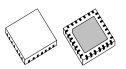
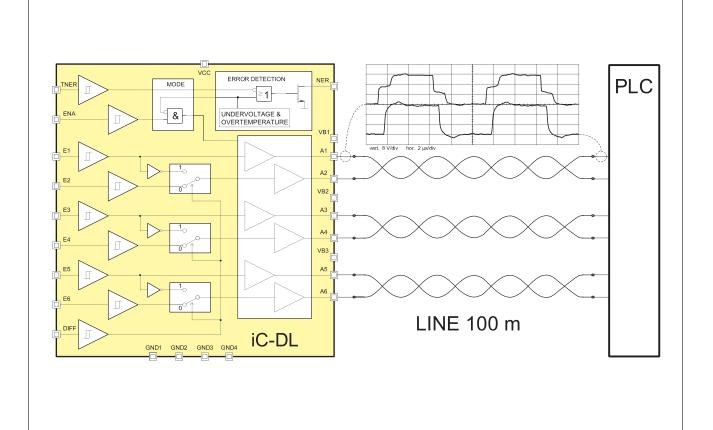


Rev A1, Page 1/9


FEATURES

- ♦ 6 current-limited and short-circuit-proof push-pull drivers
- ♦ Differential 3-channel operation selectable
- ♦ Integrated impedance adaption for 30 to 140 Ω lines
- ♦ Wide power supply range from 4 to 40 V
- ♦ 200 mA output current (at VB = 24 V)
- ♦ Low output saturation voltage (< 0.4V at 30 mA)
- ♦ Compatible with TIA/EIA standard RS-422
- ♦ Tristate switching of outputs enables use in buses
- ♦ Short switching times and high slew rates
- ♦ Low static power dissipation
- ♦ Schmitt trigger inputs with pull-down resistors, TTL and CMOS compatible; voltage-proof up to 40 V
- ♦ Thermal shutdown with hysteresis
- ♦ Error message trigger input TNER
- ♦ Open-drain error output NER, active low with excessive chip temperature and undervoltage at VCC or VB
- ♦ Option: Extended temperature range from -40 to 125 °C

APPLICATIONS


- ♦ Line drivers for 24 V control engineering
- ♦ Linear scales and encoders
- ♦ MR sensor systems

PACKAGES

QFN28 5x5mm²

BLOCK DIAGRAM

Copyright © 2004 iC-Haus http://www.ichaus.com

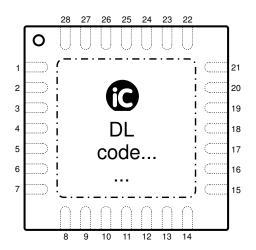
Rev A1, Page 2/9

DESCRIPTION

iC-DL is a fast line driver with six independent channels and integrated impedance adaptation for 30 to 140 € lines.

Channels are paired for differential 3-channel operation by a high signal at the DIFF input, providing differential output signals for the three inputs E1, E3 and E5. All inputs are compatible with CMOS and TTL levels.

The push-pull output stages have a driver power of typically 200 mA from 24V and are short-circuitproof and current-limited, shutting down with excessive temperature. For bus applications the output stages can be switched to high impedance using input ENA.


iC-DL monitors supply voltages VB and VCC and the chip temperature, switching all output stages to high impedance in the event of error and set NER activ low. In addition, the device also monitors voltage differences at the pins VB1, VB2 and VB3 and generates an error signal if the absolut value exceeds 0.75 V.

The open-drain output NER allows the device to be wired-ORed to the relevant NER error outputs of other iC-DLs. Via input TNER the message outputs of other ICs can be extended to generate system error messages. NER switches to high impedance if supply voltage VCC ceases to be applied.

The device is protected against ESD.

PACKAGES QFN28 5 x 5 mm² JEDEC MO-220-VHHD-1

PIN CONFIGURATION QFN28 5 x 5 mm² (top view)

PIN FUNCTIONS

5 E4

No. Name Function

1 E1 Input Channel 1 Input Channel 2 2 E2 3 E3 Input Channel 3 4 n.c.

Input Channel 4

PIN FUNCTIONS No. Name Function

6 E5 Input Channel 5 7 E6 Input Channel 6 8 VCC +5 V Supply

9 n.c.

