
1/17

Getting Started with the USRP B205mini-i

Overview

This tutorial presents how to get started with the USRP B205mini-i, a software-defined

radio platform designed by Ettus Research™. It provides a wide frequency range (70 MHz

() to 6 GHz ()) and a user-programmable, industrial-grade Xilinx Spartan-6 XC6SLX150

FPGA.

Introduction

The USRP B205mini-i is based on the Spartan6 LX150 FPGA, which is used as a

controller, and the AD9364 transceiver, used as an analog front end. The AD9364 is a

transceiver that can acquire a frequency range from 70 MHz () to 6 GHz () with a sample

rate of up to 61.4 MHz () for both ADC () and DAC () with a maximum bandwidth of 56

MHz (). This frequency range allows us to receive and send 3G (UMTS) and 4G (LTE)

signals, wireless LAN (), FM/AM Radio, and more. The board comes in a rectangular form

factor with three SMA connectors: one for the transmitter, one for the receiver, and one

for the frequency reference.

Guide

Installing UHD drivers

Windows

First, we need to download the installer for the drivers from USRP Hardware Driver and

USRP Manual. Navigate to the latest releases page (under Installer Packages), select the

Windows-10-x64 folder, and download the installer for your version of Visual Studio and

bitness (Winx86 = 32-bit, Winx64 = 64-bit).

https://files.ettus.com/manual/page_install.html


2/17

When the download is complete, run the executable file. The set-up wizard pops up.

https://reference.digilentinc.com/_detail/reference/programmable-logic/b205mini/ettus_windows.png?id=reference%3Aprogrammable-logic%3Ab205mini%3Agetting-started
https://reference.digilentinc.com/_detail/reference/programmable-logic/b205mini/installer_windows.png?id=reference%3Aprogrammable-logic%3Ab205mini%3Agetting-started


3/17

It is important to add UHD to the system PATH variable so that commands can be run in

the Windows terminal. Next, download the USB driver for Windows and unzip the file

into a known location. We will refer to this as the <directory>. Open the device manager

and plug in the USRP device. You will see an unrecognized USB device in the device

manager. Right-click on the unrecognized USB device and select update/install driver

software (may vary for your OS ()). In the driver installation wizard, select “browse for

driver”, browse to the <directory>, and select the .inf file. Continue through the

installation wizard until the driver is installed.

We can avoid installing onto a native machine by running a docker container with all the

tools already installed. To do so, we have to install Docker - from the Docker Docs site -

and then download the Dockerfile provided through Ettus Github. Then, we create a

docker image and a container for this image to run a virtual Ubuntu machine with all

tools installed.

Ubuntu

http://files.ettus.com/binaries/misc/erllc_uhd_winusb_driver.zip
https://reference.digilentinc.com/_detail/reference/programmable-logic/b205mini/path_windows.png?id=reference%3Aprogrammable-logic%3Ab205mini%3Agetting-started
https://docs.docker.com/docker-for-windows/install
https://github.com/EttusResearch/ettus-docker/tree/master/ubuntu-uhd
https://reference.digilentinc.com/_detail/reference/programmable-logic/b205mini/github_ettus.png?id=reference%3Aprogrammable-logic%3Ab205mini%3Agetting-started


4/17

To install UHD drivers on Linux, first, we need to add the Ettus repository:

>>> sudo add-apt-repository ppa:ettusresearch/uhd 
>>> sudo apt-get update 

Once the repository is added, we need to install all drivers:

>>> sudo apt-get install libuhd-dev libuhd003 uhd-host

The terminal output will show something similar to the text found in the dropdown

below:

Terminal output

Next, we need to add the driver rules to the udev (userspace). To do that, first navigate to

the repository where the UHD drivers are installed:

>>> cd <install-path>/lib/uhd/utils 

In that folder, the rules.d directory can be found. Next, copy rules.d into udev folder.

Reload the rules.

