Panasonic ideas for life

FEATURES

1. Smallest in its class, it is extremely compact at approx. $2 / 3$ the size of previous products.
Compared to our previous miniature type CT relay, the 1 Form C as well as the 10pin and 8-pin twin types take up approx. two-thirds the space and volume.
2. High-capacity 25 A load switching High capacity control capable of motor lock load switching at $25 \mathrm{~A}, 14 \mathrm{~V}$ DC is possible despite contact size.
3. Pin in Paste (PiP)* compatible model added
Models compatible with the recently increasingly popular PiP technique (reflow solder mounting) have been added.
PiP compatible models are the flux tight type.

* The PiP method may sometimes be referred to as THR (Through-Hole Reflow).

4. Environmental protection specifications
Cadmium-free contacts and use of leadfree solder are standard. Environmental pollutants are not used.

TYPICAL APPLICATIONS

- Power windows
- Automatic door locks
- Power mirrors
- Power sunroofs
- Power seats
- Lift gates
- Smart junction box related products, etc.

ORDERING INFORMATION

TYPES

Contact arrangement	Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Part No.	
			Standard type	Pin in Paste type
1 Form C	12 V DC	Max.6.5 V DC (Initial)	ACJ1112	ACJ1112P
		Max.7.2 V DC (Initial)	ACJ1212	ACJ1212P
1 Form C $\times 2$ (8 terminal)		Max.6.5 V DC (Initial)	ACJ2112	ACJ2112P
		Max.7.2 V DC (Initial)	ACJ2212	ACJ2212P
1 Form C $\times 2$ (10 terminal)		Max.6.5V DC (Initial)	ACJ5112	ACJ5112P
		Max.7.2 V DC (Initial)	ACJ5212	ACJ5212P

RATING

1. Coil data

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{aligned} & \text { Coil resistance } \\ & {[\pm 10 \%]} \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Nominal operating power (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Max. continuous voltage*
12 V DC	Max. 7.2 V DC (Initial)	$\begin{gathered} \hline \text { Min. } 1.0 \mathrm{~V} \text { DC } \\ \text { (Initial) } \\ \hline \end{gathered}$	53.3 mA	225Ω	640 mW	10 to 16 V DC
	$\underset{\text { (Initial) }}{\operatorname{Max} .6 .5 \mathrm{DC}}$	$\underset{(\text { Initial) }}{\substack{\text { Min. } 0.8 \vee ~ D C ~}}$	66.7 mA	180Ω	800 mW	9 to 16 V DC

[^0]
2. Specifications

Characteristics		Item	Specifications
Contact	Arrangement		1 Form C, 1 Form $\mathrm{C} \times 2$
	Initial contact resistance (Initial)		N.O.: Typ7m , N.C.: Typ10m (By voltage drop 6 V DC 1 A)
	Contact material		Ag alloy (Cadmium free)
Protective construction			Standard type: Sealed type Pin in Paste type: Flux tight type
Rating	Nominal switching capacity		N.O.: 20A 14V DC, N.C.: 10A 14V DC
	Max. carrying current (14V DC)		N.O.: 20 A for 1 hour, 30 A for 2 minutes (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
	Nominal operating power		640 mW (for pick-up voltage max. 7.2 V DC), 800 mW (for pick-up voltage max. 6.5 V DC)
	Min. switching capacity*1		1A 12V DC
Electrical characteristics	Initial insulation resistance		Min. $100 \mathrm{M} \Omega$ (at 500 V DC)
	Initial breakdown voltage	Between open contacts	500 Vrms for 1 min . (Detection current: 10 mA)
		Between contacts and coil	500 Vrms for 1 min . (Detection current: 10 mA)
	Operate time (at nominal voltage)		Max. 10 ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$, excluding contact bounce time) (Initial)
	Release time (at nominal voltage)		Max. 10 ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$, excluding contact bounce time) (Initial)
Mechanical characteristics	Shock resistance	Functional	Min. $100 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\}$ (Half-wave pulse of sine wave: 11 ms ; detection: $10 \mu \mathrm{~s}$)
		Destructive	Min. 1,000 m/s ${ }^{2}$ \{100G\} (Half-wave pulse of sine wave: 6 ms)
	Vibration resistance	Functional	10 Hz to 100 Hz , Min. 44.1m/s ${ }^{2}$ \{4.5G\} (Detection time: $10 \mu \mathrm{~s}$)
		Destructive	10 Hz to $500 \mathrm{~Hz}, \mathrm{Min} .44 .1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$ Time of vibration for each direction; X, Y direction: 2 hours, Z direction: 4 hours
	Mechanical		Min. 10^{7} (at 120 cpm)
Expected life	Electrical		[Standard type] <Resistive load> Min. 10^{5} (At nominal switching capacity, operating frequency: 1s ON, 9s OFF) <Motor load> N.O. side: Min. 2×10^{5} : at 25 A (inrush), 5 A (steady), 14 V DC; Min. 105: at 25 A 14 V DC (Motor lock) N.C. side: Min. 2×10^{5} : at 20 A 14 V DC (brake) (Operating frequency: 0.5 s ON, 9.5 s OFF) [Pin in Paste type] <Resistive load> Min. 10^{5} (At nominal switching capacity, operating frequency: 1s ON, 9s OFF) <Motor load> N.O. side: Min. 105: at 25 A (inrush), 5 A (steady), 14 V DC; Min. 5×10^{4} : at 25 A 14 V DC (Motor lock) N.C. side: Min. 105: at 20 A 14 V DC (brake) (Operating frequency: 0.5 s ON, 9.5 s OFF)
Conditions	Conditions for operation, transport and storage ${ }^{* 2}$		Ambient temp: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$ Humidity: 5% R.H. to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed		6 cpm (At nominal switching capacity)
Unit weight			1 Form C type: approx. 3.5 g .12 oz Twin type: approx. 6.5 g .23 oz
Notes:			