10 TNER Error Input, low active Error Output, active low 11 NER

12 A6 **Output Channel 6**

13 GND4 Ground

14 VB3 +4.5 ... 40 V Power Supply

Output Channel 5 15 A5

16 GND3 Ground

17 A4 **Output Channel 4**

18 VB2 +4.5 ... 40 V Power Supply

Output Channel 3 19 A3

20 GND2 Ground

21 A2 **Output Channel 2**

22 VB1 +4.5 ... 40 V Power Supply

23 GND1 Ground

Output Channel 1 24 A1

25 n.c.

26 ENA Enable Input, high active

27 n.c.

28 DIFF Differential Mode Input, high active

The pins VB1, VB2 and VB3 must be connected to the same driver supply voltage VB. The pins GND1, GND2, GND3 and GND4 must be connected to GND. To improve heat dissipation, the thermal pad at the bottom of the package should be joined to an extended copper area which must have GND potential.

Rev A1, Page 3/9

ABSOLUTE MAXIMUM RATINGS

Beyond these values damage may occur; device operation is not guaranteed.

Item-	Symbol	Parameter	Conditions	Fig.			Unit
No.					Min.	Max.	
G001	VCC	Supply Voltage			0	7	V
G002	VBx	Driver Supply Voltage VB1, VB2, VB3			0	40	V
G003	V()	Voltage at E16, A16, DIFF, ENA, TNER			0	40	V
G004	I(Ax)	Driver Output Current (x=16)			-800	800	mA
G005	I(Ex)	Input Current Driver E1E6, Diff, ENA, TNER			-4	4	mA
G006	V(NER)	Voltage at NER			0	50	V
G007	I(NER)	Current in NER			-4	25	mA
G008	V()	ESD Suceptibility at all pins	MIL-STD-883, Methode 3015, HBM 100 pF discharged through 1.5 k Ω			2	kV
G009	Tj	Operating Junction Temperature			-40	140	°C
G010	Ts	Storage Temperature Range			-40	150	°C

THERMAL DATA

Operating Conditions: VB = 4...40 V, VCC = 4...5.5 V

Item-	Symbol	Parameter	Conditions	Fig.			Unit	
No.				_	Min.	Тур.	Max.	
T01		Operating Ambient Temperature Range (extended range to -40°C on request)			-25		125	°C
T02	Rthja	•	surface mounted, thermal pad soldered to approx. 2 cm² heat sink				40	K/W

Rev A1, Page 4/9

ELECTRICAL CHARACTERISTIC

Operating Conditions: VB1...3 = 4...40 V, VCC = 4...5.5 V, Tj = -40...140 °C, unless otherwise noted input level lo = 0...0.45 V, hi = 2.4 V...VCC, timing diagram see fig. 1