>>> sudo cp uhd-usrp.rules /etc/udev/rules.d/ 
>>> sudo udevadm control --reload-rules 
>>> sudo udevadm trigger 

The terminal output will look like this:

>>> cd /usr/lib/uhd/utils 
>>> sudo cp uhd-usrp.rules /etc/udev/rules.d/ 
>>> sudo udevadm control --reload-rules 
>>> sudo udevadm trigger 

Docker on Linux Ubuntu

https://reference.digilentinc.com/_detail/reference/programmable-logic/b205mini/utils_003.png?id=reference%3Aprogrammable-logic%3Ab205mini%3Agetting-started


5/17

To avoid all the installation steps, we can download a docker image based on Ubuntu. To

do that, first download the Dockerfile from Ettus Github.

Then, in the same folder that the Dockerfile was downloaded into, execute the command

(sudo docker build -t uhd_container) to build the container. Example output below:

"docker build" output

When the process is finished, we can check if the image was added to docker with the

command docker image ls:

>>> sudo docker image ls 
REPOSITORY TAG IMAGE ID CREATED SIZE 
uhd_container latest 044eb9fbb9db 22 minutes ago 2.02GB 
ubuntu 18.04 56def654ec22 6 weeks ago 63.2MB 
hello-world latest fce289e99eb9 22 months ago 1.84kB

Once the image is created, we can create and run a new container. It is important to allow

access to the /dev folder so that the container can communicate through USB:

>>> sudo docker run -it --privileged -v /dev:/dev -v /proc:/proc uhd_container

Now we can check if the container has access to the board through the command

uhd_find_devices. Remember to run the command as administrator (root user):

 uhd_device_find 
bash: uhd_device_find: command not found 
root@e2fe367a8881:/# uhd_find_devices 
[INFO] [UHD] linux; GNU C++ version 7.5.0; Boost_106501; UHD_3.14.0.HEAD-release
-------------------------------------------------- 
-- UHD Device 0 
-------------------------------------------------- 
Device Address: 
serial: 31DDAAD 
name: B205i 
product: B205mini 
type: b200

Now that we can use the device from within our container, we can execute a Python Fast

Fourier Transform (FFT) example that can be found in /usr/lib/uhd/examples/python#:

https://github.com/EttusResearch/ettus-docker/tree/master/ubuntu-uhd
https://reference.digilentinc.com/_detail/reference/programmable-logic/b205mini/github_ettus.png?id=reference%3Aprogrammable-logic%3Ab205mini%3Agetting-started


6/17

/usr/lib/uhd/examples/python# python3 curses_fft.py -f 100e6 
[INFO] [UHD] linux; GNU C++ version 7.5.0; Boost_106501; UHD_3.14.0.HEAD-release
[INFO] [B200] Loading firmware image: /usr/share/uhd/images/usrp_b200_fw.hex... 
[INFO] [B200] Detected Device: B205mini 
[INFO] [B200] Loading FPGA image: /usr/share/uhd/images/usrp_b205mini_fpga.bin... 
[INFO] [B200] Operating over USB 3. 
[INFO] [B200] Initialize CODEC control... 
[INFO] [B200] Initialize Radio control... 
[INFO] [B200] Performing register loopback test... 
[INFO] [B200] Register loopback test passed 
[INFO] [B200] Setting master clock rate selection to 'automatic'. 
[INFO] [B200] Asking for clock rate 16.000000 MHz... 
[INFO] [B200] Actually got clock rate 16.000000 MHz. 
[INFO] [B200] Asking for clock rate 32.000000 MHz... 
[INFO] [B200] Actually got clock rate 32.000000 MHz.



7/17

Connecting to the Device

We can test the device by running the USRP Hardware Driver Peripheral Report Utility.

Assuming that we connect the USRP B205mini-i to a Linux machine and run the utility

(uhd_usrp_probe) in the terminal. If this is the first time that you are running the utility,

you will get an error in the terminal:

https://reference.digilentinc.com/_detail/reference/programmable-logic/b205mini/docker_fft_example.png?id=reference%3Aprogrammable-logic%3Ab205mini%3Agetting-started


8/17

>>> uhd_usrp_probe 
[INFO] [UHD] linux; GNU C++ version 7.5.0; Boost_106501; UHD_3.15.0.0-release 
[WARNING] [B200] EnvironmentError: IOError: Could not find path for image: 
usrp_b200_fw.hex 
Using images directory: <no images directory located> 
Set the environment variable 'UHD_IMAGES_DIR' appropriately or follow the below 
instructions to download the i 
Please run: 
"/usr/lib/uhd/utils/uhd_images_downloader.py" 
Error: LookupError: KeyError: No devices found for -----> 
Empty Device Address 

This is caused by an empty image directory or by some images being missing from the

directory. To fix that, we need to run the uhd_images_downloader.py script, which will

download and copy the necessary images into the image directory. The script must be run

as superuser.