*1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2 Please inquire if you will be using the relay in a high temperature atmosphere $\left(110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}\right)$.
Refer to " 6 . Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT section in Relay Technical Information.

REFERENCE DATA

1-(1). Coil temperature rise (at room temperature)
Sample: ACJ1212, 3pcs
Measured portion: Inside the coil
Contact carrying current: 10A, 15A, 20A
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

1-(2). Coil temperature rise (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$)
Sample: ACJ1212, 3pcs
Measured portion: Inside the coil
Contact carrying current: 10A, 15A, 20A
Ambient temperature: $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$

1-(3). Coil temperature rise (at room temperature)
Sample: ACJ2212, 3pcs
Measured portion: Inside the coil
Contact carrying current: 10A, 15A, 20A Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

CJ (ACJ)

1-(4). Coil temperature rise (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$)
Sample: ACJ2212, 3pcs
Measured portion: Inside the coil
Contact carrying current: 10A, 15A, 20A
Ambient temperature: $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$

2-(1). Electrical life test (Motor free)
Sample: ACJ2212, 3pcs; Load: Inrush current: 25A Steady current: 5A, Power window motor actual load free condition); Tested voltage: 14V DC; Switching frequency: (ON:OFF = 0.5s:9.5s); Switching cycle: 2×10^{5}; Ambient temperature: Room temperature Circuit

Load current waveform
Inrush current: 25A, Steady current: 6A,
Brake current: 13A

2-(2). Electrical life test (Motor lock)
Sample: ACJ2212, 3pcs; Load: Steady current: 25A,
Power window motor actual load (lock condition);
Tested voltage: 14 V DC; Switching frequency:
(ON:OFF = 0.5s:9.5s); Switching cycle: 105;
Ambient temperature: Room temperature
Circuit

Change of pick-up and drop-out voltage

Change of contact resistance

Load current waveform
Current value: 25A

DIMENSIONS (Unit: mm inch)

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)

* Dimensions (thickness and width) of terminal specified in this catalog is measured before pre-soldering. Intervals between terminals is measured at A surface level.

2. Twin type (8-pin)

Pin in Paste type

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)

* Dimensions (thickness and width) of terminal specified in this catalog is measured before pre-soldering. Intervals between terminals is measured at A surface level.

3. Twin type (10-pin)

Standard type

External dimensions

Sealed by epoxy resin 4-0.25 4-.010

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)

4. Twin type (10-pin) Pin in Paste type

External dimensions

Dimension:
Max. 1mm . 039 inch: 1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$ Min. 3mm . 118 inch: $\pm 0.3 \pm .012$

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)

5. Slim 1 Form C Standard type

External dimensions

Dimension:
Max. 1mm . 039 inch:
1 to 3 mm .039 to 118 inch:

Min. 3mm . 118 inch:

PC board pattern (Bottom view)

Tolerance $\pm 0.1 \pm .004$ $\pm 0.2 \pm .008$
$\pm 0.3 \pm .012$

Schematic (Bottom view)

6. Slim 1 Form C

Pin in Paste type

External dimensions

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)

EXAMPLE OF CIRCUIT

Forward/reverse control circuits of DC motor (for 1 Form C $\times 2$ (8 terminal) type)

For Cautions for Use, see Relay Technical Information.

[^0]: * Other usable voltage range types are also available. Please contact us for details.