Item- No.	Symbol	Parameter	Conditions	Tj ℃	Fig.	Min.	Тур.	Max.	Unit
Gener	ral								
001	VBx	Supply Voltage Range (Driver)				4		40	V
002	I(VBx)	Supply Current in VB13	A16 = Io					1.5	mA
003	I(VBx)	Supply Current in VB13	A16 = hi					3	mA
004	I(VBx)	Supply Current in VB1, Outputs A12 Tri-State	ENA = Io, V(A12) = -0.3(VB + 0.3 V)					1.2	mA
005	I(VBx)	Supply Current in VB23, Outputs A36 Tri-State	ENA = Io, V(A26) = -0.3(VB + 0.3 V)					1	mA
006	IO(Ax)	Output Leakage Current	ENA = Io, V(Ax) = 0 VB			-20		20	μA
007	VCC	Supply Voltage Range (Logic)				4		5.5	V
008	I(VCC)	Supply Current in VCC	ENA = hi, Ax = lo				5	10	mA
009	I(VCC)	Supply Current in VCC	ENA = hi, Ax = hi				1.5	5	mA
010	Vc()lo	Clamp Voltage low at pins VB13, A16, E16, DIFF, ENA TNER, NER, VCC	I() = -10 mA, all other pins open			-1.2		-0.4	V
011	Vc()hi	Clamp Voltage high at Vcc	I() = 10 mA			5.6		7	V
012	Vc()hi	Clamp Voltage high at pins VB13, A16, E16, DIFF, ENA TNER, NER, VCC	I() = 1 mA, all other pins open			45		64	V
013	I(VBx)	Supply Current in VB13	ENA = hi, f(E16) = 1 MHz				3	10	mA
Driver	Outputs A1	16, Low-Side-action (x = 16)							
101	Vs(Ax)lo	Saturation Voltage low	I(Ax) = 10 mA, Ax = Iow					0.2	V
102	Vs(Ax)lo	Saturation Voltage low	I(Ax) = 30 mA, Ax = Iow					0.4	V
103	Isc(Ax)lo	Short circuit current low	V(Ax) = 1.5 V			40	60	90	mA
104	Isc(Ax)lo	Short circuit current low	V(Ax) = VB, Ax = Iow					800	mA
105	Rout(Ax)	Output resistance	VB = 1040 V, V(Ax) = 0.5 * VB			40	75	100	Ω
106	SR(Ax)lo	Slew Rate low	VB = 40 V, CI(Ax) = 100 pF			200	600		V/µs
107	Vc(Ax)lo	Free Wheel Clamp Voltage low	I(Ax) = -100 mA			-1.3		-0.5	V
Driver	Outputs A1	I6, High-Side-action (x = 16)							
201	Vs(Ax)hi	Saturation Voltage high	Vs(Ax)hi = VB - V(Ax), I(Ax) = -10 mA					0.2	V
202	Vs(Ax)hi	Saturation Voltage high	Vs(Ax)hi = VB - V(Ax), I(Ax) = -30 mA, Ax = hi					0.4	V
203	Isc(Ax)hi	Short circuit current high	V(Ax) = VB - 1.5 V, Ax = hi			-90	-60	-40	mA
204	Isc(Ax)hi	Short circuit current high	V(Ax) = 0 V, Ax = hi			-800			mA
205	Rout(Ax)	Output resistance	VB = 1040 V, V(Ax) =0.5 * VB			40	75	100	Ω
206	SR(Ax)hi	Slew Rate high	VB= 40 V, CI(Ax) = 100 pF			200	400		V/µs
207	Vc(Ax)hi	Free Wheel Clamp Voltage high	I(Ax) = 100 mA, VB = VCC = GND			0.5		1.3	V
Inputs	s E16, DIFI	F, ENA, TNER							
601	Vt()hi	Threshold Voltage high						2	V
602	Vt()Io	Threshold Voltage low				0.8			V
603	Vt()hys	Input Hysteresis	Vt()hys = Vt()hi - Vt()lo			200	400	800	mV
604	lpd()	Pull-Down-Current	V() = 0.8 V			10		80	μA
605	lpd()	Pull-Down-Current	V() ≤ 40 V					160	μA
Suppl	y Voltage Co	ontrol VB							
701	VBon	Threshold Value at VB1 for Undervoltage Detection on (NER ⇒ low)	VB1 - VB2 & VB2 - VB3 & VB1 - VB3 < 0.75 V					3.95	V
702	VBoff	Threshold Value at VB1 for Undervoltage Detection off (NER ⇒ high)	VB1 - VB2 & VB2 - VB3 & VB1 - VB3 < 0.75 V			3			V

Rev A1, Page 5/9

ELECTRICAL CHARACTERISTIC

Operating Conditions: VB1...3 = 4...40 V, VCC = 4...5.5 V, Tj = -40...140 °C, unless otherwise noted input level lo = 0...0.45 V, hi = 2.4 V...VCC, timing diagram see fig. 1