>>> sudo python /usr/lib/uhd/utils/uhd_images_downloader.py 
[INFO] Images destination: /usr/share/uhd/images 
[INFO] No inventory file found at /usr/share/uhd/images/inventory.json. Creating 
an empty one. 
19442 kB / 19442 kB (100%) x3xx_x310_fpga_default-gfde2a94e.zip 
02757 kB / 02757 kB (100%) usrp2_n210_fpga_default-g6bea23d.zip 
00006 kB / 00006 kB (100%) usrp1_b100_fw_default-g6bea23d.zip 
02076 kB / 02076 kB (100%) n230_n230_fpga_default-gfde2a94e.zip 
00522 kB / 00522 kB (100%) usrp1_b100_fpga_default-g6bea23d.zip 
01534 kB / 01534 kB (100%) e3xx_e310_sg1_fpga_default-gfde2a94e.zip 
00479 kB / 00479 kB (100%) b2xx_b200_fpga_default-gfde2a94e.zip 
02415 kB / 02415 kB (100%) usrp2_n200_fpga_default-g6bea23d.zip 
09070 kB / 09070 kB (100%) e3xx_e320_fpga_default-gfde2a94e.zip 
23071 kB / 23071 kB (100%) n3xx_n310_fpga_default-gfde2a94e.zip 
00523 kB / 00523 kB (100%) b2xx_b205mini_fpga_default-gfde2a94e.zip 
18697 kB / 18697 kB (100%) x3xx_x300_fpga_default-gfde2a94e.zip 
00464 kB / 00464 kB (100%) b2xx_b200mini_fpga_default-gfde2a94e.zip 
00017 kB / 00017 kB (100%) octoclock_octoclock_fw_default-g14000041.zip 
00007 kB / 00007 kB (100%) usrp2_usrp2_fw_default-g6bea23d.zip 
00009 kB / 00009 kB (100%) usrp2_n200_fw_default-g6bea23d.zip 
00450 kB / 00450 kB (100%) usrp2_usrp2_fpga_default-g6bea23d.zip 
01522 kB / 01522 kB (100%) e3xx_e310_sg3_fpga_default-gfde2a94e.zip 
00162 kB / 00162 kB (100%) b2xx_common_fw_default-g2bdad498.zip 
24996 kB / 24996 kB (100%) n3xx_n320_fpga_default-gfde2a94e.zip 
00319 kB / 00319 kB (100%) usrp1_usrp1_fpga_default-g6bea23d.zip 
04839 kB / 04839 kB (100%) usb_common_windrv_default-g14000041.zip 
00009 kB / 00009 kB (100%) usrp2_n210_fw_default-g6bea23d.zip 
16072 kB / 16072 kB (100%) n3xx_n300_fpga_default-gfde2a94e.zip 
00879 kB / 00879 kB (100%) b2xx_b210_fpga_default-gfde2a94e.zip 
[INFO] Images download complete. 

When the script has finished running, all images will be downloaded into the directory.

The next step is to rerun the command to connect with the board, and if all is good, the

board will be discovered. The output of the terminal will show the identifier of the board

and the capabilities of the board, as seen in the dropdown below:

"uhd_usrp_probe" sample results

If we only want to extract the board identifier, we can run the command below:



9/17

>>> uhd_find_devices 
[INFO] [UHD] linux; GNU C++ version 7.5.0; Boost_106501; UHD_3.15.0.0-release 
-------------------------------------------------- 
-- UHD Device 0 
-------------------------------------------------- 
Device Address: 
serial: 31DDAAD 
name: B205i 
product: B205mini 
type: b200

Now the device is connected and configured.

