog error is triggered if during the automatic sensor data requests no new readout cycle was able to be initiated. In this instance bit AGS is reset in the command register and the cyclic sensor data requests aborted.

A watchdog error is also triggered if a slave response is lacking during the transmission of register data. This has two possible causes; either a slave does not respond to the first falling edge with a low or the slave fails to generate a start bit.

It is possible to connect other components to pin NER which can also generate an error message; this can then be read out via bit nERR in the status register at address 240.

iC-MB3 BiSS INTERFACE MASTER, 1-Chan./3-Slaves

Rev B2, Page 24/27

Register communication in sensor mode

In the *BiSS* protocol (BiSS-A/S only) it is possible to send register data to or receive register data from a slave during a cyclic sensor data transmission.

In conjunction with *BiSS* master iC-MB3 the controller must arrange the ones and zeros necessary for the communication of register data overlaying the communication of sensor data by issuing or not issuing requests for multicycle data.

Register data is transmitted from the sensor to the *BiSS* master in a similar way to multicycle data, namely via a single bit transmitted in addition to the sensor data which is placed before the latter. The first bit received is treated as the register data bit if bit BiSSMOD in the MCD configuration register of the relevant slave (addresses 194, 198 or 202) has been set to 1.

The following GETSENSx commands are necessary for the transmission of register data and for requests for multicycle data (depending on MCDTIMEOUT settings):

GETSENS Functions								
BiSSMOD	GETSENS Command	MCDTIMEOUT	Function					
0 (model B)	GETSENS0	irrelevant	Start transmission of sensor data					
GETSENS1		0	Start transmission of sensor data; <i>not prudent here</i> , as in doing so the MCDTIMEOUT counter is reset					
		1	Start transmission of sensor data, new request for multicycle data					
1 (BiSS-A/S) GETSENS0		0	Start transmission of sensor data, transmission of 0					
		1	Start transmission of sensor data					
	GETSENS1	0	Start transmission of sensor data, transmission of 1					
		1	Start transmission of sensor data, new request for multicycle data					

Rev B2, Page 25/27

APPLICATION HINTS

Example system: iC-MB3 with two interpolators iC-NQ

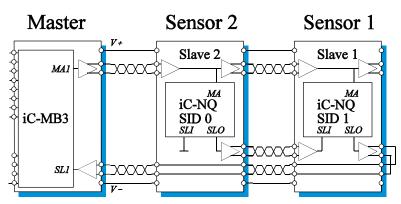


Figure 13: Example configuration

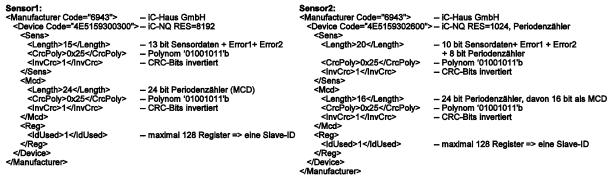


Figure 14: Example BiSS device description file in XML

Assumptions:

Sensor 1:	iC-NQ with 8,192 steps of resolution, a CRC polynomial 10 0101b and an inverted output, 24 bit period counter with a CRC polynomial 10 0101b and an inverted output; Timeout _{SENS} : 2,62 μs					
Sensor 2:	iC-NQ with 1,024 steps of resolution, a CRC polynomial 10 0101b and an inverted output, 24 bit period counter (8 bits of which are sent with the sensor data and 16 as MCD) with a CRC polynomial 10 0101b and an inverted output; Timeout _{SENS} : 2,62 μs					
iC-MB3 clock:	20 MHz (according to the electrical charac	cteristics in the data sheet)				
Setting the master clock for sensor mode: max. 10 MHz=> FREQ(4:0) = 00000b (10 MHz)Setting the master clock for register mode: max. 250 kHz=> FREQ(7:5) = 101b (156 kHz)						
Setting the cycle time for the automatic sensor data request: without transmission delays and processing times =>						

cycle time = (3+(15+6+1)+(20+6+1)) clock pulses +Timeout_{SENS} = $52^{*}0,1\mu s + 2,62\mu s = 7,82\mu s \approx 156 * t_{CLK}$

AutoGetSens time > cycle time => FREQAGS \geq 7

iC-MB3 *BiSS INTERFACE MASTER*, 1-Chan./3-Slaves

Rev B2, Page 26/27

Example system: Required configurations of iC-MB3

Configuration Master									
Address	Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
230	Frequency Division		1010 0000b						
232	Frequency Division AutoGetsens				0	000 0111b			

Slave Configuration: Slave 1									
Address	Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
192	Sensor data	0	1			00 1110b			
193	Sensor-CRC	1		001 0010b					
194	Multicycle Data	0	1 01 0111b						
195	MCD-CRC	1	001 0010b						

Slave Configuration: Slave 2									
Address	Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
196	Sensor data	0	1			01 0011b			
197	Sensor-CRC	1				001 0010b			
198	Multicycle Data	0	1			00 1110b			
199	MCD-CRC	1				001 0010b			

Slave Configuration: Slave 3									
Address	Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
200	Sensor data	0	0 0 irrelevant						
201	Sensor-CRC				irrele	evant			
202	Multicycle Data	0	0 0 irrelevant						
203	MCD-CRC		irrelevant						

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

This specification is for a newly developed product. iC-Haus therefore reserves the right to change or update, without notice, any information contained herein, design and specification; and to discontinue or limit production or distribution of any product versions. Please contact iC-Haus to ascertain the current data. Copying - even as an excerpt - is only permitted with iC-Haus approval in writing and precise reference to source.

iC-Haus does not warrant the accuracy, completeness or timeliness of the specification on this site and does not assume liability for any errors or omissions in the materials. The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

Rev B2, Page 27/27

ORDERING INFORMATION

Туре	Package	Order designation
iC-MB3	TSSOP24 4.4 mm	iC-MB3 TSSOP24
Demo Board SPI Demo Board PAR		iC-MB3 EVAL MB3D-S iC-MB3 EVAL MB3D-P
BiSS PC-LPT Adapter BiSS PC-USB Adapter		Please refer to descriptions available separately.

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH	Tel +49-6135-9292-0			
Am Kuemmerling 18	Fax +49-6135-9292-192			
D-55294 Bodenheim	http://www.ichaus.com			
GERMANY	E-mail <u>sales@ichaus.com</u>			

Appointed local distributors: http://www.ichaus.de/support_distributors.php