ltem- No.	Symbol	Parameter	Conditions	Tj ℃	Fig.	Min.	Тур.	Max.	Unit
703	VBhys	Hysteresis	VBhys = VBon - VBoff			150	250		mV
Suppl	y Voltage D	ifference Control VB13	-						
801	ΔV(VBx)	Threshold Condition for Supply Voltage Difference between VB1, VB2 and VB3	$\begin{split} \Delta V(VBx) &= MAX \; (VB1 - VB2 \; , \\ VB2 - VB3 \; , \; VB1 - VB3 \;) \\ NER &\Rightarrow low \end{split}$					0.75	V
Suppl	y Voltage C	ontrol VCC							
901	VCCon	Threshold Value at VCC for Undervoltage Detection on	$NER\Rightarrowlow$					3.95	V
902	VCCoff	Threshold Value at VCC for Undervoltage Detection off	$NER \Rightarrow high$			3			V
903	VCChys	Hysteresis	VCChys = VCCon - VCCoff			250	600		mV
Temp	eratur Conti	rol							
A01	Toff	Thermal Shutdown Threshold				145		175	°C
A02	Ton	Thermal Lock-on Threshold				130		165	°C
A03	Thys	Thermal Shotdown Hysteresis	Thys = Ton - Toff				12		°C
Error	Output NER	ĺ			•				
B01	Vs()	Saturation Voltage low at NER	I(NER) = 5 mA, NER = Io					0.4	V
B02	Isc()	Short Circuit Current low at NER	V(NER) = 240 V, NER = Io				12	20	mA
B03	IO()	Leakage Current at NER	V(NER) = 0 VVB, NER = hi			-10		10	μA
B04	VCC	Supply Voltage for NER function	I(NER) = 5 mA, NER = Io, Vs(NER) < 0.4 V			2.6			V
Time	Delays								
I01	tplh(E-A)	Propagation Delay Ex ⇒ Ax	DIFF = Io, CI() = 100 pF		1		100	400	ns
102	tphI(E-A)	Propagation Delay Ex ⇒ Ax	DIFF = Io, CI() = 100 pF		1		100	200	ns
103	Δtplh(Ax)	Delay Skew $ A1 \Rightarrow A2 $, $ A3 \Rightarrow A4 $, $ A5 \Rightarrow A6 $	DIFF = hi, Cl() = 100 pF		1		30	100	ns
104	ΔtphI(Ax)	Delay Skew $ A1 \Rightarrow A2 $, $ A3 \Rightarrow A4 $, $ A5 \Rightarrow A6 $	DIFF = hi, Cl() = 100 pF		1		30	100	ns
105	tplh(ENA)	Propagation Delay ENA ⇒ Ax	Ex = hi, DIFF = Io, CI() = 100pF , RI(Ax, GND) = $5 \text{k}\Omega$		1		130	300	ns
106	tplh(ENA)	Propagation Delay ENA ⇒ Ax	Ex = Io, DIFF = Io, CI() = 100 pF, RI(VB, Ax) = $100 \text{ k}\Omega$		1		100	200	ns
107	tphI(ENA)	Propagation Delay ENA ⇒ Ax	Ex = Io, DIFF = Io, $RI(VB, Ax) = 5 k\Omega$		1		200	500	ns
108	tphI(ENA)	Propagation Delay ENA ⇒ Ax	Ex = hi, DIFF = Io, RI(Ax, GND) = $5 \text{ k}\Omega$		1		250	500	ns
109	tphl(DIFF)	Propagation Delay DIFF ⇒ A2, A4, A6	E1, E3, E5 = hi, CI() = 100 pF		1		100	250	ns
I10	tplh(DIFF)	Propagation Delay DIFF ⇒ A2, A4, A6	E1, E3, E5 = Io, CI() = 100 pF		1		130	400	ns
l11	tplh(TNER)	Propagation Delay TNER ⇒ NER	$RI(VB, NER) = 5 k\Omega, CI() = 100 pF$		1		0.5	2	μs

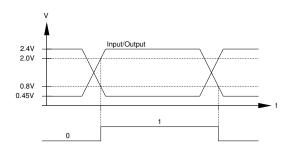


Figure 1: Reference levels for delays

Rev A1, Page 6/9

DESCRIPTION

Line drivers for control engineering couple TTL- or CMOS-compatible digital signals with 24 V systems via cables. The maximum permissible signal frequency is dependent on the capacitive load of the outputs (cable length) or, more specifically, the power dissipation in iC-DL resulting from this. To avoid possible short circuiting the drivers are current-limited and shutdown with excessive temperature.

When the output is open the maximum output voltage corresponds to supply voltage VB (with the exception of any saturation voltages). Figure 2 gives the typical DC output characteristic of a driver as a function of the load. The differential output resistance is typically 75 Ω over a wide voltage range.

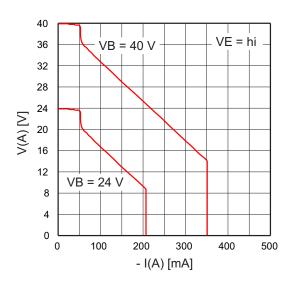


Figure 2: Load dependence of the output voltage (High-side stage)

Each open-circuited input is set to low by an internal pull-down current source; an additional connection to GND increases the device's immunity to interference. The inputs are TTL- and CMOS-compatible. Due to their high input voltage range, the inputs can also be set to high-level by applying VCC or VB.

LINE EFFECTS

In PLC systems data transmission using 24 V signals usually occurs without a matched line termination. A mismatched line termination generates reflections which travel back and forth if there is also no line adaptation on the driver side of the device. With rapid pulse trains transmission is disrupted. In iC-DL, however, further reflection of back travelling signals is prevented by an integrated impedance network, as shown in Figure 3.