Running an Example

There are some examples that come with the driver. For example, we can run the real-

time Discrete Fourier Transform (DFT) example. The options for the executable

(./rx_ascii_art_dft) are frequency (–freq), sampling rate (–rate), gain (–gain), bandwidth

(–bw), and reference level (–ref-lvl). The terminal will show the flow of execution, list the

parameters, and graph the result:

./rx_ascii_art_dft --freq 94e6 --rate 5e6 --gain 20 --bw 1e6 --ref-lvl -30 
Creating the usrp device with: ... 
[INFO] [UHD] linux; GNU C++ version 7.5.0; Boost_106501; UHD_3.15.0.0-release 
[INFO] [B200] Detected Device: B205mini 
[INFO] [B200] Operating over USB 3. 
[INFO] [B200] Initialize CODEC control... 
[INFO] [B200] Initialize Radio control... 
[INFO] [B200] Performing register loopback test... 
[INFO] [B200] Register loopback test passed 
[INFO] [B200] Setting master clock rate selection to 'automatic'. 
[INFO] [B200] Asking for clock rate 16.000000 MHz... 
[INFO] [B200] Actually got clock rate 16.000000 MHz. 
Using Device: Single USRP: 
Device: B-Series Device 
Mboard 0: B205mini 
RX Channel: 0 
RX DSP: 0 
RX Dboard: A 
RX Subdev: FE-RX1 
TX Channel: 0 
TX DSP: 0 
TX Dboard: A 
TX Subdev: FE-TX1 
Setting RX Rate: 5.000000 Msps... 
[INFO] [B200] Asking for clock rate 40.000000 MHz... 
[INFO] [B200] Actually got clock rate 40.000000 MHz. 
Actual RX Rate: 5.000000 Msps... 
Setting RX Freq: 94.000000 MHz... 
Actual RX Freq: 94.000000 MHz... 
Setting RX Gain: 20.000000 dB... 
Actual RX Gain: 20.000000 dB... 
Setting RX Bandwidth: 1.000000 MHz... 
Actual RX Bandwidth: 1.000000 MHz...



10/17

Getting Started with GNU Radio

First, install GNU Radio on the Linux machine using the command add-apt-repository

ppa:gnuradio/gnuradio-releases. See the dropdown below for the expected results in the

terminal:

GNU Radio Installation Results

Note: You may encounter a compatibility error because the UHD driver version

installed in the Linux machine is different from the version that comes with GNU. For

instance, the version of UHD driver in GNU Radio is UHD_003.010.003.000-0 while

the one we installed is 3.15.0.0-1-1ubuntu1~bionic1. To fix the error, first download the

correct UHD FPGA Image from Ettus Resources Hub (Direct download: uhd-

images_003.010.003.000-release.tar.xz). Then, copy the downloaded image to the

directory where all images are saved. In this case, we save all images under

/usr/share/uhd/images. You can also follow the Building and Installing the USRP

Open-Source Toolchain to install GNU Radio. This may take longer.

Now we can open GNU Radio and start to work with it.

https://reference.digilentinc.com/_detail/reference/programmable-logic/b205mini/example_ascii_fft.png?id=reference%3Aprogrammable-logic%3Ab205mini%3Agetting-started
https://files.ettus.com/binaries/images/
https://files.ettus.com/binaries/images/uhd-images_003.010.003.000-release.tar.xz
https://kb.ettus.com/Building_and_Installing_the_USRP_Open-Source_Toolchain_(UHD_and_GNU_Radio)_on_Linux


11/17

Using GNU Radio to Design a Frequency Modulation (FM) Receiver

The FM receiver takes the modulated signal (i.e. radio waves under the VHF band) as

input and produces the original audio signal ranging from 20 Hz () to 20 kHz ().

First of all, run 'gnuradio-companion' in the terminal to open GNU Radio Companion.

Then, add the following blocks:

https://reference.digilentinc.com/_detail/reference/programmable-logic/b205mini/untitled_-_gnu_radio_companion_007.png?id=reference%3Aprogrammable-logic%3Ab205mini%3Agetting-started
https://reference.digilentinc.com/_detail/reference/programmable-logic/b205mini/modulation.png?id=reference%3Aprogrammable-logic%3Ab205mini%3Agetting-started


12/17

1. Two Variables, samp_rate and freq:

samp_rate is the sampling rate, which we set to 5 MHz () (Hint: We can copy

the existing variable block and paste that in Canvas. Then, we can open the

copied variable and change the id and value).

freq is the frequency bandwidth which we set to 94.2 MHz ().

2. UHD: USRP Source - The USRP Source block will produce baseband samples by

sampling RF () on a selected antenna at a particular frequency, sample rate, and

gain. We will configure the sample rate as 5 MHz () (samp_rate) and the center

frequency as 94.2 MHz () (freq) and keep the default value for the rest of the

parameters.

3. QT GUI () Sink - The QT GUI () frequency sink displays multiple signals in

frequency. We set the FFT size to 1024 samples, bandwidth to 5 MHz () and update

rate to 10.

Next, we will add a low pass filter. Notice that the audio signal bandwidth ranges from

200 Hz () to 20 kHz (). We can set the cutoff frequency to 50 kHz () with a transition band

down to 10 kHz () and have soft filtering. The transition width will determine the number

of taps. We also use this low pass filter to decimate the signal. By doing so, we can discard

some samples and make the processing easier. In this case, we will perform a decimation

of 20, which means the output sampling frequency will be 5 MHz () / 20 ~ 250 KHz.

https://reference.digilentinc.com/_detail/reference/programmable-logic/b205mini/gnuradio12.png?id=reference%3Aprogrammable-logic%3Ab205mini%3Agetting-started


13/17

Once the lowpass filter has been added, the next step is to perform the FM demodulation.

To do that, add a WBFM receive block and set the quadrature rate to the input sampling

frequency, 250 kHz ().

https://reference.digilentinc.com/_detail/reference/programmable-logic/b205mini/lpf_024.png?id=reference%3Aprogrammable-logic%3Ab205mini%3Agetting-started


14/17

Since the output signal is audible, we can send this signal to the sound card - which is

actually a digital to analog converter with a sample rate of, in general, 96 kHz (). Thus, we

need to decimate the output signal to obtain the 96 kHz () sample rate. To do that, add a

Rational resamples block that performs an x/y operation, where x (interpolation) is the

output frequency, and y (decimation), is the input frequency. Finally, add an Audio sink

block, so that the output signal will be played through speakers. We also add 2 QT GUI ()

Sink blocks to visualize the input and the output signals.

https://reference.digilentinc.com/_detail/reference/programmable-logic/b205mini/wbfm_receiver.png?id=reference%3Aprogrammable-logic%3Ab205mini%3Agetting-started
https://reference.digilentinc.com/_detail/reference/programmable-logic/b205mini/complete_diagram.png?id=reference%3Aprogrammable-logic%3Ab205mini%3Agetting-started


15/17

Finally, generate the python script by pushing the 'Generate the flow graph' button.

Then, we send the design to the USRP B205mini-i by pushing the 'Execute the flow graph'

button.

The Python script will be executed. The output signal is displayed in time and frequency

domain, as seen below. You can also hear the radio station selected.

https://reference.digilentinc.com/_detail/reference/programmable-logic/b205mini/selection_021.png?id=reference%3Aprogrammable-logic%3Ab205mini%3Agetting-started
https://reference.digilentinc.com/_detail/reference/programmable-logic/b205mini/selection_023.png?id=reference%3Aprogrammable-logic%3Ab205mini%3Agetting-started


16/17

References

USRP B205mini-i Reference Manual

https://reference.digilentinc.com/_detail/reference/programmable-logic/b205mini/fm_example_fft.png?id=reference%3Aprogrammable-logic%3Ab205mini%3Agetting-started
https://reference.digilentinc.com/_detail/reference/programmable-logic/b205mini/fm_example_temporal.png?id=reference%3Aprogrammable-logic%3Ab205mini%3Agetting-started
https://reference.digilentinc.com/reference/programmable-logic/b205mini/reference-manual