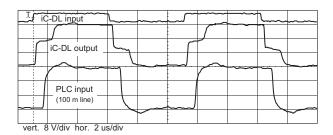


Figure 3: Reflections caused by a mismatched line termination

During a pulse transmission the amplitude at the iC-DL output initially only increases to half the value of supply voltage VB as the internal driver resistance and characteristic line impedance form a voltage divider. A wave with this amplitude is coupled into the line and experiences after a delay a total reflection at the highimpedance end of the line. At this position, the reflected wave superimposes with the transmitted wave and generates a signal with the double wave amplitude at the receiving device.



Figure 4: Pulse transmission and transit times

After a further delay, the reflected wave also increases the driver output to the full voltage swing. iC-DL's integrated impedance adapter prevents any further reflection and the achieved voltage is maintained along and at the termination of the line.

A mismatch between iC-DL and the transmission line influences the level of the signal wave first coupled into the line, resulting in reflections at the beginning of the line. The output signal may then have a number of graduations. Voltage peaks beyond VB or below GND are capped by integrated diodes. By this way, transmisssion lines with a characteristic impedance between 30 and 140 Ω permit proper operation.

Rev A1, Page 7/9

PRINTED CIRCUIT BOARD LAYOUT

The thermal pad at the bottom of the package improves thermal dissipation. The board layout has to be designed so that an appropriate number of copper vias below the thermal pad area form a good conductive path to the reverse of the board where a blank copper surface of sufficient size (approx. 2 cm²) carries off heat. The thermal pad is to be soldered to the board and must be connected to GND.

To smooth the local IC supply VCC and VBx, blocking capacitors must be connected directly to these pins and to GND.

DEMO BOARD

iC-DL is in a QFN28 package and comes with a demo board for test purposes. Figures 5 and 6 show both the wiring and the top of the demo board.

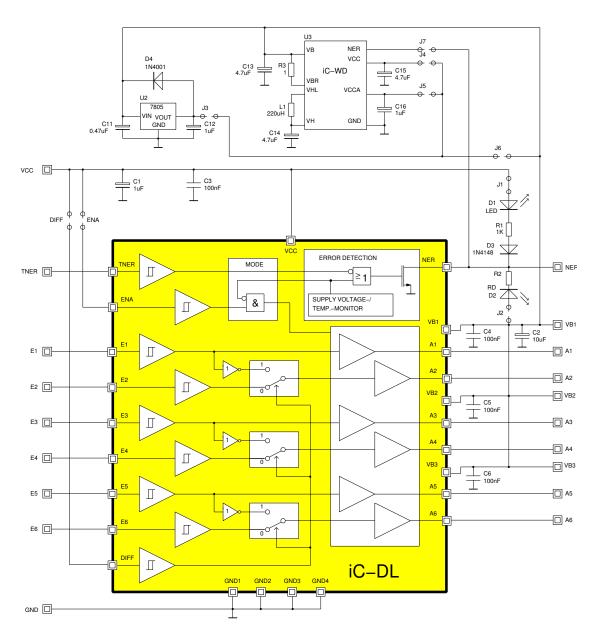


Figure 5: Circuit diagram of the demo board

Rev A1, Page 8/9

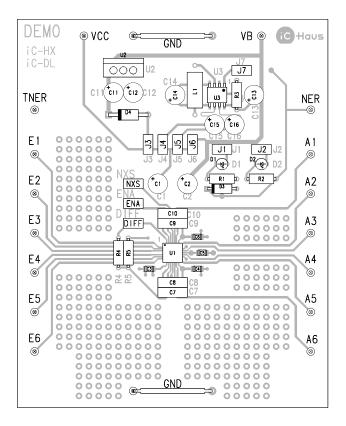


Figure 6: Demo board (component side)

This specification is for a newly developed product. iC-Haus therefore reserves the right to change or update, without notice, any information contained herein, design and specification; and to discontinue or limit production or distribution of any product versions. Please contact iC-Haus to ascertain the current data. Copying - even as an excerpt - is only permitted with iC-Haus approval in writing and precise reference to source.

iC-Haus does not warrant the accuracy, completeness or timeliness of the specification on this site and does not assume liability for any errors or omissions in the materials. The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

Rev A1, Page 9/9

ORDERING INFORMATION

Туре	Package	Order Designation
iC-DL	QFN28 5 x 5 mm²	iC-DL QFN28
DL-Demo-Board		DL1D DEMO

For information about prices, terms of delivery, other packaging options etc. please contact:

iC-Haus GmbH Tel +49 (61 35) 92 92-0 Am Kuemmerling 18 Fax +49 (61 35) 92 92-192 Web: http://www.ichaus.com D-55294 Bodenheim E-Mail: sales@ichaus.com **GERMANY**